Kragujevac J. Math. 32 (2009) 37-46.

ON THE CHEN CHARACTER OF $\delta(2)$ -IDEAL SUBMANIFOLDS

Simona Decu¹, Bilkis Jahanara², Miroslava Petrović-Torgašev³ and L. Verstraelen⁴

¹University of Bucharest, Faculty of Mathematics, Str. Academiei 14, 010014 Bucharest, Romania (e-mail: simona.decu@gmail.com)

² Kath. Universiteit Leuven, Fakul. Wetenschappen, Depart. Wiskunde, Celestijnenlaan 200B, 3001 Leuven, Belgium (e-mail: bilkis.jahanara@wis.kuleuven.be)

³ University of Kragujevac, Dep. of Math., Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia (e-mail: mirapt@kg.ac.rs)

⁴ Kath. Universiteit Leuven, Fakul. Wetenschappen, Depart. Wiskunde, Celestijnenlaan 200B, 3001 Leuven, Belgium (e-mail: leopold.verstraelen@wis.kuleuven.be)

(Received May 29, 2008)

Abstract. In this paper we characterized $\delta(2)$ -ideal submanifolds M^n in ambient Euclidean spaces E^{n+m} , $(n \ge 2, m \ge 1)$, which are at the same time Chen submanifolds

1. $\delta(2)$ -IDEAL SUBMANIFOLDS

Let M^n be an *n*-dimensional Riemannian submanifold of an (n + m)-dimensional Euclidean space E^{n+m} , $(n \ge 2, m \ge 1)$. Let g and ∇ , and, respectively, \tilde{g} and

 $\tilde{\nabla}$, denote the *Riemannian metrics* and the corresponding *Levi–Civita connections* of M^n and of E^{n+m} . The formulae of Gauss and Weingarten are then given by

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{1}$$

and

$$\tilde{\nabla}_X \xi = -A_\xi X + \nabla_X^\perp \xi, \tag{2}$$

whereby h, A_{ξ} and ∇^{\perp} denote the second fundamental form, the shape operator or Weingarten map with respect to ξ and the normal connection of M^n in E^{n+m} , respectively, $(X, Y, \text{ etc. stand for tangent vector fields and <math>\xi$ etc. for normal vector fields on M^n in E^{n+m}).

From (1) and (2) it follows that

$$\tilde{g}(h(X,Y),\xi) = g(A_{\xi}(X),Y), \qquad (3)$$

such that, for any orthonormal local normal frame $\{\xi_{\alpha}\}$ on M^n , $(\alpha = 1, \ldots, m)$,

$$h(X,Y) = \sum_{\alpha} g(A_{\alpha}(X),Y)\xi_{\alpha}, \qquad (4)$$

whereby $A_{\alpha} = A_{\xi_{\alpha}}$.

The mean curvature vector field \overrightarrow{H} of M^n in E^{n+m} is defined as $\overrightarrow{H} = \frac{1}{n} tr h = \frac{1}{n} \sum_{i=1}^n h(E_i, E_i)$, for any orthonormal local tangent frame $\{E_i\}$ on M^n , and its length $H = \|\overrightarrow{H}\|$ is the mean curvature of M^n in E^{n+m} .

Let R denote the (0,4) Riemann-Christoffel curvature tensor of (M^n,g) . Then, according to the equation of Gauss,

$$R(X, Y, Z, W) = \tilde{g}(h(X, W), h(Y, Z)) - \tilde{g}(h(X, Z), h(Y, W)).$$
(5)

Denoting by τ the scalar curvature function of (M^n, g) , we put

$$\tau(p) := \sum_{i < j} K(p, E_i(p) \wedge E_j(p)), \tag{6}$$

where K denotes sectional curvature $K(p,\pi) = K(p, E_i \wedge E_j) = R(E_i, E_j, E_j, E_i),$ $(i \neq j)$ and $E_i \wedge E_j = \pi$ is a plane section in $T_p(M^n)$. For each point p in M^n , consider the real function $(\inf K)(p) := \inf\{K(p,\pi) | \pi \text{ is a plane section in } T_p(M^n)\}.$ Then B. Y. Chen introduced in [1] the $\delta(2)$ -curvature by

$$\delta := \tau - \inf K. \tag{7}$$

This $\delta(2)$ -curvature, or, for short, δ -curvature of Chen is a well defined real function on M^n , $\delta: M^n \to R$, which is a scalar valued intrinsic invariant of the Riemannian manifold.

Later B. Y. Chen introduced many more new scalar valued *Riemannian curvature* invariants (δ -curvatures), based on the scalar curvature of the manifold and sectional or scalar curvatures of certain subspaces. Recent works of Chen ([2], [3],..) dealing with the problem by obtaining optimal general inequalities between intrinsic and extrinsic curvature invariants, give ample solutions to the question of S. S. Chern [4] to look for necessary conditions of intrinsic type on a Riemannian manifold in order to be able to admit an isometric immersion into some Euclidean space as a minimal submanifold, (cfr. [3] for an up to date survey).

Here, we mention, that for surfaces M^2 in E^3 , the Euler inequality (1760), $K \leq H^2$ holds, whereby K is the intrinsic Gauss curvature of M^2 and H^2 is the extrinsic squared mean curvature of M^2 in E^3 . And, obviously, $K = H^2$ everywhere on M^2 if and only if the surface M^2 is totally umbilical in E^3 , or still, by a theorem of Meusnier, if and only if M^2 is a part of a plane E^2 or a round sphere S^2 in E^3 .

The *inequalities of Chen*, alluded to above, do generalize this Euler inequality for Riemannian manifolds M^n in ambient Riemannian manifolds \tilde{M}^{n+m} , whereby instead of K comes some δ -curvature and whereby in the right hand side, besides H^2 , some additional terms relating to the curvature of \tilde{M}^{n+m} may appear.

From [1] we recall the following first answer to the above question of Chern.

Theorem A. For any submanifold M^n in E^{n+m} ,

$$\delta \le \frac{n^2(n-2)}{2(n-1)} H^2$$
 (*)

and equality holds at a point p of M^n if and only if, with respect to a suitable adapted

orthonormal frame $\{E_i, \xi_\alpha\}$, the shape operators A_α at p are given by

$$A_{1} = \begin{pmatrix} a & 0 & 0 & \dots & 0 \\ 0 & b & 0 & \dots & 0 \\ 0 & 0 & \mu & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \mu \end{pmatrix} \qquad A_{\beta} = \begin{pmatrix} c_{\beta} & d_{\beta} & 0 & \dots & 0 \\ d_{\beta} & -c_{\beta} & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, (\beta > 1),$$

whereby $\mu = a + b$ and $\inf K(p) = ab - \sum_{\beta > 1} (c_{\beta}^2 + d_{\beta}^2)$.

Submanifolds M^n of E^{n+m} for which the basic inequality (*) at all points of M^n is actually an equality are called $\delta(2)$ -ideal submanifolds or Chen ideal submanifolds ([12]). We also quote the following result from [1].

Theorem B. Let M^n be a minimal submanifold of E^{n+m} . Then $\delta \leq 0$. If $\delta = 0$, then for each point p in M, either dim $\mathcal{D}(p) = n$ or dim $\mathcal{D}(p) = n - 2$, whereby $\mathcal{D}(p) := \{\vec{z} \in T_p M | \forall \vec{v} \in T_p M : h(\vec{z}, \vec{v}) = \vec{o}\}$. Moreover, if dim $\mathcal{D} \equiv n$ then M^n is totally geodesic, and, if dim $\mathcal{D} \equiv n - 2$, then M^n is a ruled submanifold with (n - 2)dimensional rulers. In particular, if M^n is a normal (n - 2)D ruled submanifold, then M^n is a piece of one of the following minimal submanifolds: (i) the product submanifold $N^2 \times E^{n-2}$ of a minimal surface N^2 in E^{2+m} with an (n-2)-dimensional linear subspace E^{n-2} in E^{n+m} , or, (ii) the product submanifold $CN^2 \times E^{n-3}$ of a 3D minimal cone CN^2 in E^{3+m} , $(N^2$ now is a minimal surface of the unit hypersphere S^{2+m} in E^{3+m} , centered at the origin, and CN^2 is the cone over N^2 in E^{3+m} with vertex at the origin) with an (n - 3)- dimensional linear subspace E^{n-3} of E^{n+m} . And, conversely, $\delta = 0$ for all minimal submanifolds M^n in E^{n+m} described in (i) and (ii).

2. SYMMETRIES OF $\delta(2)$ -IDEAL SUBMANIFOLDS

For a Riemannian manifold (M^n, g) , let R also denote the (1, 1) curvature operator $R(X, Y) := \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$, besides the (0, 4) curvature tensor, such that, by definition

$$R(X, Y, Z, W) = g(R(X, Y)Z, W),$$
(8)

[.,.] denoting the Lie-bracket on the differential manifold M^n .

By the action of the curvature operator R working as a derivation on the curvature tensor R, the following (0, 6) tensor $R \cdot R$ is obtained:

$$(R \cdot R)(X_1, X_2, X_3, X_4; X, Y) := (R(X, Y) \cdot R)(X_1, X_2, X_3, X_4)$$

= $-R(R(X, Y)X_1, X_2, X_3, X_4) - R(X_1, R(X, Y)X_2, X_3, X_4)$
 $-R(X_1, X_2, R(X, Y)X_3, X_4) - R(X_1, X_2, X_3, R(X, Y)X_4).$

It was recently shown by S. Haesen and one of the authors [5], that this tensor $R \cdot R$ can be geometrically interpreted as giving the second order measure of the change of the sectional curvatures $K(p, \pi)$ for tangent 2D-planes π at points p after the parallel transport of π all around infinitesimal co-ordinate parallelograms in M cornered at p.

Semi-symmetric or Szabó symmetric manifolds ([6] [7]), are characterized by the property that $R \cdot R = 0$. According to [5], Szabó symmetric spaces are the Riemannian manifolds for which all sectional curvatures remain preserved after parallel transport of their planes around all infinitesimal co-ordinate parallelograms in M.

Under projective transformations, the Szabó symmetric spaces give rise to the Deszcz symmetric spaces.

Deszcz symmetric spaces or pseudo-symmetric spaces ([5] [8] [9] [10]) are defined by

$$R \cdot R = L \ Q(g, R) \tag{9}$$

for some function $L: M^n \to R$ (whenever $Q(g, R) \neq 0$), whereby $Q(g, R) := - \wedge_g \cdot R$, is (0, 6) Tachibana tensor, and \wedge_g (denoting the metrical endomorphism: $(X \wedge_g Y)Z = g(Y, Z)X - g(X, Z)Y$) acts on the (0, 4) tensor R as a derivation.

A geometrical interpretation of L is given as the isotropic double sectional curvature function on (M^n, g) [5].

Clearly, every semi–symmetric manifold is also Deszcz symmetric, but the converse is not true. There do exist proper Deszcz symmetric manifolds (see e.g. [8]).

The Deszcz symmetry (10) corresponds to proper Deszcz symmetry in case $L \neq 0$ and to semi-symmetry in case L = 0. And, as already observed by Cartan, every 2D Riemannian manifold is automatically semi–symmetric, we further only consider $\delta(2)$ -ideal submanifolds M^n of dimension $n \geq 3$.

In [11], F. Dillen and two of the authors classified the *semi-symmetric Chen ideal* submanifolds, i.e. the *semi-symmetric* $\delta(2)$ -ideal submanifolds as follows.

Theorem C. A Chen ideal submanifold M^n , $n \ge 3$, in E^{n+m} is semi-symmetric if and only if it is minimal (cfr. Theorem B) or it is a round hypercone in some totally geodesic E^{n+1} in E^{n+m} , (including as "degenerate cases" the totally geodesic and the totally umbilical submanifolds).

Recently, R. Deszcz, G. Zafindratafa and two of the authors [12] studied the intrinsic symmetry property to be Deszcz symmetric for Chen ideal submanifolds M^n in E^{n+m} .

Theorem D. A Chen ideal submanifold M^n , $n \ge 3$, in E^{n+m} is properly pseudosymmetric, $R \cdot R = L Q(g, R)$, $0 \ne L : M \rightarrow R$, if and only if, at every point p of M^n , the 2D normal section $\sum_{\tilde{\pi}}^2$ of M^n in the planar direction $\tilde{\pi}$ for which $K(p, \tilde{\pi})$ attains its minimal value $K_{inf}(p)$, is pseudo-umbilical at p, or, equivalently, if p is a spherical point of the projection $\widetilde{\sum_{\tilde{\pi}}^2}$ of this normal section $\sum_{\tilde{\pi}}^2$ on the Euclidean space E^3 spanned by $\tilde{\pi}$ and the mean curvature vector $\vec{H}(p)$ of M^n in E^{n+m} at p, and in this case $L = \frac{n^2}{2(n-1)^2} H^2$.

We recall that the non-planar umbilical points of surfaces M^2 in E^3 are called spherical points and that a submanifold which is not minimal at a point is called pseudo-umbilical at this point when its mean curvature normal direction there is an umbilical one [13].

3. CHEN SUBMANIFOLDS

For submanifolds M^n of E^{n+m} the notion of allied vector field of a given normal vector field of M^n is defined in [13]. According to that, for $\delta(2)$ -ideal submanifolds M^n in E^{n+m} we take a local orthonormal frame $\{\xi_1 = \frac{\overrightarrow{H}}{\|\overrightarrow{H}\|}, \xi_2, \ldots, \xi_m\}$ where \overrightarrow{H} is

the mean curvature vector of M^n in E^{n+m} , and then a normal canonical vector field is defined in

$$a(\overrightarrow{H}) = \frac{1}{n} \sum_{\beta=2}^{m} tr(A_1 A_\beta) \xi_\beta, \qquad (10)$$

which is called the *allied vector field of* \overrightarrow{H} or *allied mean curvature vector field* of M^n in E^{n+m} .

A submanifold M^n is called an \mathcal{A} -submanifold or a Chen submanifold if the allied mean curvature vector field of M^n , $a(\vec{H}) \equiv \vec{0}$. By a result of B. Rouxel [14], a submanifold M^n of E^{n+m} is a Chen submanifold if and only if the mean curvature vector at a point p, $\vec{H}(p)$ is an axis of symmetry of the (m-2)-nd polar of its Kommerell hyperquadric curvature image in the normal space $T_p^{\perp}M$, for all points pof M.

Minimal submanifolds, pseudo–umbilical submanifolds and hypersurfaces are *Chen* submanifolds in a trivial way.

In order to find the allied mean curvature vector field of such $\delta(2)$ -*ideal submani*folds M^n in E^{n+m} , from the specific forms of the shape operators at a point p of these submanifolds being given in Theorem A, we take

$$A_1 A_{\beta} = \begin{pmatrix} ac_{\beta} & ad_{\beta} & 0 & \dots & 0\\ bd_{\beta} & -bc_{\beta} & 0 & \dots & 0\\ 0 & 0 & 0 & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \qquad (\beta > 1).$$

Then the allied mean curvature vector field $a(\vec{H}) = \vec{0}$ if and only if $c_{\beta}(a-b) = 0$, $(\forall \beta > 1)$.

Thus, a $\delta(2)$ -ideal submanifold M^n in E^{n+m} is a Chen submanifold, if and only if $c_{\beta} = 0$, $(\forall \beta)$ in which case the shape operators A_{α} , $(\alpha = 1, \ldots, m)$ at p of M^n in Euclidean spaces E^{n+m} are given by

$$A_{1} = \begin{pmatrix} a & 0 & 0 & \dots & 0 \\ 0 & b & 0 & \dots & 0 \\ 0 & 0 & \mu & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & \mu \end{pmatrix}, \qquad A_{\beta} = \begin{pmatrix} 0 & d_{\beta} & 0 & \dots & 0 \\ d_{\beta} & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \qquad (\beta > 1),$$

or a = b, which is, by Theorem D, equivalent with the property of being properly Deszcz symmetric M^n in E^{n+m} , $(L \neq 0)$, with $L = \frac{n^2}{2(n-1)^2} H^2$ ([12]).

In order to characterize $c_{\beta} = 0$, $(\forall \beta)(\beta > 1)$, we take the 2D-normal section \sum_{π}^{2} at any point p of M^{n} in E^{n+m} determined by the tangent 2-plane $\pi = E_{1}(p) \wedge E_{2}(p) = R^{2}$ for which the sectional curvature $K(p, \pi)$ of M^{n} reaches its minimal value at p. Then \sum_{π}^{2} is the surface which is the local intersection around p of M^{n} with the space R^{2+m} through p and spanned by π and the normal space $T_{p}^{\perp}(M^{n}) = R^{m}$ of M^{n} in E^{n+m} at p, i.e. \sum_{π}^{2} is a surface in $E^{2+m} = \pi \oplus T_{p}^{\perp}(M^{n})$. For such surface \sum_{π}^{2} in E^{2+m} , from the specific forms of the shape operators at a point p of an $\delta(2)$ -ideal submanifold M^{n} in E^{n+m} given in Theorem A, the shape operators at p are given by

$$\tilde{A}_1 = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, (a \neq b), \qquad \tilde{A}_\beta = \begin{pmatrix} c_\beta & d_\beta \\ d_\beta & -c_\beta \end{pmatrix}, (\beta > 1).$$

Using the notion of *curvature ellipse* [15], for the 2*D*-normal section \sum_{π}^{2} in E^{2+m} , by virtue of the shape operators $\tilde{A}_{1}, \tilde{A}_{\beta}, (\beta > 1)$, we obtain that the curvature ellipse \mathcal{E}_{p} of \sum_{π}^{2} in E^{2+m} at $p \in \sum_{\pi}^{2}$ is given by

$$\widetilde{h}(u,u) = \overrightarrow{H} + \cos 2\theta \left(\frac{h_{11} - h_{22}}{2}\right) + \sin 2\theta h_{12}$$

$$= \overrightarrow{H} + \cos 2\theta \left(\frac{a - b}{2}\xi_1 + \sum_{\beta} c_{\beta}\xi_{\beta}\right) + \sin 2\theta \left(\sum_{\beta} d_{\beta}\xi_{\beta}\right), \quad (a \neq b),$$
(11)

 $(u \in T_p(M^n), ||u|| = 1)$, whereby $h_{11} = h(E_1, E_1), h_{22} = h(E_2, E_2)$ and $h_{12} = h(E_1, E_2).$

Thus the mean curvature direction \overrightarrow{H} of M^n in E^{n+m} at p is an principal axis of the curvature ellipse \mathcal{E} of \sum_{π}^2 in E^{2+m} , if and only if, $\sum_{\beta} c_{\beta}\xi_{\beta} = 0$, i.e. $c_{\beta} = 0$, $(\forall \beta)$.

From all above, we thus obtained the following theorem.

Theorem. Let M^n be a $\delta(2)$ -ideal submanifold in Euclidean ambient spaces E^{n+m} , of arbitrary dimensions $n \geq 3$ and codimensions $m \geq 1$, and let \sum_{π}^2 be the 2D-normal section at any point p of M^n for the tangent 2-plane π in which M^n reaches its minimal sectional curvature at p. Then M^n is a Chen submanifold M^n of E^{n+m} , if and only if, M^n is a minimal submanifold of E^{n+m} , or the curvature ellipse \mathcal{E} at p of \sum_{π}^2 in E^{2+m} lies in a 2-plane in $T_p^{\perp}(M^n)$ which is perpendicular

to the mean curvature vector $\overrightarrow{H}(p)$ of M^n in E^{n+m} at p (or equivalently, when M^n is properly pseudo-symmetric), or $\overrightarrow{H}(p)$ determines a principal axis of the curvature ellipse \mathcal{E} of \sum_{π}^2 at p.

Acknowledgements: S. Decu was partially supported by the Simon Stevin Institute for Geometry. L. Verstraelen was partially supported by the Research Foundation - Flanders project G.0432.07.

References

- B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568–578.
- [2] B. Y. Chen, Riemannian Submanifolds, Chapter 3 in Handbook of Differential Geometry, Vol. 1 (eds. F. Dillen e.a.), North–Holland, Elsevier, Amsterdam, 2000, 187–418.
- [3] B. Y. Chen, δ-invariants, inequalities of submanifplds and their applications, Chapter in Topics in Differential Geometry, Ed. Rom. Acad. Sci., Bucharest (2008).
- [4] S. S. Chern, Minimal submanifolds in a Riemannian manifold, Univ. Kansas– Dept. Math. Technical Rep. 19, 1968.
- [5] S. Haesen and L. Verstraelen, Properties of a scalar curvature invariant depending on two planes, manuscripta math. 122 (2007), 59–72.
- [6] Z. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y) ⋅ R = 0.
 I. The local version, J. Diff. Geom. 17 (1982), 531–582.
- [7] Z. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y) ⋅ R = 0.
 II. The global version, Geom. Dedicata 19 (1985), 65–108.

- [8] R. Deszcz, On pseudo-symmetric spaces, Bull. Soc. Math. Belg., Série A, 44 (1992), 1–34.
- [9] L. Verstraelen, Comments on pseudo-symmetry in the sense of Ryszard Deszcz, in Geometry and Topology of Submanifolds, Vol. VI, (eds. F. Dillen e.a.) World Sci. Publ. Co., Singapore, 1994, 119–209.
- [10] R. Deszcz, S. Haesen and L. Verstraelen, On natural symmetries, Chapter in Topics in Differential Geometry, Ed. Rom. Acad. Sci., Bucharest (2008).
- [11] F. Dillen, M. Petrović and L. Verstraelen, Einstein, conformally flat and semisymetric submanifolds satisfying Chen's equality, Israel J. Math. 100 (1997), 163–169.
- [12] R. Deszcz, M. Petrović–Torgašev, L. Verstraelen and G. Zafindratafa, On the intrinsic symmetries of Chen ideal submanifolds, Bull. Trans. Univ. Brasov, Series III, Vol. 1(50) (2008), 99–108.
- [13] B. Y. Chen, *Geometry of Submanifolds*, Marcel Dekker, New York, 1973.
- [14] B. Rouxel, *A-submanifolds in Euclidean space*, Kodai Math. J., 4(1)(1981), 181–188.
- [15] I. V. Guadalupe and L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math., Vol. 106, No. 1 (1983), 95–103.