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Abstract. In this paper we characterized δ(2)–ideal submanifolds Mn in ambient Euclidean
spaces En+m, (n ≥ 2,m ≥ 1), which are at the same time Chen submanifolds

1. δ(2)–IDEAL SUBMANIFOLDS

Let Mn be an n−dimensional Riemannian submanifold of an (n + m)–dimen-

sional Euclidean space En+m, (n ≥ 2,m ≥ 1). Let g and ∇, and, respectively, g̃ and
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∇̃, denote the Riemannian metrics and the corresponding Levi–Civita connections of

Mn and of En+m. The formulae of Gauss and Weingarten are then given by

∇̃XY = ∇XY + h(X, Y ) (1)

and

∇̃Xξ = −AξX +∇⊥
Xξ, (2)

whereby h, Aξ and ∇⊥ denote the second fundamental form, the shape operator or

Weingarten map with respect to ξ and the normal connection of Mn in En+m, respec-

tively, (X, Y , etc. stand for tangent vector fields and ξ etc. for normal vector fields

on Mn in En+m).

From (1) and (2) it follows that

g̃(h(X, Y ), ξ) = g(Aξ(X), Y ), (3)

such that, for any orthonormal local normal frame {ξα} on Mn, (α = 1, . . . ,m),

h(X,Y ) =
∑
α

g(Aα(X), Y )ξα, (4)

whereby Aα = Aξα .

The mean curvature vector field
−→
H of Mn in En+m is defined as

−→
H = 1

n
tr h =

1
n

∑n
i=1 h(Ei, Ei), for any orthonormal local tangent frame {Ei} on Mn, and its length

H = ‖−→H‖ is the mean curvature of Mn in En+m.

Let R denote the (0, 4) Riemann–Christoffel curvature tensor of (Mn, g). Then,

according to the equation of Gauss,

R(X,Y, Z, W ) = g̃(h(X,W ), h(Y, Z))− g̃(h(X,Z), h(Y, W )). (5)

Denoting by τ the scalar curvature function of (Mn, g), we put

τ(p) :=
∑

i<j

K(p, Ei(p) ∧ Ej(p)), (6)

where K denotes sectional curvature K(p, π) = K(p, Ei ∧ Ej) = R(Ei, Ej, Ej, Ei),

(i 6= j) and Ei ∧ Ej = π is a plane section in Tp(M
n). For each point p in Mn,

consider the real function (inf K)(p) := inf{K(p, π) |π is a plane section in Tp(M
n)}.
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Then B. Y. Chen introduced in [1] the δ(2)–curvature by

δ : = τ − inf K. (7)

This δ(2)–curvature, or, for short, δ–curvature of Chen is a well defined real function

on Mn, δ : Mn → R, which is a scalar valued intrinsic invariant of the Riemannian

manifold.

Later B. Y. Chen introduced many more new scalar valued Riemannian curvature

invariants (δ–curvatures), based on the scalar curvature of the manifold and sectional

or scalar curvatures of certain subspaces. Recent works of Chen ([2], [3],..) dealing

with the problem by obtaining optimal general inequalities between intrinsic and

extrinsic curvature invariants, give ample solutions to the question of S. S. Chern [4]

to look for necessary conditions of intrinsic type on a Riemannian manifold in order

to be able to admit an isometric immersion into some Euclidean space as a minimal

submanifold, (cfr. [3] for an up to date survey).

Here, we mention, that for surfaces M2 in E3, the Euler inequality (1760), K ≤ H2

holds, whereby K is the intrinsic Gauss curvature of M2 and H2 is the extrinsic

squared mean curvature of M2 in E3. And, obviously, K = H2 everywhere on M2 if

and only if the surface M2 is totally umbilical in E3, or still, by a theorem of Meusnier,

if and only if M2 is a part of a plane E2 or a round sphere S2 in E3.

The inequalities of Chen, alluded to above, do generalize this Euler inequality for

Riemannian manifolds Mn in ambient Riemannian manifolds M̃n+m, whereby instead

of K comes some δ–curvature and whereby in the right hand side, besides H2, some

additional terms relating to the curvature of M̃n+m may appear.

From [1] we recall the following first answer to the above question of Chern.

Theorem A. For any submanifold Mn in En+m,

δ ≤ n2(n− 2)

2(n− 1)
H2 (∗)

and equality holds at a point p of Mn if and only if, with respect to a suitable adapted
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orthonormal frame {Ei, ξα}, the shape operators Aα at p are given by

A1 =




a 0 0 . . . 0
0 b 0 . . . 0
0 0 µ . . . 0
...

...
...

...
...

0 0 0 . . . µ




Aβ =




cβ dβ 0 . . . 0
dβ −cβ 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0




, (β > 1),

whereby µ = a + b and inf K(p) = ab− ∑
β>1

(c2
β + d2

β). 2

Submanifolds Mn of En+m for which the basic inequality (∗) at all points of Mn

is actually an equality are called δ(2)–ideal submanifolds or Chen ideal submanifolds

([12]). We also quote the following result from [1].

Theorem B. Let Mn be a minimal submanifold of En+m. Then δ ≤ 0. If δ = 0,

then for each point p in M , either dimD(p) = n or dimD(p) = n − 2, whereby

D(p) : = {~z ∈ TpM | ∀~v ∈ TpM : h(~z,~v) = ~o}. Moreover, if dim D ≡ n then Mn is

totally geodesic, and, if dim D ≡ n− 2, then Mn is a ruled submanifold with (n− 2)–

dimensional rulers. In particular, if Mn is a normal (n − 2)D ruled submanifold,

then Mn is a piece of one of the following minimal submanifolds: (i) the product

submanifold N2×En−2 of a minimal surface N2 in E2+m with an (n−2)–dimensional

linear subspace En−2 in En+m, or, (ii) the product submanifold CN2×En−3 of a 3D

minimal cone CN2 in E3+m, (N2 now is a minimal surface of the unit hypersphere

S2+m in E3+m, centered at the origin, and CN2 is the cone over N2 in E3+m with

vertex at the origin) with an (n − 3)– dimensional linear subspace En−3 of En+m.

And, conversely, δ = 0 for all minimal submanifolds Mn in En+m described in (i)

and (ii). 2

2. SYMMETRIES OF δ(2)–IDEAL SUBMANIFOLDS

For a Riemannian manifold (Mn, g), let R also denote the (1, 1) curvature operator

R(X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ], besides the (0, 4) curvature tensor, such that,

by definition

R(X, Y, Z, W ) = g(R(X,Y )Z,W ), (8)
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[. , .] denoting the Lie– bracket on the differential manifold Mn.

By the action of the curvature operator R working as a derivation on the curvature

tensor R, the following (0, 6) tensor R ·R is obtained:

(R ·R )( X1, X2, X3, X4; X,Y ) := (R(X, Y ) ·R)(X1, X2, X3, X4)

= −R(R(X, Y )X1, X2, X3, X4)−R(X1, R(X, Y )X2, X3, X4)

−R(X1, X2, R(X,Y )X3, X4)−R(X1, X2, X3, R(X, Y )X4).

It was recently shown by S. Haesen and one of the authors [5], that this tensor

R · R can be geometrically interpreted as giving the second order measure of the

change of the sectional curvatures K(p, π) for tangent 2D–planes π at points p after

the parallel transport of π all around infinitesimal co–ordinate parallelograms in M

cornered at p.

Semi–symmetric or Szabó symmetric manifolds ([6] [7]), are characterized by the

property that R·R = 0. According to [5], Szabó symmetric spaces are the Riemannian

manifolds for which all sectional curvatures remain preserved after parallel transport

of their planes around all infinitesimal co–ordinate parallelograms in M .

Under projective transformations, the Szabó symmetric spaces give rise to the

Deszcz symmetric spaces.

Deszcz symmetric spaces or pseudo–symmetric spaces ([5] [8] [9] [10]) are defined

by

R ·R = L Q(g,R) (9)

for some function L : Mn → R (whenever Q(g, R) 6= 0), whereby Q(g, R) := −∧g ·R,

is (0, 6) Tachibana tensor, and ∧g (denoting the metrical endomorphism: (X∧gY )Z =

g(Y, Z)X − g(X, Z)Y ) acts on the (0, 4) tensor R as a derivation.

A geometrical interpretation of L is given as the isotropic double sectional curva-

ture function on (Mn, g) [5].

Clearly, every semi–symmetric manifold is also Deszcz symmetric, but the converse

is not true. There do exist proper Deszcz symmetric manifolds (see e.g. [8]).

The Deszcz symmetry (10) corresponds to proper Deszcz symmetry in case L 6= 0

and to semi–symmetry in case L = 0. And, as already observed by Cartan, every
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2D Riemannian manifold is automatically semi–symmetric, we further only consider

δ(2)–ideal submanifolds Mn of dimension n ≥ 3.

In [11], F. Dillen and two of the authors classified the semi–symmetric Chen ideal

submanifolds, i.e. the semi–symmetric δ(2)–ideal submanifolds as follows.

Theorem C. A Chen ideal submanifold Mn, n ≥ 3, in En+m is semi–symmetric

if and only if it is minimal (cfr. Theorem B) or it is a round hypercone in some

totally geodesic En+1 in En+m, (including as ”degenerate cases” the totally geodesic

and the totally umbilical submanifolds). 2

Recently, R. Deszcz, G. Zafindratafa and two of the authors [12] studied the

intrinsic symmetry property to be Deszcz symmetric for Chen ideal submanifolds Mn

in En+m.

Theorem D. A Chen ideal submanifold Mn, n ≥ 3, in En+m is properly pseudo–

symmetric, R · R = L Q(g, R), 0 6= L : M → R, if and only if, at every point p of

Mn, the 2D normal section
∑2

π̃ of Mn in the planar direction π̃ for which K(p, π̃)

attains its minimal value Kinf(p), is pseudo–umbilical at p, or, equivalently, if p is a

spherical point of the projection
∑̃2

π̃ of this normal section
∑2

π̃ on the Euclidean space

E3 spanned by π̃ and the mean curvature vector
−→
H (p) of Mn in En+m at p, and in

this case L = n2

2(n−1)2
H2. 2

We recall that the non–planar umbilical points of surfaces M2 in E3 are called

spherical points and that a submanifold which is not minimal at a point is called

pseudo–umbilical at this point when its mean curvature normal direction there is an

umbilical one [13].

3. CHEN SUBMANIFOLDS

For submanifolds Mn of En+m the notion of allied vector field of a given normal

vector field of Mn is defined in [13]. According to that, for δ(2)–ideal submanifolds

Mn in En+m we take a local orthonormal frame {ξ1 =

−→
H

‖−→H‖ , ξ2, . . . , ξm} where
−→
H is
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the mean curvature vector of Mn in En+m, and then a normal canonical vector field

is defined in

a(
−→
H ) =

1

n

m∑

β=2

tr(A1 Aβ)ξβ, (10)

which is called the allied vector field of
−→
H or allied mean curvature vector field of Mn

in En+m.

A submanifold Mn is called an A–submanifold or a Chen submanifold if the allied

mean curvature vector field of Mn, a(
−→
H ) ≡ −→

0 . By a result of B. Rouxel [14], a

submanifold Mn of En+m is a Chen submanifold if and only if the mean curvature

vector at a point p,
−→
H (p) is an axis of symmetry of the (m − 2)–nd polar of its

Kommerell hyperquadric curvature image in the normal space T⊥
p M , for all points p

of M .

Minimal submanifolds, pseudo–umbilical submanifolds and hypersurfaces are Chen

submanifolds in a trivial way.

In order to find the allied mean curvature vector field of such δ(2)–ideal submani-

folds Mn in En+m, from the specific forms of the shape operators at a point p of these

submanifolds being given in Theorem A, we take

A1 Aβ =




acβ adβ 0 . . . 0
bdβ −bcβ 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0




, (β > 1).

Then the allied mean curvature vector field a(
−→
H ) =

−→
0 if and only if cβ(a − b) = 0,

(∀β > 1).

Thus, a δ(2)–ideal submanifold Mn in En+m is a Chen submanifold, if and only

if cβ = 0, (∀β) in which case the shape operators Aα, (α = 1, . . . ,m) at p of Mn in

Euclidean spaces En+m are given by

A1 =




a 0 0 . . . 0
0 b 0 . . . 0
0 0 µ . . . 0
...

...
...

...
0 0 0 . . . µ




, Aβ =




0 dβ 0 . . . 0
dβ 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0




, (β > 1),
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or a = b, which is, by Theorem D, equivalent with the property of being properly

Deszcz symmetric Mn in En+m, (L 6= 0), with L =
n2

2(n− 1)2
H2 ([12]).

In order to characterize cβ = 0, (∀β)(β > 1), we take the 2D–normal section
∑2

π at

any point p of Mn in En+m determined by the tangent 2–plane π = E1(p)∧E2(p) = R2

for which the sectional curvature K(p, π) of Mn reaches its minimal value at p. Then
∑2

π is the surface which is the local intersection around p of Mn with the space R2+m

through p and spanned by π and the normal space T⊥
p (Mn) = Rm of Mn in En+m at

p, i.e.
∑2

π is a surface in E2+m = π ⊕ T⊥
p (Mn). For such surface

∑2
π in E2+m, from

the specific forms of the shape operators at a point p of an δ(2)–ideal submanifold

Mn in En+m given in Theorem A, the shape operators at p are given by

Ã1 =

(
a 0
0 b

)
, (a 6= b) , Ãβ =

(
cβ dβ

dβ −cβ

)
, (β > 1).

Using the notion of curvature ellipse [15], for the 2D–normal section
∑2

π in E2+m, by

virtue of the shape operators Ã1, Ãβ, (β > 1), we obtain that the curvature ellipse Ep

of
∑2

π in E2+m at p ∈ ∑2
π is given by

h̃(u, u) =
−→
H + cos 2θ

(h11 − h22

2

)
+ sin 2θ h12 (11)

=
−→
H + cos 2θ

(a− b

2
ξ1 +

∑

β

cβξβ

)
+ sin 2θ

( ∑

β

dβξβ

)
, (a 6= b),

(u ∈ Tp(M
n), ‖u‖ = 1), whereby h11 = h(E1, E1), h22 = h(E2, E2) and

h12 = h(E1, E2).

Thus the mean curvature direction
−→
H of Mn in En+m at p is an principal axis of

the curvature ellipse E of
∑2

π in E2+m, if and only if,
∑
β

cβξβ = 0, i.e. cβ = 0, (∀β).

From all above, we thus obtained the following theorem.

Theorem. Let Mn be a δ(2)–ideal submanifold in Euclidean ambient spaces

En+m, of arbitrary dimensions n ≥ 3 and codimensions m ≥ 1, and let
∑2

π be the

2D–normal section at any point p of Mn for the tangent 2–plane π in which Mn

reaches its minimal sectional curvature at p. Then Mn is a Chen submanifold Mn

of En+m, if and only if, Mn is a minimal submanifold of En+m, or the curvature

ellipse E at p of
∑2

π in E2+m lies in a 2–plane in T⊥
p (Mn) which is perpendicular
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to the mean curvature vector
−→
H (p) of Mn in En+m at p (or equivalently, when Mn

is properly pseudo–symmetric), or
−→
H (p) determines a principal axis of the curvature

ellipse E of
∑2

π at p. 2
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