Kragujevac J. Math. 31 (2008) 143–146.

ON IMBALANCES IN DIGRAPHS

Shariefuddin Pirzada

Department of Mathematics, University of Kashmir, India (e-mail: sdpirzada@yahoo.co.in)

(Received March 01, 2008)

Abstract. The imbalance of a vertex in a digraph is defined as b_{v_i} (or simply b_i) = $d_{v_i}^+ - d_{v_i}^-$, where $d_{v_i}^+$ and $d_{v_i}^-$ are respectively the outdegree and indegree of v_i . The set of imbalances of the vertices in a digraph is called its imbalance set. In this paper, we obtain an inequality for imbalances in simple directed graphs. Also, we give the existence of an oriented graph with a given imbalance set.

1. INTRODUCTION

An oriented graph is a digraph with no symmetric pairs of directed arcs and without loops. Define a_{v_i} (or simply a_i) = $n - 1 + d_{v_i}^+ - d_{v_i}^-$, the score of a vertex v_i in an oriented graph D, where $d_{v_i}^+$ and $d_{v_i}^-$ are respectively the outdegree and indegree of v_i and n is the number of vertices in D. The score sequence of an oriented graph is formed by listing the vertex scores in non-decreasing order.

The following result, due to Avery [1], is the characterization of score sequences in oriented graphs, and a new proof can be found in [5]. **Theorem 1.** A sequence $A = [a_1, a_2, \dots, a_n]$ of non-negative integers in nondecreasing order is the score sequence of some oriented graph if and only if $\sum_{i=1}^{k} a_i \ge k(k-1)$, for $1 \le k < n$ with equality when k = n.

The set of distinct scores of the vertices in an oriented graph is called its score set. Pirzada and Naikoo [4] obtained various results for score sets in oriented graphs.

A digraph without loops and without multi-arcs is called a simple digraph. Dhruv et al. [2] defined the imbalance of a vertex v_i in a digraph as b_{v_i} (or simply b_i) = $d_{v_i}^+ - d_{v_i}^-$, where $d_{v_i}^+$ and $d_{v_i}^-$ are respectively the outdegree and indegree of v_i . The imbalance sequence of a simple digraph is formed by listing the vertex imbalances in non-increasing order. A sequence of integers $F = [f_1, f_2, \dots, f_n]$ with $f_1 \ge f_2 \ge \dots \ge$ f_n is feasible if it has sum zero and satisfies $\sum_{i=1}^k f_i \le k(n-k)$, for $1 \le k < n$.

The next result [2] provides necessary and sufficient conditions for a sequence of integers to be an imbalance sequence of a simple directed graph.

Theorem 2. A sequence is realizable as an imbalance sequence if and only if it is feasible.

The above result is equivalent to saying that a sequence of integers $B = [b_1, b_2, \dots, b_n]$ with $b_1 \ge b_2 \ge \dots \ge b_n$ is an imbalance sequence of a simple directed graph if and only if

$$\sum_{i=1}^{k} b_i \le k(n-k), \quad \text{for} \quad 1 \le k < n \tag{1}$$

with equality when k = n.

On arranging the imbalance sequence in non-decreasing order, we have the following result [3].

Corollary 3. A sequence of integers $B = [b_1, b_2, \dots, b_n]$ with $b_1 \leq b_2 \leq \dots \leq b_n$ is an imbalance sequence of a simple directed graph if and only if $\sum_{i=1}^k b_i \geq k(k-n)$, for $1 \leq k < n$ with equality when k = n.

Various results for imbalances in oriented graphs can be found in [3].

2. MAIN RESULTS

Now, we obtain the following inequalities for imbalances in simple directed graphs.

Theorem 4. If $B = [b_1, b_2, \dots, b_n]$ is an imbalance sequence of a simple directed graph with $b_1 \ge b_2 \ge \dots \ge b_n$, then $\sum_{i=1}^k b_i^2 \le \sum_{i=1}^k (2n - 2k - b_i)^2$, for $1 \le k < n$ with equality when k = n.

Proof. By conditions (1), we have

- $k(n-k) \ge \sum_{i=1}^{k} b_i$ for $1 \le k < n$ with equality when k = n, or
- $\sum_{i=1}^{k} b_i^2 + 2(2n-2k)k(n-k) \ge \sum_{i=1}^{k} b_i^2 + 2(2n-2k)\sum_{i=1}^{k} b_i$, for $1 \le k < n$ with equality when k = n, or
- $\sum_{i=1}^{k} b_i^2 + k(2n-2k)^2 2(2n-2k) \sum_{i=1}^{k} b_i \ge \sum_{i=1}^{k} b_i^2$, for $1 \le k < n$ with equality when k = n, or
- $b_1^2 + b_2^2 + \dots + b_k^2 + (2n 2k)^2 + (2n 2k)^2 \dots + (2n 2k)^2 2(2n 2k)b_1 2(2n 2k)b_2 \dots 2(2n 2k)b_k \ge \sum_{i=1}^k b_i^2$, for $1 \le k < n$ with equality when k = n, or
- $(2n 2k b_1)^2 + (2n 2k b_2)^2 + \dots + (2n 2k b_k)^2$, for $1 \le k < n$ with equality when k = n, or
- $\sum_{i=1}^{k} (2n 2k b_k)^2 \ge \sum_{i=1}^{k} b_i^2$, for $1 \le k < n$ with equality when k = n. \Box

The set of distinct imbalances of the vertices in an oriented graph is called its imbalance set.

Let D be an oriented graph with vertex set V, and let $X, Y \subseteq V$. If there is an arc from each vertex of X to every vertex of Y, then we denote it by $X \to Y$.

The following result gives the existence of an oriented graph with a given imbalance set.

Proposition 5. Let $P = \{p_1, p_2, \dots, p_m\}$ and $Q = \{-q_1, -q_2, \dots, -q_n\}$ where $p_1, p_2, \dots, p_m, q_1, q_2, \dots, q_n$ are positive integers such that $p_1 < p_2 < \dots < p_m$ and $q_1 < q_2 < \dots < q_n$. Then there exists an oriented graph with imbalance set $P \cup Q$.

Proof. Construct an oriented graph D with vertex set V as follows. Let $V = X_1^1 \cup X_2^1 \cup \cdots \cup X_m^1 \cup X_1^2 \cup X_1^3 \cup \cdots \cup X_1^n \cup Y_1^1 \cup Y_2^1 \cup \cdots \cup Y_m^1 \cup Y_1^2 \cup Y_1^3 \cup \cdots \cup Y_1^n$ with $X_i^j \cap X_k^l = \phi, Y_i^j \cap Y_k^l = \phi, X_i^j \cap Y_k^l = \phi, |X_i^1| = q_1$ for all $1 \le i \le m, |X_1^i| = q_i$ for all $2 \le i \le n, |Y_i^1| = p_i$ for all $1 \le i \le m$ and $|Y_1^i| = p_1$ for all $2 \le i \le n$. Let $X_i^1 \to Y_i^1$ for all $1 \le i \le m$ and $X_1^i \to Y_1^i$ for all $2 \le i \le n$, so that we obtain the oriented graph D with the imbalances of vertices as follows:

- for $1 \le i \le m$, $b_{x_i^1} = |Y_i^1| 0 = p_i$, for all $x_i^1 \in X_i^1$;
- for $2 \le i \le n$, $b_{x_1^i} = |Y_1^i| 0 = p_1$, for all $x_1^i \in X_1^i$;
- for all $1 \le i \le m$, $b_{y_i^1} = 0 |X_i^1| = -q_1$, for all $y_i^1 \in Y_i^1$;
- and for $2 \le i \le n$, $b_{y_1^i} = 0 |X_1^i| = -q_i$, for all $y_1^i \in Y_1^i$.

Therefore, imbalance set of D is $P \cup Q$.

References

- P. Avery, Score sequences of oriented graphs, J. Graph Theory, 15, 3 (1991) 251-157.
- [2] M. Dhruv, T. G. Will and D.B. West, *Realizing degree imbalances in directed graphs*, Discrete Mathematics, 239(2001) 147-153.
- [3] S. Madhukar, Some properties of oriented graphs, Ph.D.Thesis, AMU Aligarh(2006).
- [4] S. Pirzada and T. A. Naikoo, Score sets in oriented graphs, Applicable Analysis and Discrete Mathematics, to appear.
- S. Pirzada, T. A. Naikoo and N. A. Shah, Score sequences in oriented graphs, J. Applied Mathematics and Computing, 23, 1-2 (2007) 257-268.

146