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Abstract. The results presented in this paper are motivated by some of the results obtained
by B. Beauzamy in [1, Chap. III] for a single operator on an infinite-dimensional complex
Hilbert space that imply existence of a dense set of vectors with orbits tending strongly to
infinity. For the case of invertible operator T , one of B. Beauzamy’s results implies that
the space actually contains a dense set of vectors for which both the orbits under T and its
inverse tend strongly to infinity. We are going to show that this is also true for any suitable
pair of operators.

1. INTRODUCTION

Throughout this paper H will denote an infinite-dimensional complex Hilbert

space with inner product 〈· | ·〉 and B(H) the algebra of all bounded linear operators

on H. For T ∈ B(H), with r(T ), σ(T ), σp(T ) and σa(T ) we will denote the spectral

radius, the spectrum, the point spectrum and the approximate point spectrum of

T , respectively. Recall that σp(T ) is the set of all eigenvalues of T , while σa(T ) is

the set of all λ ∈ σ(T ) for which there is a sequence of unit vectors (xn)n≥1 such

that ‖Txn − λxn‖ → 0, as n → +∞; any such sequence is called a sequence of

almost eigenvectors for λ. Unlike the point spectrum, which can be empty, the
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approximate point spectrum is nonempty for every T ∈ B(H). As a mater of fact,

∅ 6= ∂σ(T ) ∪ σp(T ) ⊆ σa(T ), [2, Prop.VII.6.7].

Orbit of the vector x ∈ H, under the operator T , is the sequence

Orb(T, x) =
{

x, Tx, T 2x, . . .
}

.

In [1, Thm.III.2.A.1] B. Beauzamy showed that, if T ∈ B(H) and the circle

{λ ∈ C : |λ| = r(T )} contains a point in σ(T ) which is not an eigenvalue for T then,

for every positive sequence (αn)n≥1 strictly decreasing to 0, in every open ball in H

with radius strictly larger then α1, there is a vector z with ‖T nz‖ ≥ αnr(T )
n, for all

n ≥ 1. As its proof suggests, this result will remain true if r(T ) is replaced with |λ|,

for any λ ∈ σa(T )\σp(T ). Note that, if r(T ) > 1 or, in the later case, if |λ| > 1, then

the space will contain a dense set of vectors z ∈ H with Orb(T, z) tending strongly

to infinity.

B. Beauzamy also stated, almost without a proof, a similar result for the case of in-

vertible operator T ∈B(H), [1, Thm.III.2.A.10]: If both the circles {λ ∈ C : |λ| = r(T )}

and {λ ∈ C : |λ| = 1/r(T−1)} contain a point in σ(T ) which is not an eigenvalue for

T then, for any two positive sequences (αn)n≥1 and (βn)n≥1 strictly decreasing to 0,

in every open ball in H with radius strictly larger then (α2
1 + β2

1)
1/2, there is a vector

z which satisfies simultaneously: ‖T nz‖ ≥ αnr(T )
n and ‖T−nz‖ ≥ βnr(T

−1)n, for all

n ≥ 1. We are going to generalize this result for pairs of operators on H.

2. PRELIMINARY RESULTS

Proposition 2.1. Let T ∈B(H) and λ ∈ σa(T )\σp(T ).

(a) For every sequence of almost eigenvectors (xn)n≥1 for λ and every h ∈ H,

lim
n→+∞

〈xn|h〉 = 0.

(b) If E is any orthonormal basis for H then, there is a sequence (yk)k≥1 of almost

eigenvectors for λ, such that the sets {e ∈ E : 〈e|yk〉 6= 0} , k ≥ 1 are all finite

and pairwise disjoint.
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Proof. The assertion under (a) follows from the Riesz’s theorem for representation

of bounded linear functional on a Hilbert space and from the fact that, if T is a

bounded linear operator on a reflexive Banach space and λ ∈ σa(T )\σp(T ), then every

corresponding sequence of almost eigenvectors for λ tends weakly to 0 [1, Prop.I.1.13].

To prove the assertion under (b) fix any corresponding sequence of almost eigen-

vectors (xn)n≥1 for λ. For h ∈ H, let E(h) = {e ∈ E : 〈h|e〉 6= 0}.

Since E(h) is countable for each h ∈ H, [2, Cor.I.4.9], there is a sequence (ek)k≥1

in E such that ∪n≥1E(xn) ⊆ {ek : k ∈ N}. Then, each xn can be represented as

xn =
∑+∞

k=1 〈xn|ek〉 · ek, and

∥

∥

∥

∥

∥

xn −
m
∑

k=1

〈xn|ek〉 · ek

∥

∥

∥

∥

∥

→ 0, as m→ +∞, for all n ≥ 1. (1)

By (a), applied on h = e1, we can find a positive integer n1 so that |〈xn|e1〉| < 1/23,

for all n ≥ n1. Let n ∈ {1, ..., n1}. By (1) there is s(n) ≥ 1 such that
∥

∥

∥

∥

∥

∥

xn −
s(n)
∑

k=1

〈xn|ek〉 · ek

∥

∥

∥

∥

∥

∥

< 1.

Put zn =
∑s(n)

k=1 〈xn|ek〉 · ek.

Suppose that we have found integers n0 = 0 < n1 < . . . < nl for some l ≥ 1, with

the following property: for all 1 ≤ j ≤ l

(i) |〈xn|ek〉| < 1/(j + 1)j+2, for all 1 ≤ k ≤ j and n ≥ nj ; and

(ii) if n ∈ {nj−1 + 1, . . . , nj} then, there is s(n) ≥ j so that the vector zn, defined

with zn =
∑s(n)

k=j 〈xn|ek〉 · ek, satisfies ‖xn − zn‖ < 1/2j−1.

Now, applying (a) on each h ∈ {e1, e2, . . . , el+1}, we can find an integer nl+1 > nl

so that |〈xn|ek〉| < 1/(l + 2)l+3, for all 1 ≤ k ≤ l + 1 and n ≥ nl+1. Let n ∈

{nl + 1, . . . , nl+1}. In the same way as above, we can find s(n) ≥ l + 1 such that
∥

∥

∥xn −
∑s(n)

k=1 〈xn|ek〉 · ek

∥

∥

∥ < 1/2l+1. Put zn =
∑s(n)

k=l+1 〈xn|ek〉 · ek. Since n ≥ nl + 1,

applying (i) for j = l, we obtain

∥

∥

∥

∥

∥

l
∑

k=1

〈xn|ek〉 · ek

∥

∥

∥

∥

∥

≤
l

∑

k=1

1

(l + 1)l+2
=

l

(l + 1)l+2
<

1

(l + 1)l+1
≤

1

2l+1
.
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Then

‖xn − zn‖ ≤

∥

∥

∥

∥

∥

∥

xn −
s(n)
∑

k=1

〈xn|ek〉 · ek

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

k=1

〈xn|ek〉 · ek

∥

∥

∥

∥

∥

<
1

2l+1
+

1

2l+1
=

1

2l
.

The previous discussion implies that there is a sequence of integers n0 = 0 < n1 <

. . . < nj < . . . , and a sequence (zn)n≥1 in H such that (i) and (ii) hold for every

j ≥ 1. Moreover, the sequence (zn)n≥1 has the following properties:

1. zn 6= 0, for all n ≥ 1 (this follows from (ii) and from the fact that (xn)n≥1, as a

sequence of almost eigenvectors is with ‖xn‖ = 1, for every n ≥ 1) ;

2. ‖zn‖ → 1, as n→ +∞;

3. E(zn) is finite for each n ≥ 1 (by construction); and

4. for every n ≥ 1 there is m > n such that E(zn) ∩ E(zm) = ∅ (if j ≥ 1 is such

that nj−1 + 1 ≤ n ≤ nj and if zn =
∑s(n)

k=j 〈xn|ek〉 · ek, choose any p ≥ s(n) + 1

and m ≥ np ; clearly p > j , m > nj ≥ n and E(zn) ∩ E(zm) = ∅).

By 4. we can find a subsequence (znk
)k≥1 of (zn)n≥1 so that the sets E(znk

),

k ≥ 1 are pairwise disjoint. Put yk = znk
/ ‖znk

‖, k = 1, 2, . . . . Obviously, the sets

{e ∈ E : 〈e|yk〉 6= 0}, k ≥ 1 are all finite and pairwise disjoint, and

‖xnk
− yk‖ ≤ ‖xnk

− znk
‖+ ‖znk

− yk‖ = ‖xnk
− znk

‖+ ‖znk
‖ ·

∣

∣

∣1− ‖znk
‖−1

∣

∣

∣→ 0,

as k → +∞ . This will imply that ‖Tyk − λyk‖ → 0, as k → +∞ , and so (yk)k≥1

would be the required sequence of almost eigenvectors for λ. 2

Lemma 2.2. If (un)n≥1 is a sequence in H which tends weakly to 0 and A ∈ B(H)

then, for every u ∈ H and every δ > 0:

(a) lim sup
n→+∞

‖A(u+ δun)‖
2 ≥ ‖Au‖2

; and

(b) if ‖Aun‖ → α as n→ +∞, then ‖A(u+ δun)‖
2 → ‖Au‖2 + α2δ2.

Proof. For each n ≥ 1

‖A(u+ δun)‖
2 = ‖Au‖2 + 2δRe 〈un|A

∗Au〉+ ‖Aun‖
2 , (2)
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where A∗ denotes the Hilbert space adjoint of A .

Since (un)n≥1 tends weakly to 0, 〈un|h〉 → 0, as n → +∞, for all h ∈ H. Thus,

by the continuity of the function λ 7→ Reλ, we have that Re 〈un|A
∗Au〉 → 0, as

n→ +∞, for all u ∈ H. Now, by (2) we obtain that

lim sup
n→+∞

‖A(u+ δun)‖
2 ≥ lim sup

n→+∞
(‖Au‖2 + 2δRe 〈un|A

∗Au〉)

= lim
n→+∞

(‖Au‖2 + 2δRe 〈un|A
∗Au〉) = ‖Au‖2 ,

which proves (a) and, if ‖Aun‖ → α then, by taking limits in (2), we obtain (b) . 2

3. MAIN RESULTS

Theorem 3.1. If T, S ∈ B(H), λ ∈ σa(T )\σp(T ) and µ ∈ σa(S)\σp(S) then, for

any two sequences of positive numbers (αn)n≥1 and (βn)n≥1 strictly decreasing to 0,

in every open ball in H with radius strictly larger then (α2
1 + β2

1)
1/2 there is a vector

z ∈ H such that ‖T nz‖ ≥ αn |λ|
n
and ‖Snz‖ ≥ βn |µ|

n
, for all n ≥ 1.

Proof. By the assumptions in the theorem and Proposition 2.1 we can find

sequences of unit vectors (xn)n≥1 and (yn)n≥1 with the following properties:

(a) (xn)n≥1 and (yn)n≥1 tend weakly to 0;

(b) ‖Txn − λxn‖ → 0 , ‖Syn − µyn‖ → 0 as n→ +∞ ;

(c) 〈xn|xm〉 = 0 = 〈yn|ym〉 whenever n 6= m ; and

(d) 〈xn|ym〉 = 0 for all n ≥ 1 and m ≥ 1 .

Since λ , as an element of the set σa(T )\σp(T ) ⊆ σ(T ), is with |λ| ≤ r(T ) ≤ ‖T‖,

for every integer k ≥ 1

∥

∥

∥T kxn − λkxn

∥

∥

∥ =
∥

∥

∥(T k−1 + λT k−2 + . . .+ λk−2T + λk−1)(Txn − λxn)
∥

∥

∥

≤ k ‖T‖k−1 ‖Txn − λxn‖ .

and so
∥

∥

∥T kxn − λkxn

∥

∥

∥ → 0, as n → +∞. In the same way,
∥

∥

∥Skyn − µkyn

∥

∥

∥ → 0, as

n→ +∞, and consequently, since xn’s and yn’s are unit vectors,
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∥

∥

∥T kxn

∥

∥

∥→ |λ|k and
∥

∥

∥Skyn

∥

∥

∥→ |µ|k as n→ +∞, for all k ≥ 1. (3)

Now, fix x ∈ H and ε > 0. Let Ak = (α2
k − α2

k+1)
1/2 and Bk = (β2

k − β2
k+1)

1/2,

k ≥ 1.

First, we look at the sequence (x+(1+ε)A1xn)n≥1. By (a), (3) and Lemma 2.2.(b)

lim
n→+∞

‖T (x+ (1 + ε)A1xn)‖
2 = ‖Tx‖2 + (1 + ε)2A2

1 |λ|
2 > A2

1 |λ|
2 ,

which allows us to find a positive integer n1 such that the vector z′1 = x+(1+ε)A1xn1

is with ‖Tz′1‖ > A1 |λ|.

In the same way, we obtain that

lim
n→+∞

‖S(z′1 + (1 + ε)B1yn)‖
2
= ‖Sz′1‖

2
+ (1 + ε)2B2

1 |µ|
2 > B2

1 |µ|
2 .

So, we can find an integer m′
1 > n1 such that ‖S(z′1 + (1 + ε)B1yn)‖ > B2

1 |µ|
2 for all

n ≥ m′
1. Now we look at the sequence (T (z ′1 + (1 + ε)B1yn))n≥1. By Lemma 2.2.(a)

sup
n≥m′

1

‖Tz′1 + (1 + ε)B1yn‖
2
≥ lim sup

n→+∞
‖Tz′1 + (1 + ε)B1yn‖

2
≥ ‖Tz′1‖

2
> A2

1 |λ|
2 .

This implies that, there is an integer m1 ≥ m′
1 such that the vector

z1 = z′1 + (1 + ε)B1ym1
= x+ (1 + ε)(A1xn1

+B1ym1
)

is with ‖Tz1‖ > A1 |λ| and ‖Sz1‖ > B1 |µ| .

Suppose that we have found integers 0 < n1 < m1 < . . . < nl−1 < ml−1, for some

l ≥ 2, such that the vectors zk = x+ (1 + ε) (A1xn1
+B1ym1

+ . . .+Akxnk
+Bkymk

),

1 ≤ k ≤ l − 1 satisfy both (4) and (5) bellow.

∥

∥

∥T jzk

∥

∥

∥ > (A2
j + . . .+ A2

k)
1/2 |λ|j , for all 1 ≤ j ≤ k ≤ l − 1, (4)

∥

∥

∥Sjzk

∥

∥

∥ > (B2
j + . . .+B2

k)
1/2 |µ|j , for all 1 ≤ j ≤ k ≤ l − 1. (5)

Now, we start with the sequence (zl−1 + (1 + ε)Alxn)n≥1. Applying again (a), (3)

and Lemma 2.2.(b), we have

lim
n→+∞

∥

∥

∥T j(zl−1 + (1 + ε)Alxn)
∥

∥

∥

2
=

∥

∥

∥T jzl−1

∥

∥

∥

2
+ (1 + ε)2A2

l |λ|
2j , for all 1 ≤ j ≤ l.



299

By (4) for 1 ≤ j ≤ k = l − 1, and
∥

∥

∥T lzl−1

∥

∥

∥

2
+ (1 + ε)2A2

l |λ|
2l > A2

l |λ|
2l, for j = l,

lim
n→+∞

∥

∥

∥T j(zl−1 + (1 + ε)Alxn)
∥

∥

∥

2
> (A2

j + . . .+ A2
l ) |λ|

2j for all 1 ≤ j ≤ l.

So, we can find an integer n′l > ml−1 such that

∥

∥

∥T j(zl−1 + (1 + ε)Alxn)
∥

∥

∥

2
> (A2

j+. . .+A2
l ) |λ|

2j , for all 1 ≤ j ≤ l and n > n′l. (6)

On the other hand, by (5), (a) and Lemma 2.2.(a)

lim sup
n→+∞

∥

∥

∥Sj(zl−1 + (1 + ε)Alxn)
∥

∥

∥

2
≥

∥

∥

∥Sjzl−1

∥

∥

∥

2
> (B2

j + . . .+B2
l−1) |µ|

2j ,

for all 1 ≤ j ≤ l − 1. This implies that there are strictly increasing sequences of

positive integers (Nj(n))n≥1, 1 ≤ j ≤ l − 1 such that

∥

∥

∥Sj(zl−1 + (1 + ε)AlxN1(...(Nj(n))...))
∥

∥

∥ > (B2
j + . . .+B2

l−1)
1/2 |µ|j , (7)

for all 1 ≤ j ≤ l − 1 and n ≥ 1.

By (6) and (7) we can find a positive integer n0 so that nl = N1(. . . (Nl−1(n0)) . . .) ≥

n′l > ml−1 and the vector z′l = zl−1 + (1 + ε)Alxnl
satisfies both (8) an (9) bellow

∥

∥

∥T jz′l
∥

∥

∥ > (A2
j + . . .+ A2

l )
1/2 |λ|j , for all 1 ≤ j ≤ l, (8)

∥

∥

∥Sjz′l
∥

∥

∥ > (B2
j + . . .+B2

l−1)
1/2 |µ|j , for all 1 ≤ j ≤ l − 1. (9)

Now, we look at the sequence (z′l + (1 + ε)Blyn)n≥1. In the same way as before,

we obtain that

lim
n→+∞

∥

∥

∥Sj(z′l + (1 + ε)Blyn)
∥

∥

∥

2
=

∥

∥

∥Sjz′l
∥

∥

∥

2
+ (1 + ε)2B2

l |µ|
2j ,

which, together with (9) will imply that

lim
n→+∞

∥

∥

∥Sj(z′l + (1 + ε)Blyn)
∥

∥

∥

2
> (B2

j + . . .+B2
l ) |µ|

2j , for all 1 ≤ j ≤ l,

and that (by (8) and Lemma 2.2.(a))

lim sup
n→+∞

∥

∥

∥T j(z′l + (1 + ε)Blyn)
∥

∥

∥

2
≥

∥

∥

∥T jz′l
∥

∥

∥

2

> (A2
j + . . .+ A2

l ) |λ|
2j , for all 1 ≤ j ≤ l.
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But then we can find integer ml > nl so that the vector

zl = z′l + (1 + ε)Blyml
= x+ (1 + ε)(A1xn1

+B1ym1
+ ...+ Alxnl

+Blyml
) (10)

satisfies
∥

∥

∥T jzl

∥

∥

∥ > (A2
j + . . .+ A2

l )
1/2 |λ|j = (α2

j − α2
l+1)

1/2 |λ|j (11)

and
∥

∥

∥Sjzl

∥

∥

∥ > (B2
j + . . .+B2

l )
1/2 |µ|j = (β2

j − β2
l+1)

1/2 |µ|j , (12)

for all 1 ≤ j ≤ l. Moreover , by (c) and (d),

‖zl − x‖2 = (1 + ε)2 ‖A1xn1
+B1ym1

+ . . .+ Akxnl
+Bkyml

‖2

= (1 + ε)2(A2
1 +B2

1 + . . .+ A2
l +B2

l ) < (1 + 2ε)2(α2
1 + β2

1 − α2
l+1 − β2

l+1),

i.e.

‖zl − x‖ < (1 + 2ε)(α2
1 + β2

1 − α2
l+1 − β2

l+1)
1/2. (13)

Thus, by induction, we obtain that there are positive integers n1 < m1 < . . . <

nl < ml < . . . such that the sequence (zl)l≥1 given with (10) satisfies (11) – (13), for

all l ≥ 1 and 1 ≤ j ≤ l. The sequence (zl)l≥1 is a Cauchy sequence: since αl → 0 and

βl → 0, for every positive integers l and k with l > k

‖zl − zk‖
2 = (1 + ε)2

∥

∥

∥Ak+1xnk+1
+Bk+1ymk+1

+ ...+ Alxnl
+Blyml

∥

∥

∥

2

= (1 + ε)2(A2
k+1 +B2

k+1 + . . .+ A2
l +B2

l )

= (1 + ε)2(α2
k+1 + β2

k+1 − α2
l+1 − β2

l+1)→ 0, when k, l → +∞.

Since H is Hilbert space, there is z ∈ H such that

z = lim
l→+∞

zl = x+ (1 + ε)
+∞
∑

i=1

(Aixni
+Biymi

).

This vector is with the desired properties:

1. ‖z − x‖ = lim
l→+∞

‖zl − x‖ < (1 + 2ε) (α2
1 + β2

1)
1/2, (by (13));

and, for all n ≥ 1
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2. ‖T nz‖ = lim
l→+∞

‖T nzl‖ ≥ lim
l→+∞

(α2
n−α

2
l+1)

1/2 |λ|n = αn |λ|
n (by (11) and αl → 0);

3. ‖Snz‖ = lim
l→+∞

‖Snzk‖ ≥ lim
l→+∞

(β2
n−β

2
l+1)

1/2 |µ|n = βn |µ|
n (by (12) and βl → 0).

which completes the proof. 2

Corollary 3.2. If the sets σa(T )\σp(T ) and σa(S)\σp(S) both have a nonempty

intersection with the domain {λ ∈ C : |λ| > 1} then, there is a dense set of vectors

z ∈ H such that both the orbits Orb(T, z) and Orb(S, z) tend strongly to infinity.

We turn now to the original Beauzamy’s result on invertible operator T ∈ B(H).

For its spectrum we have

σ(T ) ⊆

{

λ ∈ C :
1

r(T−1)
≤ |λ| ≤ r(T )

}

. (14)

If both the circles {λ ∈ C : |λ| = r(T )} and {λ ∈ C : |λ| = 1/r(T−1)} contain a point

in σ(T ) which is not an eigenvalue for T then, there are points λ, µ ∈ σ(T )\σp(T )

with |λ| = r(T ) and |µ| = 1/r(T−1). By (14), this points must be contained in the

boundary ∂σ(T ), and consequently λ, µ ∈ σa(T )\σp(T ). It is easy to verify that

α ∈ σp(T ) if and only if α−1 ∈ σp(T
−1) (15)

and

α ∈ σa(T ) if and only if α−1 ∈ σa(T
−1). (16)

(To obtain (16), apply the equality T −1 − α−1 = −α−1T −1(T − α).) This will imply

that µ−1 ∈ σa(T
−1)\σp(T

−1). Now, since |µ−1| = r(T−1), by applying Theorem 3.1

on T and S = T−1, we obtain that in every open ball in H of radius strictly larger

then (α2
1+β2

1)
1/2, there is a vector z which satisfies simultaneously: ‖T nz‖ ≥ αnr(T )

n

and ‖T−nz‖ ≥ βnr(T
−1)n, for all n ≥ 1. Note that, if both r(T ) > 1 and r(T−1) > 1,

the previous discussion will imply that there is a dense set of vectors z ∈ H such

that both the orbits Orb(T, z) and Orb(T −1, z) tend strongly to infinity. Moreover,

by (15), (16), Theorem 3.1 and Corollary 3.2 we have the following results.

Theorem 3.3. If T ∈ B(H) is invertible operator and λ ∈ σa(T )\σp(T ) then,

for any two sequences of positive numbers (αn)n≥1 and (βn)n≥1 strictly decreasing to
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0, in every open ball in H with radius strictly larger then (α2
1+β2

1)
1/2 there is a vector

z ∈ H such that ‖T nz‖ ≥ αn |λ|
n
and ‖T−nz‖ ≥ βn/ |λ|

n
for all n ≥ 1.

Corollary 3.4. If T ∈ B(H) is invertible operator and the domains {λ ∈ C : |λ| > 1}

and {λ ∈ C : 0 < |λ| < 1} both have nonempty intersection with σa(T )\σp(T ) then,

there is a dense set of vectors z ∈ H such that both the orbits Orb(T, z) and Orb(T −1, z)

tend strongly to infinity.

4. ON ORBITS UNDER T AND f(T )

In this section Ω will denote a nonempty open subset of the complex plane whose

boundary ∂Ω consists of finite number of rectifiable Jordan curves, oriented in the

positive sense and Hol(Ω) the set of all holomorphic functions on some open neigh-

borhood of the closure of Ω. We assume that the reader is familiar with the basics of

the theory of the functional calculus for operators (see for example [1], [2] and [6]).

Theorem 4.1. If T ∈ B(H), σ(T ) ⊂ Ω and f ∈ Hol(Ω), then

(a) σ(f(T )) = f(σ(T ));

(b) f(σp(T )) ⊆ σp(f(T )) and f(σa(T )) ⊆ σa(f(T ));

(c) if f is nonconstant function on each of the components of Ω, then f(σp(T )) =

σp(f(T )) and f(σa(T )) = σa(f(T )).

Proof. The assertion under (a) is the well known Spectral Mapping Theorem.

The assertions on the point spectrum in (b) and (c) are parts of [6, Thm. 10.33].

We follow the same lines of the proof of this theorem to prove the assertions on the

approximate point spectrum.

(b): Let λ0 ∈ σ(T ). Then, there is g ∈ Hol(Ω) such that f(λ)− f(λ0) = g(λ)(λ−

λ0), and consequently, f(T ) − f(λ0) = g(T )(T − λ0). So, if λ0 ∈ σa(T ) and (xn)n≥1

is any corresponding sequence of almost eigenvectors for λ0, then

‖f(T )xn − f(λ0)xn‖ = ‖g(T )(Txn − λ0xn)‖ ≤ ‖g(T )‖ · ‖Txn − λ0xn‖ → 0,
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as n→ +∞, which implies that ‖f(T )xn − f(λ0)xn‖ → 0, as n→ +∞, which implies

f(λ0) ∈ σa(f(T )).

(c): Now, let µ0 ∈ σ(f(T )). Then, by (a), the set Z(f − µ0) of all zeros of the

function f − µ0 has a nonempty intersection with σ(T ). Since f is nonconstant on

each component of Ω and σ(T ) is a compact subset of Ω, the set Z(f − µ0) ∩ σ(T )

is finite [7, Thm. 10.18]. Let Z(f − µ0) ∩ σ(T ) = {ξ1, . . . , ξm}. Without lost of

generality, we may assume that each zero is of order 1. So, we can find g ∈ Hol(Ω)

such that g(λ) 6= 0 for all λ ∈ σ(T ) and f(λ)− µ0 = g(λ)(λ− ξ1) . . . (λ− ξm). Then

g(T ) is invertible operator and

f(T )− µ0 = g(T )(T − ξ1) . . . (T − ξm). (17)

Let µ0 ∈ σa(f(T )) and (yn)n≥1 is any corresponding sequence of almost eigenvector

for µ0. Let us assume that none of the points ξ1, . . . , ξm belongs to σa(T ). Then,

there are positive constants c1, . . . , cm such that ‖(T − ξj)x‖ ≥ cj ‖x‖, for all x ∈ H

and 1 ≤ j ≤ m [2, Prop.VII.6.4] and, since g(T ) is invertible operator, a constant

c > 0 such that ‖g(T )x‖ ≥ c ‖x‖ for all x ∈ H. This, together with (17) will give

‖f(T )yn − µ0yn‖ = ‖g(T )(T − ξ1) . . . (T − ξm)yn‖ ≥ cc1 . . . cm, for all n ≥ 1,

which contradicts ‖f(T )yn − µ0yn‖ → 0, as n → +∞. So, there must be an integer

1 ≤ j ≤ m such that ξj ∈ σa(T ) and, consequently µ0 = f(ξj) ∈ f(σa(T )). 2

If, in addition to the hypotheses of Theorem 4.1.(c), we assume that the function f

is injective then, f(σa(T )\σp(T )) = f(σa(T ))\f(σp(T )) = σa(f(T ))\σp(f(T )). Now,

applying Theorem 3.1 on T and S = f(T ) we obtain the following result.

Theorem 4.2. If T ∈ B(H), λ ∈ σa(T )\σp(T ) and f ∈ Hol(Ω) is an injective

and nonconstant function on each of the components of Ω⊃σ(T ) then, for any two

sequences of positive numbers (αn)n≥1 and (βn)n≥1 strictly decreasing to 0, in every

open ball in H with radius strictly larger then (α2
1 + β2

1)
1/2 there is a vector z ∈ H

such that ‖T nz‖ ≥ αn |λ|
n
and ‖f(T )nz‖ ≥ βn |f(λ)|

n
, for all n ≥ 1.

Remark 4.3 In view of this result, Theorem 3.3 can be derived as a consequence

of Theorem 4.2. for the case f(λ) = λ−1 and T−1 = f(T ). One only need to observe



304

that Ω = {λ ∈ C : m < |λ| < M} ⊃ σ(T ) for any 0 < m < 1/r(T−1) and M > r(T ),

and that f(λ) = λ−1 is injective, holomorphic and nonconstant function on Ω.

By Corollary 3.2 and Theorem 4.2 we also have the following

Corollary 4.4. If T ∈ B(H), λ ∈ σa(T )\σp(T ) is with |λ| > 1 and f ∈ Hol(Ω)

is injective and nonconstant function on each of the components of Ω ⊃ σ(T ) such

that |f(λ)| > 1 then, there is a dense set of vectors z ∈ H such that both the orbits

Orb(T, z) and Orb(f(T ), z) tend strongly to infinity.
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