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Abstract. The results presented in this paper are motivated by some of the results obtained
by B. Beauzamy in [1, Chap. III] for a single operator on an infinite-dimensional complex
Hilbert space that imply existence of a dense set of vectors with orbits tending strongly to
infinity. For the case of invertible operator T', one of B. Beauzamy’s results implies that
the space actually contains a dense set of vectors for which both the orbits under 7" and its
inverse tend strongly to infinity. We are going to show that this is also true for any suitable
pair of operators.

1. INTRODUCTION

Throughout this paper H will denote an infinite-dimensional complex Hilbert
space with inner product (- |-) and B(H) the algebra of all bounded linear operators
on H. For T € B(H), with »(T), o(T), 0,(T) and 0,(T) we will denote the spectral
radius, the spectrum, the point spectrum and the approximate point spectrum of
T, respectively. Recall that o,(T) is the set of all eigenvalues of T', while ¢,(T) is
the set of all A € o(T") for which there is a sequence of unit vectors (x,),>1 such
that ||Tx, — Az,|| — 0, as n — +4o00; any such sequence is called a sequence of

almost eigenvectors for A. Unlike the point spectrum, which can be empty, the
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approximate point spectrum is nonempty for every 7' € B(H). As a mater of fact,

2 # do(T)Uo,(T) C o,(T), [2, Prop.VIL6.7].

Orbit of the vector x € H, under the operator 7, is the sequence
Orb(T,x) = {a:, Tz, T?x, .. } .

In [1, Thm.II[.2.A.1] B. Beauzamy showed that, if T € B(H) and the circle
{AecC: |\ =r(T)} contains a point in ¢(T") which is not an eigenvalue for 7" then,
for every positive sequence (a,),>1 strictly decreasing to 0, in every open ball in H
with radius strictly larger then «y, there is a vector z with |[|T"z|| > a,,r(T)", for all
n > 1. As its proof suggests, this result will remain true if r(7) is replaced with |l
for any A € 0,(T)\o,(T'). Note that, if 7(T") > 1 or, in the later case, if |A| > 1, then
the space will contain a dense set of vectors z € H with Orb(7, z) tending strongly
to infinity.

B. Beauzamy also stated, almost without a proof, a similar result for the case of in-
vertible operator T'€ B(H), [1, Thm.II1.2.A.10]: If both the circles {\ € C: |\| = r(T)}
and {\ € C: |A\| =1/r(T~')} contain a point in ¢(T) which is not an eigenvalue for
T then, for any two positive sequences (ay,),>1 and (8,),>1 strictly decreasing to 0,

/2 there is a vector

in every open ball in H with radius strictly larger then (a? + ()
z which satisfies simultaneously: ||T"z|| > a,,r(T)" and |T~"z| > B,r(T~1)", for all

n > 1. We are going to generalize this result for pairs of operators on H.

2. PRELIMINARY RESULTS

Proposition 2.1. Let T€e B(H) and A € 0,(T)\o,(T).

(a) For every sequence of almost eigenvectors (xy,)n>1 for A and every h € H,

lim (z,|h) =0.

n—-+00

(b) If E is any orthonormal basis for H then, there is a sequence (yi)r>1 of almost
eigenvectors for X, such that the sets {e € E : {e|yy) # 0} , k > 1 are all finite

and pairwise disjoint.
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Proof. The assertion under (a) follows from the Riesz’s theorem for representation
of bounded linear functional on a Hilbert space and from the fact that, if T is a
bounded linear operator on a reflexive Banach space and A € 0,(7")\0,(T), then every
corresponding sequence of almost eigenvectors for A tends weakly to 0 [1, Prop.1.1.13].

To prove the assertion under (b) fix any corresponding sequence of almost eigen-
vectors (z,)n,>1 for A\. For h € H, let E(h) = {e € E : (hle) # 0}.

Since E(h) is countable for each h € H, [2, Cor.1.4.9], there is a sequence (eg)x>1
in E such that U,>1E(z,) C {er:k € N}. Then, each z, can be represented as

= 302 (zalex) - ek, and

m

ZQM%

(1)

By (a), applied on h = e, we can find a positive integer n; so that |{z,|e;)| < 1/23,
for all n > ny. Let n € {1,...,n1}. By (1) there is s(n) > 1 such that
s(n)

Ty — Z (xnlex) - e

k=1

< 1.

Put z, = Zz(znl) (xplex) - ex
Suppose that we have found integers ng =0 < n; < ... < n; for some [ > 1, with

the following property: for all 1 < j <1
(1) Nznler)| < 1/(F +1)7*2 for all 1 < k < j and n > n;; and

(ii) if n € {nj_1+1,...,n;} then, there is s(n) > j so that the vector z,, defined

with z, = S5 (z,lex) - ey, satisfies ||z, — z,]| < 1/27°".

Now, applying (a) on each h € {ey,es,..., €111}, we can find an integer n; 11 > ny
so that [{(z,lex)| < 1/(1+2)73 forall 1 < k < I+ 1and n > nyyy. Let n €
{n;+1,...,n141}. In the same way as above, we can find s(n) > [ 4+ 1 such that
Hxn — zz(j} (xn|ex) -ekH < 1/2%1 Put z, = Zk i1 (Tnlex) - ex. Since n > ny + 1,
applying (i) for j = [, we obtain

l

Z (Tnlex) -

- ZI: Lo 1 1
— = (l + 1)l+2 o (l n 1)l+2 (l+ 1)l+1 = 9l+1 °
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Then
s(n)

T — Y (xnlex) -

k=1

l

Z (nlex) -

1 1

tom =

|20 — 2| < < o1 T 9ltl 91

The previous discussion implies that there is a sequence of integers ng =0 < n; <
. < mnj < ...,and a sequence (2,),>1 in H such that (i) and (ii) hold for every

j > 1. Moreover, the sequence (z,),>1 has the following properties:

1. z, # 0, for all n > 1 (this follows from (ii) and from the fact that (z,),>1, as a

sequence of almost eigenvectors is with ||z,|| = 1, for every n > 1) ;
2. ||z]| = 1, as n — 4-o00;
3. E(z,) is finite for each n > 1 (by construction); and

4. for every n > 1 there is m > n such that E(z,) N E(z,) = o (if j > 1 is such
that nj_1 +1 <n < nj and if 2, = ZZ(:n]) (xnlex) - ek, choose any p > s(n) + 1

and m > n,, ; clearly p > j, m > n; > n and E(z,) N E(2,) = 2).

By 4. we can find a subsequence (zy, )k>1 of (2,)n>1 so that the sets E(z,,),
k > 1 are pairwise disjoint. Put vy = 2,/ ||2n, ||, ¥ = 1,2,... . Obviously, the sets
{e € E: (e|lyx) # 0}, k > 1 are all finite and pairwise disjoint, and

1n, = Ukll < N, = 2oL+ 2m, = Utll = 2, = 2oL+ 2 - [1 = [z 7] = 0,

as k — +oo. This will imply that ||Tyx — Ayk|]| — 0, as k — +oo, and so (Yg)k>1

would be the required sequence of almost eigenvectors for \. O

Lemma 2.2. If (u,)n>1 is a sequence in H which tends weakly to 0 and A € B(H)
then, for every uw € H and every § > 0:

(a) limsup ||A(u + 6U/n)H2 > HAUHQ; and

n—-4o0o
(0) if || Aun]| — o as n — +oo, then [|A(u + dun)|* — || Au|* + *5>

Proof. For each n > 1

1ACu + un)|I* = || Aull” + 26 Re (u | A" Au) + [| Au ||, (2)
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where A* denotes the Hilbert space adjoint of A .

Since (uy)n>1 tends weakly to 0, (u,|h) — 0, as n — +oo, for all h € H. Thus,
by the continuity of the function A — Re A, we have that Re (u,|A*Au) — 0, as
n — +oo, for all w € H. Now, by (2) we obtain that

limsup ||A(u + duy,)||*> > limsup(]|Aul|* + 20Re (u, | A* Au))

n——+00 n—+00
= lim (||Au||2+25Re (u,|A*Au)) = ||Au||2 ,

n—-4o00

which proves (a) and, if ||Au,|| — « then, by taking limits in (2), we obtain (b) . O
3. MAIN RESULTS

Theorem 3.1. If T, S € B(H), A € 0,(T)\o,(T) and p € 0,(S)\o,(S) then, for

any two sequences of positive numbers (u,)n>1 and (Bn)n>1 strictly decreasing to 0,

in every open ball in H with radius strictly larger then (a? + 32)Y/? there is a vector

z € H such that |T"z|| > an |A" and ||S™z|| > B, |u|”, for alln > 1.
Proof. By the assumptions in the theorem and Proposition 2.1 we can find

sequences of unit vectors (z,),>1 and (¥, )n>1 with the following properties:

(@) (zp)n>1 and (Yn)n>1 tend weakly to 0;

(0) [Tz — Awnll = 0, [|Syn — pyull — 0 as n — 400 ;

(¢) (zp|lTm) =0 = (Yn|ym) whenever n # m ; and

(d) (xp|ym) =0 foralln>1and m>1.

Since A, as an element of the set o,(T)\o,(T) C o(T), is with |A| < r(T) < ||T||,
for every integer k > 1
|Th = N[ = (754 ATR2 4 N2T 4 N (T, — Az
< KT T2 = Az -

and so HTka:n — )\kan — 0, as n — +o00. In the same way, |[S*y, — ukynH — 0, as

n — +o00, and consequently, since x,,’s and y,,’s are unit vectors,
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HTkan — A" and HSkynH — |u|* as n— +oo, forall k> 1. (3)

Now, fix + € H and € > 0. Let Ay = (af — af,,)V? and By = (87 — B2.1)"2
kE>1.
First, we look at the sequence (z+ (1+¢)A1x,)n>1. By (a), (3) and Lemma 2.2.(b)

Tim_[[T(+ (1 + &) Avm) | = [Tal + (1 + 2242 7 > A2 AP
which allows us to find a positive integer n; such that the vector z; = v+ (1+¢)A 2,

is with ||T21|| > Ay |\l

In the same way, we obtain that

lim [|S(z + (1 +2)Buya)I” = 1S241" + (1 +2)° B |ul* > B} |ul”.

n—-+00

So, we can find an integer m/ > ny such that ||S(2} 4 (1 + €)Byyy)|| > B? |u|* for all
n > mj. Now we look at the sequence (T'(z] + (1 +¢)B1yn))n>1. By Lemma 2.2.(a)

sup || 723 + (14 &) Buya|* > limsup | T2 + (14 &) Buyal* > | T21]° > AT [N
n—-+00

!
n>mj

This implies that, there is an integer m; > m/) such that the vector
21 = Zi + (1 + 8)Blyml =7+ (1 + 5)(Alxn1 + Blym1)

is with ||T'z1|| > Ay |A| and ||Sz|| > By || -

Suppose that we have found integers 0 < ny < m; < ... <n;_1 < my_1, for some
[ > 2, such that the vectors z; =z + (1 +¢) (A12p, + B1Ym, + - - - + Ak, + Bilm, )
1 <k <1—1 satisfy both (4) and (5) bellow.

|T72]| > (A2 4.+ ADV2(AP, forall 1<j<k<l-1, (4)
|72 > (B} + ... 4+ B2 |uf, forall 1<j<k<i-1. (5)
Now, we start with the sequence (z—; + (1 +¢)A;x,),>1. Applying again (a), (3)

and Lemma 2.2.(b), we have

lim [ 79(zies + (1 4+ ) Aw)|| = |[Tao| + 1+, forall 1< <1

n—-+00
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By (4) for 1 <j <k =1—1 and [Tl || +(1+2)242 AP > A7 [\, for j =1,

lim HTJ'(ZH +(1 +€)Azxn)H2 > (A3 4.+ AD) NP forall 1< <1

n—-+o00

So, we can find an integer n; > m,;_; such that
|9 (21 + (1+5)A1xn)H2 > (A2 4+ AN NP, forall 1 <5 <1 and n>nj. (6)

On the other hand, by (5), (a) and Lemma 2.2.(a)

[ @2t B

lim sup HSj(zl_l +(1+ E)Alxn)HZ > Hszl_l E

n—-+00
for all 1 < j <[ — 1. This implies that there are strictly increasing sequences of

positive integers (N;j(n)),>1, 1 < j <1 — 1 such that
|57z + (1 + &) Aw vy > (B + -+ B2 [ (7)

forall1<j<[l—1andn>1.
By (6) and (7) we can find a positive integer ng so that n; = Ny(... (Ni—1(ng))...) >
n; > my_1 and the vector 2] = z,_; + (1 + ) Az, satisfies both (8) an (9) bellow

|72 > (A2 + ...+ A}Y2 AP, forall 1< <], (8)

15721 > (B} + ...+ BL)Y? |uf, forall 1<j<i-1. (9)

Now, we look at the sequence (2] + (1 + €) By, )n>1. In the same way as before,

we obtain that

lim HSj(zl'+(1+e)Blyn)H2 = |74 L1+ e)?BE Y,

n—-4o0o

which, together with (9) will imply that

lim [[$9(zf + (1 + ) Bua) |

n—-+o0o

>(B]2—{—...+B12)|,u|2j, forall 1 <j<lI,

and that (by (8) and Lemma 2.2.(a))

lim sup HT](zf + (1+ E)Bzyn)H2 = Hszl/ i

n—-+o0o

> (A24 .+ AN, forall 1< <1
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But then we can find integer m; > n; so that the vector
R = Zl, + (1 + g)Blymz =T+ (1 + 6)(*’411'77,1 + Blym1 + .+ Alxnz + Blymz) (10)
satisfies
|72 > (A2 + .+ A2 AP = (a2 — ad )2 AP (11)

and

|72 > (B2 + ...+ BYY |ul = (82 = 82" b (12)

for all 1 < 7 < 1. Moreover , by (¢) and (d),

|z —)? = (1+2)? | An, + BiYm, + - - + An, + Brym|?
= (1+e)*(Al+Bi+...+ A+ B}) < (1+2)*(ai + 51 — afpy — Bi1),

ie.
Iz — 2|l < (1+2¢)(af + B} — ofy — B2 (13)
Thus, by induction, we obtain that there are positive integers n; < m; < ... <
n; < my < ...such that the sequence (z;);>1 given with (10) satisfies (11) — (13), for

all 1 > 1 and 1 < j <. The sequence (z;);>1 is a Cauchy sequence: since oy — 0 and

06, — 0, for every positive integers [ and k& with [ > k

2
||Zl — Zk||2 = (1 + 8)2 “Ak+lxnk+l =+ Bk+1ymk+1 + ...+ All‘nl -+ Blyml
= (L+e)*(AZ + Bipy +... + AL+ BY)

= (1+&)*(afy + By — iy — BAy) — 0, when k,l — 4o0.

Since H is Hilbert space, there is z € H such that

+oo
z = thl z=xz+ (1+4¢) Z (Aizn, + BiYm,)-
—T i=1

This vector is with the desired properties:
Lo flz =l = Yim {2 — 2l < (1+2¢) (aF + 57)'72, (by (13));

and, for alln > 1
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2T = Jim [Tl = lim (0F—af,)Y2 A" = an A" (by (11) and oy = 0);

3152l = T[Sz > Tim (52— 67,02 [l = Bl (by (12) and f; — 0).
which completes the proof. O

Corollary 3.2. If the sets 0,(T)\o,(T) and 0,(5)\o,(S) both have a nonempty
intersection with the domain {\ € C : |\| > 1} then, there is a dense set of vectors

z € H such that both the orbits Orb(T, z) and Orb(S, z) tend strongly to infinity.

We turn now to the original Beauzamy’s result on invertible operator T € B(H).

For its spectrum we have

1
o)

o(T) C {)\ €C: <A < r(T)} : (14)

If both the circles {A € C: |A\| =r(T)} and {\ € C': |A\| = 1/r(T~")} contain a point
in o(7T") which is not an eigenvalue for 7" then, there are points A\, € o(T)\o,(T)
with [A] = r(T) and |u| = 1/r(T~'). By (14), this points must be contained in the
boundary do(T"), and consequently A, pn € o,(T)\o,(T'). It is easy to verify that

a € 0,(T) if and only if o™ € 0,(T) (15)

and

a € 0,(T) if and only if o™ € 0, (T7). (16)

(To obtain (16), apply the equality T~ — a~! = —a™'T YT — «).) This will imply
that p=! € o,(T H)\o,(T™1). Now, since |p~!| = r(T7!), by applying Theorem 3.1
on T and S = T~!, we obtain that in every open ball in H of radius strictly larger
then (a2 +(32)1/2, there is a vector z which satisfies simultaneously: ||T7z|| > a,r(T)"
and ||[T7"z|| > B,r(T~1)", for all n > 1. Note that, if both 7(T') > 1 and r(T~') > 1,
the previous discussion will imply that there is a dense set of vectors z € H such
that both the orbits Orb(T, z) and Orb(T !, z) tend strongly to infinity. Moreover,
by (15), (16), Theorem 3.1 and Corollary 3.2 we have the following results.

Theorem 3.3. If T € B(H) is invertible operator and A € o,(T)\o,(T') then,

for any two sequences of positive numbers (c,)n>1 and (By)n>1 Strictly decreasing to
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1/2

0, in every open ball in H with radius strictly larger then (o + 3?)1/2 there is a vector

z € H such that |[T"z|| > an |\[" and |T~"z|| > B,/ |\|" for alln > 1.

Corollary 3.4. If T € B(H) is invertible operator and the domains {\ € C : |A| > 1}
and {A € C:0 < |\ < 1} both have nonempty intersection with o,(T)\o,(T) then,
there is a dense set of vectors z € H such that both the orbits Orb(T, z) and Orb(T !, 2)
tend strongly to infinity.

4. ON ORBITS UNDER T AND f(T)

In this section 2 will denote a nonempty open subset of the complex plane whose
boundary 0f) consists of finite number of rectifiable Jordan curves, oriented in the
positive sense and Hol(€2) the set of all holomorphic functions on some open neigh-
borhood of the closure of 2. We assume that the reader is familiar with the basics of

the theory of the functional calculus for operators (see for example [1], [2] and [6]).

Theorem 4.1. If T € B(H), o(T) C Q and f € Hol(R2), then

(b) f(op(T)) € op(f(T)) and f(oa(T)) € 0a(f(T));

(¢) if f is nonconstant function on each of the components of Q, then f(o,(T)) =

op(f(T)) and f(oa(T)) = ou(f(T)).

Proof. The assertion under (a) is the well known Spectral Mapping Theorem.
The assertions on the point spectrum in (b) and (c¢) are parts of [6, Thm. 10.33].
We follow the same lines of the proof of this theorem to prove the assertions on the
approximate point spectrum.

(b): Let A\g € o(T"). Then, there is g € Hol(€2) such that f(A) — f(Ao) = g(A)(A —
o), and consequently, f(7') — f(Xo) = g(T)(T — Xo). So, if A\g € 0,(T) and (x,,)n>1

is any corresponding sequence of almost eigenvectors for \g, then

1A (T)wn = o)l = lg(T)(Twn = Aoz || < lg(T)| - [ T20 — Aoznl| — 0,



303

as n — +o00, which implies that || f(T)x, — f(Ao)z.|| — 0, as n — +o0, which implies
f(ho) € ou(f(T)).

(¢): Now, let py € o(f(T)). Then, by (a), the set Z(f — po) of all zeros of the
function f — pp has a nonempty intersection with o(7"). Since f is nonconstant on
each component of Q and o(7T') is a compact subset of €, the set Z(f — po) N o(T)
is finite [7, Thm. 10.18]. Let Z(f — po) No(T) = {&,...,&n}. Without lost of
generality, we may assume that each zero is of order 1. So, we can find g € Hol(2)
such that g(A) # 0 for all A € o(T") and f(A) — o = g(A)( A —=&1) ... (A —&). Then

g(T) is invertible operator and

JT) = po = g(T)T = &) .. (T = &m)- (17)

Let po € o,(f(T)) and (y,)n>1 is any corresponding sequence of almost eigenvector
for pg. Let us assume that none of the points &1, ..., &, belongs to ,(T"). Then,
there are positive constants cy, ..., ¢, such that ||(T" — &;)z|| > ¢; ||z||, for all z € H
and 1 < j < m [2, Prop.VIL.6.4] and, since g(7T) is invertible operator, a constant
¢ > 0 such that ||g(T)z|| > c||z| for all z € H. This, together with (17) will give

| f(T)yn — poynll = lg(TNT — &) .. (T — En)ynl| = ce1. .. cp, forall n > 1,

which contradicts || f(T)yn — toynl|l — 0, as n — 400. So, there must be an integer

1 < j < m such that §; € 0,(T) and, consequently po = f(&;) € f(0a(T)). O

If, in addition to the hypotheses of Theorem 4.1.(c), we assume that the function f

is injective then, f(oa(T)\op(T)) = f(oa(T)\f(0p(T)) = oa(f(T)\op(f(T)). Now,
applying Theorem 3.1 on T and S = f(7T') we obtain the following result.

Theorem 4.2. If T € B(H), A € 0,(T')\o,(T) and f € Hol(2) is an injective
and nonconstant function on each of the components of QD a(T) then, for any two
sequences of positive numbers (o, )n>1 and (Bn)n>1 Strictly decreasing to 0, in every

1/2

open ball in H with radius strictly larger then (a3 + 32)Y/2 there is a vector z € H

such that ||T"z|| > a,, |\[" and || f(T)"z]| > Bn |f (M), for all n > 1.

Remark 4.3 In view of this result, Theorem 3.3 can be derived as a consequence

of Theorem 4.2. for the case f(A\) = A~' and T~ = f(T). One only need to observe
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that Q={AeC:m< |\ <M} Do(T) forany 0 < m < 1/r(T~1) and M > r(T),
and that f(\) = A~! is injective, holomorphic and nonconstant function on 2.

By Corollary 3.2 and Theorem 4.2 we also have the following

Corollary 4.4. If T € B(H), X € 0,(T)\o,(T) is with |[\| > 1 and f € Hol(f2)
is injective and nonconstant function on each of the components of Q@ O o(T) such
that |f(N)| > 1 then, there is a dense set of vectors z € H such that both the orbits
Orb(T, z) and Orb(f(T), z) tend strongly to infinity.
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