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Abstract. We introduce and study the notion of weighted projective planes which is a
generalization of the usual projective plane. We compare them with totally symmetric
(n, m)-quasigroups. We prove that a weighted projective plane S(2, n + 1, n2 + n + 1) iz
equivalent to a totally symmetric (2, n− 1)−quasigroup.

1. INTRODUCTION

An incidence structure is a triple D = (V,B, I), where V and B are disjoint sets

and I ⊆ V ×B. The element of V are called points, and the elements of B are called

blocks. If A is a point of V , the set of all blocks incident with A is denoted by (A).

Thus

(A) = {b : b ∈ B,AIb}.

Moreover, for A1, A2, ..., An, the set of all the blocks incident with all the points

A is denoted by (A1, A2, ..., An). Thus

(A1, A2, ..., An) = {b : b ∈ B,AiIb for all i ∈ Nn},
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whereN is the set of all positive integers andNn = {1, 2, ..., n}. Dually, for b, b1, b2, ..., bn ∈

B,

(b) = {A : A ∈ V,AIb},

(b1, b2, ..., bn) = {A : A ∈ V,AIb for all i ∈ Nn}.

We consider only the incidence structures where distinct blocks have distinct sets

of points. We identify each block b with the set (b) and identify the incidence relation

with the membership relation ∈.

2. SOME DEFINITION AND RESULTS

Definition 1. An incidence structure D = (V,B, I) is called projective plane if

and only if it satisfies the following axioms:

(P.1) Any two distinct points are joined by exactly one line.

(P.2) Any distinct lines intersect in a unique point.

(P.3) There exists a quadrangle, i.e. 4 points no three of which are on a common line.

The following theorem is proved in [1].

Theorem 1. Let D = (V,B, I) be a finite projective planes. Then there exists a

natural number n, called the order of D, satisfying:

a) |(P )| = |(g)| = n+ 1 for all P ∈ V and g ∈ B;

b) |V | = |B| = n2 + n+ 1.

The finite projective plane of order n will be denoted by S(2, n+ 1, n2 + n+ 1).

Theorem 2. For each prime power q, there exists projective plane of order q.

Proof. Let F be the Galois field on q elements and W the vector space of

dimension 3 over F . Choose as points all 1-dimensional subspaces and as lines all

2-dimensional subspaces. Using the dimension formula of linear algebra, one checks
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that the axioms (P.1) and (P.2) are satisfied. For (P.3), one may choose the points

e1F, e2F, e3F and (e1 + e2 + e3)F where e1, e2, e3 is any basis of W . The fact that F

is the field on q elements is only needed to show that the resulting projective plane

has order q: the number of 1-dimensional subspaces of W is then (q3
−1)

(q−1)
= q2 + q + 1.

2

It is not known whether there exist projective planes of any other order. The

following famous non-existence result is proved in [1].

Theorem 3. [Bruck/Ryser 1949] Let n ∈ N,n ≡ 1 or 2 mod 4. If there

exists an odd prime p ≡ 3 mod 4 dividing the squarefree part of n, then there is no

S(2, n+ 1, n2 + n+ 1).

The existence question for an S(n, n+1, n2+n+1) is open for n = 12, 15, 18, 20, 24,

26, 28, 34, ...

For n = 6, 14, 21, 22, 30, 33, 38, ... there is no S(n, n+ 1, n2 + n+ 1).

Definition 2. An finite incidence structure D = (V,B, I) is called block design

with parameters v, k, λ ∈ N , if and only if it satisfies the following axioms:

(D. 1) |V | = v;

(D. 2) |(P,Q)| = λ, for any two distinct points P,Q ∈ V ;

(D. 3) |(b)| = k, for any block b ∈ B.

A block design with parameters v, k, 1 is called a Steiner system and is denoted

by S(2, k, v).

It is easy to see that any S(2, n + 1, n2 + n + 1) with n ≥ 2 is a projective plane

of order n.

3. WEIGHTED PROJECTIVE PLANES

The following definition generalizes the notion of finite projective planes

S(2, n+ 1, n2 + n+ 1).
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Definition 3. An finite incidence structure D = (V,B, I) is called weighted

projective plane with parameters n2 + n + 1, k, 1 ∈ N , if for any b ∈ B there is a

mapping fb : (b) −→ N , and if and only if it satisfies the following axioms:

(WD. 1) |V | = n2 + n+ 1;

(WD. 2) |(P,Q)| = 1, for any two distinct points P,Q ∈ V ;

(WD. 3) kb = n+ 1, for any block b ∈ B, where:

a. the image fb(A) is denoted by tAb, and is called the weight of the point A

in the block b,

b. for A ∈ V , its weight is tA =
∑

A∈bi
tAbi

and

c. for b ∈ B, the number kb =
∑

Ai∈b tAib is called the size of the block b.

Example 1. Every usual projective plane S(2, n + 1, n2 + n + 1) is a weighted

projective plane where the mapping f(b) : (b) −→ N for all blocks b ∈ B is defined by

fb(A) = tAb = 1, for all A ∈ b.

For any point A ∈ V the weight of A is

tA =
∑

A∈bi

tAbi
= r = n+ 1

where r is the number of blocks which contain A. For any block b ∈ B

kb =
∑

Ai∈b

tAib = k = n+ 1.

From Example 1 it follows that the weighted projective plane is a generalization

of the usual finite projective plane.

Theorem 4. Let D = (V,B, I) be a weighted projective plane with parameters

n2 + n+ 1, n+ 1, 1 ∈ N . Then

n+ 1 = kb −
∑

Ai∈b

(tAib − 1) = tA −
∑

A∈bi

(tAbi
− 1).
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Proof. For any point A ∈ V , we have

(A) = {b1, b2, ..., bn+1}, tA = tAb1 + tAb2 + ...+ tAb(n+1)
.

tA −
∑

A∈bi

(tAbi
− 1) = (tAb1 + tAb2 + ...+ tAb(n+1)

)− (tAb1 + tAb2 + ...+ tAb(n+1)
)

+ (1 + 1 + ...+ 1) = n+ 1.

Similary, for any block b ∈ B we have

(b) = {A1 + A2 + ...+ An+1}, kb = tA1b + tA2b + ...+ tA(n+1)b.

kb −
∑

Ai∈b

(tAib − 1) = (tA1b + tA2b + ...+ tA(n+1)b)− (tA1b + tA2b + ...+ tA(n+1)b)

+ (1 + 1 + ...+ 1) = n+ 1.

For usual projective plane we have fb(A) = tAb = 1, for all A ∈ V, b ∈ B such that

A ∈ b. From Theorem 1 we have

n+ 1 = tA −
∑

A∈bi

(tAbi
− 1) = tA − 0 = tA,

n+ 1 = kb −
∑

Ai∈b

(tAib − 1) = kb − 0 = kb.

Hence, we have that the weight of the point A is equal to the number of blocks

b ∈ B which contain A and the size of the block b is equal to the number of point

A ∈ V such that A ∈ b. 2

Definition 4. A weighted projective plane S ′ = (V ′, B,∈) is an extension of a

weighted projective plane S = (V,B,∈), if V ⊆ V ′ and for each b ∈ B there is b′ ∈ B′

such that (b) ⊆ (b′), and for each A ∈ (b), tAb′ = tAb.

Definition 5. An extension (V ′, B′,∈) of a weighted projective plane with param-

eters n2 + n+ 1, n+ 1, 1 defined by

a) V ′ = V ;
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b) B′ = B ∪B′′ where B′′ = {{An+1} : A ∈ V }, and

c) For each A ∈ V, tA = r+ n+ 1, where r is the number of block in B containing

A,

is called a complete weighted projective plane with parameters n2 +n+1, n+1, 1, and

is denoted by S ′(2, n+ 1, n2 + n+ 1).

4. MULTIQUASIGROUPS AND WEIGHTED PROJECTIVE PLANES

Next we compare complete weighted projective plane S ′(2, n+1, n2 + n+1) with

the notion of totally symmetric (2, n− 1)-quasigroup given below.

Definition 6. Let Q be nonempty set, n and m positive integers, and

f : (x1, x2, ..., xn) −→ f(x1, x2, ..., xn)

a mapping from Qn into Qm. Then we say that Q(f) is an (n,m)-groupoid.

An (n,m)-groupoid Q(f) is said to be an (n,m)-quasigroup iff the following state-

ment is satisfied:

(A). For each ”vector” (a1, a2, ..., an) ∈ Qn and each injection ϕ from

Nn = {1, 2, ..., n} into Nn+m there exists unique ”vector” (b1, b2, ..., bn+m) ∈ Qn+m

such that bϕ(1) = a1, ..., bϕ(n) = an and

f(b1, b2, ..., bn) = (bn+1, bn+2, ..., bn+m).

In the paper [3] an (n,m)-quasigroup is interpreted as an (n,m)-quasigroup rela-

tion.

Definition 7. An (n + m)-ary relation ρ ⊆ Qn+m is called (n,m)-quasigroup

relation iff the following statement is satisfied:

(A). For each ”vector” (a1, a2, ..., an) ∈ Qn and each injection ϕ from Nn =

{1, 2, ..., n} into Nn+m there exists unique ”vector” (b1, b2, ..., bn+m) ∈ Qn+m such

that bϕ(1) = a1, ..., bϕ(n) = an and

(b1, b2, ..., bn+m) ∈ ρ.
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The following theorem is proved in [3].

Theorem 5. An (n,m)- groupoid (Q, f) is an (n,m)-quasigroup iff the (n+m)-

ary relation ρ ⊆ Qn+m defined by

(x1, x2, ..., xn+1) ∈ ρ⇐⇒ f(x1, x2, ..., xn) = (xn+1, xn+2, ..., xn+m)

is an (n,m)-quasigroup relation.

Definition 8. An (n,m)-quasigroup is called totally symmetric, iff

f(x1, x2, ..., xn) = (xn+1, xn+2, ..., xn+m)⇐⇒ f(y1, y2, ..., yn) = (yn+1, yn+2, ..., yn+m),

for any (x1, x2, ..., xn+m) ∈ Qn+m and any permutation (y1, y2, ..., yn+m) of

(x1, x2, ..., xm). The (n + m)-ary relation ρ ⊆ Qn+m in this case is called totally

symmetric.

Theorem 6. Every complete weighted projective plane S ′(2, n + 1, n2 + n + 1)

defines a totally symmetric (2, n− 1)-quasigroup relation ρ ⊆ V n+1, where

(A1, A2, ..., An+1) ∈ ρ⇐⇒ {A1, A2, ..., An+1} ∈ B.

Conversely, any totally symmetric (2, n−1)-quasigroup relation ρ ⊆ V n+1 satisfy-

ing (A,A, ..., A) = (An+1) ∈ ρ for any A ∈ V , defines a complete weighted projective

plane S ′(2, k, n2 + n+ 1), where

{A1, A2, ..., An+1} ∈ B ⇐⇒ (A1, A2, ..., An+1) ∈ ρ.

Proof. Let S ′(2, n+ 1, n2 + n+ 1) be a complete weighted projective plane, and

ρ ⊆ V n+1 be defined as above. From the definition it follows that if (A1, A2, ..., An+1) ∈

ρ then either |{A1, A2, ..., An+1}| = n + 1 or A1 = A2 = ... = An+1, and more-

over, (A1, A2, ..., An+1) ∈ ρ iff (B1, B2, ..., Bn+1) ∈ ρ for any arbitrary permutation

(B1, B2, ..., Bn+1) of (A1, A2, ..., An+1). Hence (n+1)-ary relation ρ ⊆ Qn+1 is totally

symmetric. For any two distinct point A 6= B, there is a unique block containing A,B,
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i.e. there is a unique (A1, A2, ..., An+1) ∈ ρ , such that A,B ∈ {A1, A2, ..., An+1}. And

for any A ∈ V , the pair (A,A) is in the unique (A,A, ..., A) = (An+1) ∈ ρ. Hence, ρ

is a totally symmetric (2, n− 1)-quasigroup relation.

Conversely, let ρ ⊆ V n+1 be a totally symmetric (2, n−1)-quasigroup relation sat-

isfying the condition (A,A, ..., A) = (An+1) ∈ ρ for any A ∈ V , and let S ′(2, n+1, n2+

n+1) be complete weighted projective plane defined as above. If (A1, A2, ..., An+1) ∈ ρ

and Ai = Aj = A for some i 6= j, then, since (A,A, ..., A) = (An+1) ∈ ρ, it fol-

lows that A1 = A2 = ... = An+1 = A. Hence, if (A1, A2, ..., An+1) ∈ ρ , then

|{A1, A2, ..., An+1}| = n+1 or A1 = A2 = ... = An+1. Let B = B′\{{An+1} : A ∈ V }.

Then it is easy to see that (V,B,∈) weighted projective plane S(2, n+1, n2 +n+1),

and (V,B′,∈) is its extension. Hence, (V,B ′,∈) is a complete weighted projective

plane S ′(2, n+ 1, n2 + n+ 1). 2

5. EXAMPLES

Example 2. A projective plane (V,B,∈) of order 2 is a Steiner system S(2, 2 +

1, 22 + 2+ 1). The weighted projective plane (V ′, B′,∈), where V = V ′, B′ = B ∪B′′

where B′′ = {{A3} : A ∈ V }, is a complete weighted projective plane S ′(2, 2+1, 22 +

2 + 1). The relation ρ ⊆ V 2+1 defined by (A1, A2, A2+1) ∈ ρ⇐⇒ {A1, A2, A2+1} ∈ B

or A1 = A2 = A2+1, is a totally symmetric (2, 2 − 1)-quasigroup relation satisfying

the condition (A,A,A) = (A2+1) ∈ ρ . The number of points is |V | = 22 + 2+ 1 = 7,

the number of blocks is |B ′| = 22 + 2+ 1+ 7 = 14, and tA = 3+ 3 = 6, for all A ∈ V.

Example 3. A projective plane (V,B,∈) of order 3 is a Steiner system S(2, 3 +

1, 32 + 3 + 1). The weighted projective plane (V ′, B′,∈), where V = V ′, B′ =

B ∪ B′′ where B′′ = {{A4} : A ∈ V }, is a complete weighted projective plane

S ′(2, 3 + 1, 32 + 3 + 1). The relation ρ ⊆ V 3+1 defined by (A1, A2, A3, A3+1) ∈ ρ⇐⇒

{A1, A2, A3, A3+1} ∈ B or A1 = A2 = A3 = A3+1, is a totally symmetric (2, 3 − 1)-

quasigroup relation satisfying the condition (A,A,A,A) = (A3+1) ∈ ρ. The number

of points is |V | = 32 +3+1 = 13, the number of blocks is |B ′| = 32 +3+1+13 = 26,

and tA = 4 + 4 = 8, for all A ∈ V .
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6. CONCLUSION

This paper presents the results obtained by generalization of the finite projective

planes. Similar generalization can be studied for the t−designs. Thus, a connection

between the (n,m)-quasigroups and weighted t−designs is achieved.
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[3] G. T. Čupona, Z. Stojaković, J. Ušan, Multiquasigroups and some related struc-

tures, Prilozi MANU I/1, Skopje (1980).

[4] D. Dimovski, A. Mandak, Incidence structures with n-metrics, Zb. Rad. Fil. Fak.
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