
181

Kragujevac J. Math. 30 (2007) 181–199.

NATIVE XML DATABASES vs. RELATIONAL

DATABASES IN DEALING WITH XML DOCUMENTS

Gordana Pavlović-Lažetić

Faculty of Mathematics, University of Belgrade, 11000 Belgrade, Serbia
(e-mail: gordana@matf.bg.ac.yu)

(Received October 30, 2006)

Abstract. When dealing with data-centric XML documents, it is possible to convert XML

documents into a relational database, which can then be queried using SQL. Such relational

databases are called XML-enabled databases. On the other hand, the best choice for storing,
updating and retrieving document-centric XML documents is usually a native XML database
(NXD). NXDs store XML documents as logical units, and retrieve documents using specific

query languages such as XPath or XQuery.
This paper presents different approaches to accessing XML documents from relational

databases, as well as from native XML databases. They will be compared based on how
general they are in dealing with different types of XML documents and how expressive in
stating requests for data, especially recursive queries. Two examples of different types of
XML documents are presented. The first one is a part explosion problem as a data-centric
example. The second one is a large, highly hierarchical XML document - Serbian language
wordnet, a lexical-semantic network, as a document-centric example.

1. INTRODUCTION

XML (eXtensible Markup Language) has been designed as a markup language

and a textual file format. It provides for a description of a document’s contents,

with non-predefined tags, and does not provide for any presentational characteristics.

182

The following is an example of XML-tagged document (an excerpt from a restaurant

menu), contained in the file simple.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE menu (V iewSourceforfulldoctype...) >

<menu date=’5.10.2006’>

<food>

<name>Homemade Bean Soup </name>

<price>100.00 </price>

<description>

a bowl of white bean soup with paper and onion

</description>

<calories>650 </calories>

</food>

<food>

<name>French Toast </name>

<price>60.50din </price>

<description>

thick slices made from our homemade bread

</description>

<calories>300 </calories>

</food>

<food>

<name>Homestyle Breakfast </name>

<price>195.95din </price>

<description>

two eggs, bacon or sausage, toast

</description>

<calories>950 </calories>

</food>

</menu>

Still, XML provides for yet another type of data models, which is an ordered

tree with typed, named nodes and data in leaf nodes only. An XML document is a

linearization of the tree structure.

There are number of advantages of using XML data format over other data for-

mats, e.g., relational one. For example, heterogeneity of data records is supported

in a more natural way, extensibility is provided by allowing different data types in a

single document, as well as flexibility through variety in size and configuration among

183

instances of the same data type. Sometimes, manipulating XML data format is sig-

nificantly more efficient than traditional ones. At the same time, there are obvious

disadvantages of XML data format, one of them being inefficiency in record format.

Data manipulation is often slower than in traditional formats, and optimization is

complex due to richness and expressiveness of query languages.

2. XML DATA MODELS

Unlike relational data model, there is no unique XML data model. Still, all XML

data models are extensions of the basic one and some of them will be briefly presented.

The basic XML model includes different types of nodes, such as [1]:

• element node, e.g.,

<price>195.95din </price> or
<menu date=’5.10.2006’> . . .</menu>

• document node, one special kind of element node, represented by the <!DOCTYPE>

node;

• processing instruction node, e.g., <?xml version...?>

• comment (in the form of <!--c-->)

• data which always reside in leaf nodes, with only one characteristics: data itself,
e.g., ”Homestyle Breakfast” or ”two eggs, bacon or sausage, toast”.

Element node has a type, e.g., price, food or menu; it also may have an ordered

list of children (for the element node of type food these are element nodes of type

name, price, description, calories), and an unordered set of attributes of the form

(attribute name – attribute value) pairs, e.g., ”date=’5.10.2006’ ”.

The document node has a type (menu in our example) but no attributes; it also

has exactly one element node child, which must have the same type as the document

node (in our example, menu-typed element node).

XML may also be considered as an abstract data type (ADT) which is very rich,

containing Strings and Identifiers, partly ordered in a sequence, partly hierarchical,

184

partly in an unordered database-like keyword/value system. The ADT XML Node

actually imports previously defined data types Identifier, URL, char, int, boolean, nil,

and defines mappings between the types (functions) for creating an XML document,

setting and getting schema, attributes, manipulating nodes, as well as linearization

functions.

Finally, there is an XML data model based on languages for querying them,

XQuery and XPath. The so called XDM, XQuery 1.0 and XPath 2.0 Data Model, is

a W3C Candidate Recommendation as of the end of 2005.

2.1. DATA-CENTRIC AND DOCUMENT-CENTRIC XML DOCUMENTS

Regarding rigidity of XML document structure, XML documents fall into two

broad categories: data-centric and document-centric. Data-centric documents are

those containing structured data, such as price lists. Data appear in a regular order

and are usually stored in databases while XML is used just for data exchange and

publishing. They may also contain semi-structured data, such as phonebooks or

patient records. In general, relational databases are efficient enough in storing data

contained in data-centric XML documents.

Document-centric XML documents are those characterized by irregular structure

and mixed content, such as in user’s manuals and marketing brochures. Storing and

manipulating various XML documents in a shared repository usually requires more

than a relational database.

3. XML AND DATABASES

Regardless of whether XML is used as a storage or interchange format for data-

centric model data, or used for creating semi-structured document-centric model doc-

uments, such as XHTML, it is sometimes necessary to store the XML in some sort

of repository or database that allows for more sophisticated storage and retrieval of

the data, especially if the XML is to be accessed by multiple users.

185

There are conceptually two different ways to store XML documents in a database.

The first is to map the document’s data model to a database model and convert

XML data into the database, according to that mapping. The second is to map XML

model into a fixed set of persistent (database) structures that can store any XML doc-

ument. Databases that support the first method are called XML-enabled databases.

Databases that support the second method are called native XML databases. XML-

enabled databases have their own data model – relational, hierarchical, object-oriented,

and they map instances of the XML data model to instances of their data model. Na-

tive XML databases use the XML data model directly [2]. Although the choice is

somewhat arbitrary, it is usually more convenient and more efficient to store and ma-

nipulate data-centric XML documents using XML-enabled databases, and document-

centric XML documents using native XML databases.

3.1. XML-ENABLED DATABASES

One way to map XML documents into an XML-enabled database is to create

relational views on XML documents stored in columns of a relational database, which

can then be queried using SQL. In XML-enabled databases, different XML document

schemas correspond to different database schemas. XML is external to the database

and invisible inside it.

As an example of such a database we may consider the ”menu” XML document. It

may be represented (either physically or as a relational view) as the following relation:

food name price description calories

Homemade Bean Soup 100.00 a bowl of white bean soup 650
with paper and onion

French Toast 60.50 thick slices made from 300
our homemade bread

Homestyle Breakfast 195.95 two eggs, bacon or 950
sausage, toast

A query asking for foods with more than 600 calories may be now stated by the

following SQL statement:

186

select name

from food

where calories > 600

If we had yet another two relations,

restaurants(name, address), serving(food-name, rest-name)

we would be able to formulate an SQL join-query asking for information on where to

eat for what amount of money:

select restaurant.address, food.price

from food, restaurant, serving

where food.name=food-name and restaurant.name=rest-name

3.2. NATIVE XML DATABASES

Native XML database (NXD) is best described as a database that has an XML

document (or its rooted part) as its fundamental unit of (logical) storage and defines

a (logical) model for an XML document, as opposed to the data in that document

(its contents). It represents logical XML document model (not XML document data

model), and stores and manipulates documents according to that model [2].

Basic characteristics of an NXD are the following:

• a logical unit of an NXD is an XML document or its rooted part, and it corre-
sponds to a row in a relational database,

• it includes at least the following components: elements, attributes, textual data
(PCDATA), and document order,

• physical model (and type of persistent NXD storage) is unspecified.

In a native XML database, XML is visible inside the database. There is a unique

database for all XML schemas and documents. Native XML databases are especially

suitable for storing irregular, deeply hierarchical, recursive data.

Following the definition, an important characteristics of a native XML database

is that its physical model is unspecified. It further implies that XML documents

persistent storage may be arbitrary, as long as it stores and manipulates an XML

187

document as a (logical) whole. Different types of persistent storage may be disk files,

CLOB fields in relational databases, fixed relational database tables, DOM trees in

object-oriented databases, hash tables, etc.

For example, XML menu document may be represented in a native XML database

stored in fixed relational database tables in the following way:

Documents Doc id Doc name

1 simple.xml
.

Elements Doc id El id Parent id Name OrdInParent

1 1 NULL menu 1
1 2 1 food 1
1 3 2 name 1
1 4 2 price 2
.

Attributes Doc id Atr id Parent id Name Value

1 1 1 date 5.10.2006
.

Text Doc id Text id Parent id Value

1 1 3 Homemade
Bean Soup

1 2 4 100.00
.

Although the example shows how to build a native XML database on top of a

relational database, most native XML databases are built from scratch, as stand-alone

document management systems. Those systems manage collections of documents,

allowing users to query and manipulate those documents as a set, which is similar to

the relational concept of a table.

The previous example pertained to a NXD solution for a data-centric XML doc-

ument (”menu”), but the real power of NXDs comes with document-centric XML

documents. They provide for XML data model, which is flexible enough to model doc-

uments, XML-aware full-text searches, and structured query languages like XQuery.

Advantages of using native XML databases over other types of databases are

188

numerous. They free users from having to know document schema in advance (prior

to designing the database), they support data models that does not fit other databases

(e.g., relational databases), provide for extensibility, etc.

Common NXD applications include document management, support for semi-

structured data, support for sparse data, catalog data, manufacturing parts databases,

medical information storage, etc. [7]

4. XML QUERY LANGUAGES

A number of languages have been created for querying XML documents including

XML-QL, XPath, XQL, XQuery. Among them, XPath and XQuery are W3C candi-

date recommendations [10] and are used for retrieving and manipulating data from

most NXD implementations.

XML Path Language (XPath) is a language for addressing parts of an XML doc-

ument through hierarchical paths similar to those used for a filesystem or URL. It

provides built-in functions and is extensible regarding user-defined functions. XPath

operates on a single XML document.

Examples of XPath queries against the simple.xml document (”menu” document)

are the following:

a. /menu/food/name (selects all name elements that are children of food elements
that are children of the root element menu).

b. ///price (selects all price elements in the document).

c. /menu/* (selects all child elements of the root element menu).

d. /menu[@date] (selects the date attribute of the menu element).

e. //*[name()=’price’] (selects all elements that are named ”price”).

XML Query Language (XQuery) is an attempt to design a query language with

at least the functionality of SQL. XQuery is a functional language where each query

is an expression. XQuery expressions fall into seven broad types: path expressions,

189

element constructors, FLWOR expressions, expressions involving operators and func-

tions, conditional expressions, quantified expressions or expressions that test or mod-

ify datatypes. For example, a FLWOR expression is a query construct composed of

FOR, LET, WHERE, ORDER BY and a RETURN clauses, with obvious meaning.

XQuery supports broader manipulation of document nodes than XPath. The data

model of XQuery is also broader than that of XPath and operates on fragments of

documents, single XML document, sequence of documents, or sequence of document

fragments.

The following are some examples of XQuery queries and expressions:

a. path expressions: //food[name="Homemade Bean Soup"]/price * 100

(From our document containing the restaurant menu, extract the price in cents

of the food named ”Homemade Bean Soup”)

b. element constructors: {$name}

(Generate an element with the content which is specified by the variable that

obtained a value in other parts of the query)

c. FLWOR expressions:

FOR $b IN document("simple.xml")//food

WHERE $b/calories>"600" AND $b/price<"110"

RETURN $b/name

(List the names of all the foods with more than 600 calories and cheaper than
110 dinars).

d. conditional expressions:

FOR $h IN food

RETURN

<cheap>

{$h/name,}
IF ($h/price<"110")

THEN "cheap"

ELSE "expensive"

</cheap>

(Make a list of al the foods on the menu, with the mark ”cheap” if cheaper than
110 dinars, and the mark ”expensive”, otherwise).

190

e. quantified expressions: The SOME clause is an existential quantifier used for

testing if a series of values contains at least one node that satisfies a predicate.

The EVERY clause is a universal quantifier used to test if all nodes in a series

of values satisfy a predicate.

FOR $b IN //book

WHERE SOME $p IN $b//para SATISFIES

(contains($p, "sailing") AND contains($p, "windsurfing"))

RETURN $b/title

(For an XML document book, find titles of books in which both ”sailing” and
”windsurfing” are mentioned in the same paragraph [5]).

f. expressions involving user defined functions:

DEFINE FUNCTION depth($e) RETURNS integer

{
An empty element has depth 1

Otherwise, add 1 to max depth of children

IF (empty($e/*)) THEN 1

ELSE max(depth($e/*)) + 1

}
depth(document("partlist.xml"))

(declaration of a function which finds the maximum depth of a document $e,
and the function call for the document named ”partlist.xml.”).

g. Join queries may be formulated using nested for constructs. For example, if we

had, apart from the document simple.xml, two other documents, restaurant.xml

and serving.xml, the following query would find prices charged at specific

restaurant addresses:

FOR $x IN /menu/food

FOR $y IN /restaurant

FOR $z IN /serving

WHERE $x/name=$z/food name AND $y/name=$z/restaurant name

RETURN ($y/address, $x/price)

191

5. DATA-CENTRIC XML DOCUMENT EXAMPLE: PART EXPLOSION

PROBLEM

Given a manufacturing company database, there may be a data structure indi-

cating that certain parts include other parts as immediate components (the so-called

bill-of-materials relationship) [3]. Part explosion problem is a well known

problem recursively defined on this relationship: Get part numbers for all parts that

are components, at any level, of some given part, or of each part.

Original data may be represented in a relational database by the table part structure,

e.g.:
MAJOR P MINOR P

P1 P2
P1 P3
P2 P3
P2 P4
P3 P5
P4 P5
P5 P6

(Meaning of the data is that the part P1 includes the parts P2 and P3 as its immediate

components, that the part P2 includes parts P3 and P4 as immediate components,

etc).

The same data can also be represented by the following XML file part structure.xml.

<root>

<tuple>

<major p> P1 </major p>

<minor p> P2 </minor p>

</tuple>

<tuple>

<major p> P1 </major p>

<minor p> P3 </minor p>

</tuple>

. . .
</root>

The result of ”exploding” the initial part-structure data is the set of (MA-

JOR P, MINOR P) pairs represented by the following subparts list (pairs in the list

192

are numbered by numbers in parentheses):

MAJOR P MINOR P

P1 P2 (1)

P1 P3 (2)

P2 P3 (3)

P2 P4 (4)

P3 P5 (5)

P4 P5 (6)

P5 P6 (7)

P1 P4 (8)

P1 P5 (9)

P2 P5 (10)

P3 P6 (11)

P4 P6 (12)

P1 P6 (13)

P2 P6 (14)

5.1. PART EXPLOSION PROBLEM: RELATIONAL DB APPROACH

Departing from the relational representation of the initial data (part structure

table), one can create the resulting table subparts either by non-recursive or by

recursive SQL queries.

Non-recursive queries may be formulated first to copy initial data (from the

part structure table) into the subparts table (query I executing only once and

adding just direct subparts, resulting in first 7 pairs), and then to add indirect com-

ponents – subparts at consecutive levels (query II, executing as many times as there

are levels of indirection):

(I) insert into subparts

(select major p, minor p

from part structure);

(II) insert into subparts

(select distinct first.major p, p s.minor p

from subparts first, part structure p s

where subparts.minor p=p s.major p and

not exists(select *

from subparts

where major p=first.major p and minor p=p s.minor p));

193

In our example, the query II is executed twice, since there are two levels of

indirection, first adding pairs 8–12, and then adding pairs 13 and 14.

Recursive SQL statement that produces the same result (in the subparts relation)

in one execution is the following:

with subparts(major p, minor p) as

(select major p, minor p

from part structure

union all

select subparts.major p, part structure.minor p

from subparts, part structure

where subparts.minor p=part structure.major p)

select distinct major p, minor p

from subparts;

5.2. PART EXPLOSION PROBLEM: NATIVE XML DB APPROACH

In a native XML DB, the part structure.xml file is put into a container

part structure.dbxml, and subparts result is created and stored in the container

subparts.dbxml.

The non-recursive relational query (I) corresponds to the following XQuery state-

ment:

(I) putDocument

’for $p in collection ("part structure.dbxml") /root/tuple

return {$p/major p}{$p/minor p}’

The non-recursive relational query (II) corresponds to the following XQuery state-

ment:

(II) putDocument

’for $p in collection ("part structure.dbxml") /root/tuple

for $r in collection("subparts.dbxml")/tuple

where every $k in collection("subparts.dbxml")/tuple satisfies

not($k/major p=$r/major p and $k/minor p=$p/minor p)

and $r/minor p=$p/major p

return distinct-values({$r/major p}{$p/minor p})’

Recursive XQuery, corresponding to the recursive relational query, may be defined

using a recursive user-defined function of the following form:

194

declare function local:sub part($tuple as node())

as node()*

{
let $subID := $tuple/minor p/text()

for $subpart in $tuple/../tuple[major p=$subID]

return

($tuple/major p, if(exists($subpart)) then local:sub part($subpart) else ())

};

6. DOCUMENT-CENTRIC XML DOCUMENT EXAMPLE: SERBIAN

WORDNET

Serbian wordnet is a lexical-semantic network of Serbian language [6]. Its develop-

ment started in the framework of the BalkaNet project [8], successor of the Princeton

WordNet and EuroWordNet projects [9].

Wordnet is structured around the notion of synset (set of synonyms), reflecting

the synonymy relation. Nouns, verbs and adjectives are organized in sets of synonyms

representing individual lexical concepts. Each synset consists of one or more words

(literals), used in a specific sense, of the same part of speech, with meanings that may

be considered identical and are defined by a gloss. For example, a synset pertaining to

the computer file concept may consists of a literal file in the sense 2 (different senses

of the same literal string are numbered), but also of a literal data file in the sense 1,

with the noun part of speech and defined by the following gloss: set of records that

are stored together.

Different relations connect synsets (i.e., concepts). These are hypernym / hy-

ponym, near antonymy, holonymy / meronymy, being derived, be in state, causes,

being similar to, being a subevent, etc. Except for the synonymy relation, defining

the concept of a synset, the most important is the hypernym / hyponym (is-a) rela-

tion used for building a hierarchy of concepts (figure). Certain number of concepts

are on the top, not having hypernyms (the so-called ontological terms). For example,

there are 11 such noun concepts in (English) WordNet, such as entity, psychological

feature, abstraction, event, act, phenomenon, etc.

195

The Serbian wordnet (WNSRP) is an XML file containing more than 11000 synsets

at the moment, with about 10% of proper names. It gives rise to different applications

on texts (e.g., classification), relying on presence of certain ontology proper names.

An example of a synset from theWNSRP, corresponding to the deity (”božanstvo”)

concept, is the following:

<SYNSET> <ID>ENG20-08904620-n </ID> <SYNONYM> <LITERAL>bozxanstvo

<SENSE>1</SENSE><LNOTE>N330 </LNOTE> </LITERAL> </SYNONYM>

<DEF>Natprirodno bicxe koje se obozxava zbog verovanxa da upravlxa nekim

delom sveta ili nekim aspektima zxivota ili zato sxto personifikuje silu.

</DEF><POS>n</POS><ILR>ENG20-08903509-n<TYPE>hypernym </TYPE> </ILR>

<ILR>ENG20-07660421-n<TYPE>holo member</TYPE></ILR><BCS>1</BCS>

<STAMP>User 2004/01/07 </STAMP> </SYNSET>

The meaning of (some of) the elements is the following: ID is the synset identifier

unique across different languages, POS is the part of speech, ILR is the ID of a concept

(synset) related to this one by a relation of the type TYPE, etc.

Several tools have been designed for manipulating wordnets. One of them is the

VisDic [11] which supports choice of different languages, configuring wordnets for

selected languages, editing synsets or retrieving them in their hierarchical form, XML

form etc. Examples are presented for choice of English and Serbian, on figures and

, where figure represents a hierarchy of hypernyms for the synset ”Zeus”, through

eight levels, up to the ontology term ”psychological feature”, in English and Serbian.

Figure represents an expanded list of hyponyms of the concept ”Greek deity”.

Although basic wordnet representation is the XML one, different alternative rep-

resentations exist and some of them are implemented in some of the designed tools.

One of them is a relational representation comprising of several relations, such as the

following:

lemma pos (lemmano, posno, lastno)

lu lemma (lemmano, lemma)

lu pos (posno, pos)

lu relation (relno, relation, reverse)

sense (synsetno, lemmano, posno, senseno)

synset (synsetno, synsetid, base, posno, synset name, gloss)

synset relation (parentno, relno, childno, distance)

196

Figure 1: Hierarchy of hypernyms for the synset ”Zeus”.

Figure 2: An expanded list of hyponyms of the concept ”Greek deity”

Meaning of the attributes are the following: lemma is a literal (textual entry),

pos is part of speech, lemmano, posno, relno, synsetno, senseno, parentno are

197

numbers, in the corresponding ordering, of a lemma, part of speech, relation, synset,

sense etc.

Although relational representation of the WNSRP is obviously possible (with some

respects even more efficient), the structure of the document in a container stored in

a native XML DB, with synset as a basic node and a complete structure of elements,

is much more natural. Both representations may be queried using the corresponding

query languages (SQL, XQuery) in a very similar manner as for the part explosion

problem. For example, extracting all the Greek deities may be realized by the follow-

ing XQuery query:

’for $e in collection("wnsrp.dbxml")/ROOT/SYNSET

where $e/SYNONYM/LITERAL/text() = "grcyko bozxanstvo"

return

for $r in collection("wnsrp.dbxml")/ROOT/SYNSET

where ($e/ID/text() = $r/ILR/text())

return $r’

Creating the hierarchy of their hypernyms (up to ontology terms) may be realized

by repeatedly executing the following query (and adding the result to the container

hypernym):

’for $e in collection("hypernym.dbxml")/SYNSET

for $r in collection("wnsrp.dbxml")/ROOT/SYNSET

where every $k in collection("hypernym.dbxml")/SYNSET

satisfies not ($k/ID/text()=$r/ID/text()) and $e/ILR/text()=$r/ID/text()

return $r’

7. CONCLUSION

Native XML database is a practical concept addressing pragmatic issues such as

functionality, efficiency, expressiveness, and residing at the application side of data

modelling. Languages such as XML and XQuery implement a different way of rep-

resenting and querying a collection of data which is more flexible and less structured

than traditional relational data. XML and NXD tend to be a more ”practical” solu-

tion for data that are irregular, deeply hierarchical, and recursive, in lot of real world

198

documents. A pure relational model can be built as well as a relatively portable SQL

implementation, but a number of practical limitations are faced, such as multiway

joins, complex queries, etc. Native XML databases and XML itself allow one to work

with such data in a standardized, portable, and reasonably efficient way.

Acknowledgements: The work presented has been financially supported by the

Ministry of science and environmental protection of the Republic of Serbia, Project

No. 148021.

References

[1] B. Bos, The XML data model, http://www.w3.org/XML/Datamodel.html

(2005).

[2] R. Bourret, Going Native: Making the Case for XML Databases,

http://www.xml.com/pub/a/2005/03/30/native.html (2005).

[3] C. J. Date, An Introduction to Database Systems, 6th ed, Addison-Wesley Publ.

Comp (1995).

[4] M. Kay, Blooming FLWOR - An Introduction to the XQuery FLWOR Expres-

sion, http://www.stylusstudio.com/xquery flwor.html (2004).

[5] D. Obasanjo,.An Exploration of XML in Database Management Systems,

http://www.25hoursaday.com/StoringAndQueryingXML.html (2001).

[6] G. Pavlović-Lažetić, Electronic Resources of Serbian: Serbian WORDNET, 36th

International Slavic Conference, MSC, Belgrade, Serbia, september 2006.

[7] K. Staken, Introduction to Native XML Databases, http://www.xml.com/pub/

a/2001/10/31/nativexmldb.html (2001).

199

[8] S. Stamou et al., BALKANET: A Multilingual Semantic Network for Balkan

Languages, in: Proceedings of 1st International Wordnet Conference, Mysore,

India (2002).

[9] P. Vossen, ed., EuroWordNet: A Multilingual Database with Lexical Semantic

Networks, Kluwer Academic Publishers (1998).

[10] W3C XML Query (XQuery), http://www.w3.org/XML/Query/ (2005).

[11] http://nlp.fi.muni.cz/projekty/visdic/

