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Abstract. There are 17 theorems on characteristics of periodical solutions of the Hill’s
equation presented in this paper. These theorems were not presented either in the known
monograph of Magnus and Winkler [1], or in Kamke’s monograph [2], and [3].
An elementary approach to the most important equation in the oscillations theory – the
Hill’s equation, is given in this paper as opposed to the famous monograph [4] where the
problem of periodicity of solutions is treated by means of the Floquet theorem. The ap-
proach is based on simple yet in the literature inadequately emphasized features of period-
icity.
The particularly important question will be: when the integral of the only coefficient of
the equation

∫

b(x)dx is periodical, and when it is not. Depending on this, there are given
various conditions for existence of entire and discontinuous solutions of the equation (1).
We will not deal with the particular case of (1), the equation y′′ + (λ+Q(x)) y = 0, λ 6= 0,
where b(x) = λ + Q(x), and

∫

b(x)dx = λx +
∫

Q(x)dx is not periodical, a case especially
important for boundary problems solved by Floquet theorem in the way that there are two
series of constants for λ {λn}, and {λ′n}, whose alternating combination is crucial for the
stability of the solutions.
Therefore, the paper is more based on and related to quadratural aspects.



100

1. INTRODUCTION

The issue of the equation y′′+b(x)y = 0, especially if b(x) is a periodical function in

which case the equation is called the Hill’s equation, could not be considered totally

resolved, although its solving under general assumptions has lasted for 150 years

already; the issue of the harmonic oscillations y′′ + n2y = 0 is ever actual problem

dating from the very beginnings of differential and integral calculi, particularly in

practice.

In this paper we give some basically elementary theorems we have not met neither

in theory nor in practice, related to the form of general periodical solutions of the

Hill’s equation (formulae (16)).

2. FUNDAMENTAL THEOREMS

In the famous monograph [1], for the Hill’s equation

y′′ + b(x)y = 0. (1)

where b(x) is a periodical function, a great attention is paid to the issue of concurrent

existence of two linearly independent periodical and entire solutions with a common

period. The theory hitherto (the classical Floquet theorem [2]) as well as practice

had shown that (1) had only one periodical solution in a general case. That is the so

called problem of coexistence.

It is of crucial importance that all the solutions are periodical for the sake of

stability, since monotone solutions are likely to be unstable.

Unfortunately, the entire approach to this issue is not popular, due to its appara-

tus, for simple and technical practice.

We will try to give a simple and elementary approach to this issue, yet not any

less strict and general than the latter.

In order to accomplish this, we have to specify some of our fundamental theorems,

whose detailed exposure will be given at some other place.
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Theorem 1. (The Basic Theorem) In order to the differential equation (1)

have periodical solutions, the neccessary condition is that the coefficient is periodical

with the period ω:

b(x+ ω) = b(x)

The following classical (known) theorem is important for the above mentioned:

Theorem 2. For an integral of an analytic and periodical function to be a peri-

odical function

x
∫

0

p(x)dx = P (x), P (x+ ω) = P (x),

necessary and sufficient is that the following is valid for the Fourier sum of p(x)

p(x) = a0 +
∞
∑

1

ak cos kx+
∞
∑

1

bk sin kx: (2)

(i) a0=0

(ii) the sum
∞
∑

1

bk
k
is convergent .

For example,
∫

cosnxdx = 1
n
sinnx+C is a periodical function, while

∫

cos2 nxdx =

∫

1+cos 2nx
2

dx = x
2
+ sin 2nx

4n
+ C is not, as a0 =

n
2π

2π
n
∫

0

cos2 nxdx = 1
2
6= 0.

However, the theorem on periodical integrals of square of periodical functions is

also important, which has not been emphasized anywhere:

Theorem 3. Integral of square of an entire and analytical periodical function

∫

p2(x)dx

cannot be periodical.

We have not seen the proof anywhere; it is an elementary one (it exists most
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likely), and is based on the Fourier sum (2). From the sum there is

x
∫

0

p2(x)dx =

x
∫

0



a2
0 +

(

∞
∑

1

ak cos kx

)2

+

(

∞
∑

1

bk sin kx

)2


 dx+

+2a0

∞
∑

1

x
∫

0

ak cos kx+ 2a0

∞
∑

1

x
∫

0

bk sin kx+ 2
∞
∑

k=1

∞
∑

i=1

akbi

x
∫

0

cos kx sin ixdx

Calculations of the above integrals give, among the others, linear functions Ax+B,

which are not periodical.

The same is valid if p(x) is discontinuous with finite discontinuities of the first

order, when p2(x) is positive, and it has “removed” or “blank” points that do not

affect the integral.

However, this does not apply if p(x) is not analytical, having discontinuity in the

form of poles. For example, the following integrals of squared elementary discontin-

uous periodical functions are periodical:

∫

dx

cos2 x
=

∫ (

1

cos x

)2

dx = tanx+ C

∫

dx

sin2 x
=

∫ (

1

sinx

)2

dx = − cot x+ C
∫

dx

sinx
=

∫ (

1√
sin x

)2

dx =

∫

sinx

1− cos2 xdx = ln tan
x

2
+ C

∫

dx

cos x
=

∫ (

1√
cos x

)2

dx =

∫

cos x

1− sin2 x
dx = ln tan

(x

2
+
π

2

)

+ C

This is an important case for the Hill’s equation.

Of course, if we look at periodicity through several periodicity intervals

(0, ω) , (ω, 2ω) , (2ω, 3ω) ,..., (nω, (n+ 1)ω) ,

which only makes sense, then in the discontinuities of the periodical function p2(x)

the improper integral, in the sense of the Cauchy principal value, should be regarded.
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3. REDUCTION TO THE FIRST ORDER EQUATION

Let us go back to the equation (1). Substitution

y′

y
= z (3)

(y′ = zy , y′′ = z′y + zy′ = z′y + z (yz) = y (z′ + z2))

transforms the equation (1) to the Riccati equation of the first order

y
(

z′ + z2 + b(x)
)

= 0

and if the trivial solution y = 0 is neglected, we get

z′ + z2 = −b(x) (4)

If we are looking for a periodical solution y(x) of the equation (1), then according to

the Basic Theorem 1, b(x) must be a periodical function as well (or a constant). Yet,

since the first derivative y′(x) of a periodical function y(x) is a periodical function

as well, and since a quotient of two periodical functions is a periodical function too,

(3) implies that z(x) must also be a periodical function. Therefore, the problem

transforms to looking for periodical solutions of an equation of the first order – the

Riccati equation. Since the integration in (3) gives

dy

y
= z(x)dx, ln y =

∫

z(x)dx

y = e
∫

z(x)dx (5)

hence, in order y(x) to be periodical: z(x) must be periodical, and both
∫

z(x)dx and

e
∫

z(x)dx must remain periodical. For this, there is a need for some other theorems,

which we also have not met in the literature, and which we proved for this purpose.

Theorem 4. In order to the integral of a periodical function p(x)

x
∫

0

p(x)dx = P (x)
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make a periodical function too, it is necessary and sufficient that p(x) has zeros of an

odd degree within the interval of a single period (0, ω).

Theorem 5. The integral of any periodical function is in general case equal to a

sum of a linear function L(x) (monotone function) and a periodical function P (x):

x
∫

0

p(x)dx = L(x) + P (x) (6)

If the conditions of the theorem 4 are to be met, it implies from (6)

L(x) ≡ Const.

This means that a solution of the Hill’s equation, by means of Riccati equation of

lower order, can have the following form

y(x) = eL(x)+P (x) (7)

where linear function L(x) reduces to a constant. However, the exponential function

given in (7) is a positive function then, periodical though, without zeroes. It is the

case of a non-characteristic periodical function whose integral

I =

∫

e
∫

z(x)dx =

∫

eP (x)dx (8)

has no zeroes and is not a periodical function since it is monotone. Since it is not

periodical function, it is undesirable in the practice. This case is also resolved by one

of our theorems, which we have not seen in the literature:

Theorem 6. In order to an integral of type (8) determines a periodical and oscil-

lating function, it is necessary and sufficient that function P (x) within it represents

a logarithm of a periodical function Π(x):

P (x) = lnΠ(x)

i.e. from (8)
∫

z(x)dx = lnΠ(x);
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alternatively: the solution of the Riccati equation has to be a logarithmic derivative

of a periodical function

z =
Π′(x)

Π(x)
.

This means that the solutions of the Riccati equation which have zeroes and poles

and are periodical should be looked for.

Further, from (4) we get the normal form

z′ = −z2 − b(x)

implying

z(x) = −
∫

z2dx−
∫

b(x)dx (9)

Let us look for an entire (analytical) and periodical solution z(x), the one having a

Fourier sum of the type (2). The theorem 3 then implies that the integral of squared

function
∫

z2dx cannot be periodical. Let the coefficient b(x) be such that the integral
∫

b(x)dx

is periodical as well.

From (9) then implies

z(x) +

∫

b(x)dx = −
∫

z2dx.

On the left side there is a sum of two periodical functions, i.e. a periodical function

again; on the right side there is a non-periodical function, therefore this is not possible.

From this discrepancy it could be seen that the Riccati equation does not have an

entire and periodical solution z(x), and since (5) implies that the solution of (1) y(x)

is entire as well if z(x) is entire, therefore the Hill’s equation does not have an entire

and periodical solution in this case. From above it is implied:

Theorem 7. If the periodical coefficient in the Hill’s equation (1) has the feature

that its integral
∫

b(x)dx is also a periodical function, then the Hill’s equation cannot

have entire periodical solutions, i.e. solutions having a convergent expansion into

Fourier sum.
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4. CONSEQUENCE - TWO APPROACHES TO RESEARCH OF HILL’S

EQUATION

There are only two possible cases left:

(i)
∫

b(x)dx in (9) is aperiodical

(ii) z(x) is not an entire and periodical function at all, i.e. the theorem 3 is not

valid for
∫

z2dx – it is possible that integral of squared periodical function is a peri-

odical function too (see the examples at the beginning). z(x) is then a meromorphic

function with poles.

4.1.
∫

b(x)dx IS APERIODICAL

So that the function z(x) in (9) is to remain periodical, the periodical coefficient

b(x) must have a feature that the cause of non-periodicity in
∫

z2dx cancels with

the cause of non-periodicity in
∫

b(x)dx. According to the theorem 5, the causes of

non-periodicity are some linear functions, defined with (6). There is

z(x) = − (L1(x) + P1)− (L2(x) + P2) ,

and so that z(x) can be periodical, there must be

−L1(x) = L2(x).

Since in

−
∫

z2(x)dx = −
∫

[

a0 +
∑

ak cos kx+
∑

bk sin kx
]2

dx

the linear member must begin as −a2
0x, and if L2 is a linear function

L2(x) = kx+ C2,

it implies that −a2
0 = −k, that is k must be positive, whereas C1 and C2 are not

important for periodicity of P1 and P2. Accordingly, the following must be valid

−
∫

b(x)dx = −kx− C2

−
∫

z2dx = −a2
0x+ C1
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implying

b(x) = k + P ′1(x) (10)

z2(x) = a2
0 + P ′2(x)

where k depends on the Fourier coefficients in the like (2) expansion of b(x), with the

like (i) and (ii) conditions of the same theorem 2 applied

k = k (an, bn)

a2
0 is also dependant on the like Fourier coefficients for

∫

z2(x)dx, in accordance with

the theorem 3:

a2
0 = a2

0 (An, Bn) ,

where, in order to cancel aperiodicity due to monotone linear functions in (9), a

relation of the following type must apply

a0 (An, Bn) =
√

k (an, bn)

where k and a2
0 are the starting coefficients in related like (2) Fourier expansions for

b(x) and z2(x), and their integrals. The functions P ′1(x) and P ′2(x) are derivatives

of periodical functions, consequently having no additive constants. Therefore, the

following theorem applies

Theorem 8. The Hill’s equation (1) with a periodical coefficient b(x) could have

entire and periodical solutions, if the relations given above apply for the Fourier co-

efficients (an, bn) of the given periodical function b(x) and the unknown coefficients

(An, Bn) of entire and periodical solution of the auxiliary Riccati equation (4), the

function z(x).

If z(x) is entire function and represents a periodical solution, (5) implies that

the solution of the Hill’s equation is entire and periodical as well, for z(0) = 0 (i.e.

y(0) 6= 0 and y′(0) = 0).



108

Example 1. The equation y′′+(sin x) y = 0 has related Riccati equation− sin x =
z′ + z2 wherefrom through its first integral

cos x− z =

∫

z2dx

the following is concluded: if z is a presumed entire and periodical solution, then
∫

z2dx cannot be entire and periodical (according to the theorem 3), and the last

equality is not possible. It implies that the equation has no entire and periodical

solution.

Theorem 9. The Hill’s equation

y′′ + (K +Q′(x)) y = 0 (11)

where Q′(x) is a derivative of a periodical function (implying that it has no additive

constant), could have entire and periodical solutions.

Theorem 10. The Mathieu equation

y ′′+(a+ b cos 2x) y = 0

beside the trivial case a = n2, b(x) = 0 (which makes up for ordinary harmonic

oscillations), could have other periodical solutions as well.

This is the basis for expansion of Mathieu functions in the famous monograph [5].

There remains only one logically possible case, discussed below.

4.2. THE SOLUTION OF THE RICCATI EQUATION (4) IS NOT BOTH

ENTIRE AND PERIODICAL

This means that there is no convergent trigonometric series for z. Therefore, might

be a meromorphic solution. In order to obtain it, let us start with the boundary case

in (11), from which aperiodicity of
∫

b(x)dx starts, in case if Q′(x) ≡ 0. There remains
b(x) = K. The boundary Riccati equation then writes

z′ + z2 = −K.
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Variables may be split in it:

z′ = −z2 −K,
dz

−K − z2
= dx

and its solution could be acquired through integration. The integration gives period-

ical function if K is a positive constant only: K = n2 (if K < 0 then the solution is

monotone). Now we get

1

n
arctan

z

n
= −x+ C,

wherefrom

z = n tan (nC − nx) ,

which is a non-entire solution of the Riccati equation, since it has poles. In this case

the corresponding solution of the Hill’s equation writes (according to (5))

y1 = e
∫

zdx = e
∫

n tan(nC−nx)dx = e
∫

n
sin(nC−nx)
cos(nC−nx)

dx = cos (nC − nx)

The second solution y2 of the Hill’s equation, which now has the form y′′+n2y = 0,

is easily determined by the substitution y = y1W , and it writes y2 = sin (nC − nx).

The general solution, after simple transformation, writes

y = C1 cos x+ C2 sinx.

Thus, in a boundary case of the loss of periodicity for the coefficient b(x), when

b(x) = n2, the Riccati equation has a periodical and discontinuous solution, and since

the integral (5) converges in that case, the Hill’s equation has an entire and periodical

solution. In any other case of a periodical coefficient b(x) in (10) the equation (1)

could have a periodical solution, but it must not be entire one. There are the following

theorems implied:

Theorem 11. The Hill’s equation (1) has an entire and periodical solution if

b(x) = n2 is a positive constant, and in that case (1) is a constant coefficients equation,

determining harmonic functions.:
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Theorem 12. If b(x) is a discontinuous and periodical coefficient, then the Riccati

equation (4) might have periodical solutions, if the improper integral

v.p.

ω
∫

0

b(x)dx

exists in the sense of the principal value.

Theorem 13. The Hill’s equation (1) could have only discontinuous periodical

solutions if b(x) is a discontinuous and periodical coefficient.

5. AUXILLIARY THEOREMS AND THE FORM OF GENERAL SOLUTIONS

We will use the common classical theory of Liouville. It is known for the equation

y′′ + a(x)y′ + b(x)y = 0 (12)

that two linearly independent particular integrals must be found in order to solve it:

y1(x) and y2(x) = y1(x)

∫

1

y2
1(x)

e−
∫

a(x)dxdx. (13)

Our special demand is that the both of them are periodical. Since for the Hill’s

equation (1) a(x) = 0, and the Liouville’s formula

a(x) = −dW/dx

W

applies as well, where W =W (x) =W (y1, y2) is the Wronskian of the equation (12),

therefore it is valid for (1):

dW

dx
= 0, W = C = 1 (without loss of generality).

Now the formula (13) for y1 writes more simply

y2(x) = y1(x)

∫

1

y2
1(x)

dx
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and an integral of the theorem 3 type appears. Therefore the integral must be peri-

odical, i.e.
∫

1

y2
1(x)

dx = π(x) = a periodical function.

From the latter we get 1
y2
1(x)

dx = π′(x), or

y1(x) =
1

√

π′(x)
(14)

and finally

y2(x) =
1

√

π′(x)
π(x) (15)

a special form of periodical solutions of the Hill’s equation.:

Theorem 14. The Hill’s equation has a specific and simple form of solution in

the sense of periodicity of both linearly independent particular integrals:

- one of the integrals is a reciprocal of a square root of derivative of a periodical

function

- the second integral is the product of the periodical function and the above first

integral.

Now, from (14) and (15), we have a simple form of general solution of the Hill’s

equation (1) when the both integrals are periodical:

y(x) =
1

√

π′(x)
(C1 + C2π(x)) . (16)

Remark 1. Since it must be that π′(x) 6= 0, i.e. π(x) 6= Const, hence the trivial

solution of the equation (1) y = 0 is obtained only for C1 = C2 = 0. Besides, it

cannot be π′(x) = Const, because of π(x) = Cx, and it is not a periodical function.

Therefore, the derivative π′(x) must be an effective periodical function without an

additive factor: π′(x) 6= C + P (x); otherwise it would be π(x) = Cx +
∫

P (x)dx, a

non-periodical function. It implies that π′(x) = Const or π′(x) = 0 is a boundary

case between periodicity and non-periodicity of solutions.
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Remark 2. It is obvious from the form (14) that if π(x) is an entire function, then

π′(x) is also entire function and it must have zeroes, and the solution most commonly

have discontinuities.

Remark 3. Where is the place of the most important periodical functions – the

simple harmonic oscillations? As seen, they are determined for b(x) = Const, and

their Hill’s equation writes y′′ + n2y = 0.

Let it be in π′(x) = 1
cos2 x

our solution (16). Then 1√
π′(x)

= cosx. π(x) itself is tan x.

The general solution is obtained from (14):

y = cos x (C1 + C2 tanx) = C1 cos x+ C2 sinx.

Remark 4. In a similar fashion, we could obtain many other entire and periodical

solutions.

The following theorems could be easily proved.

Theorem 15. Every first order zero of the solution y1 gives a first order pole of

the coefficient b(x).

Theorem 16. Every second order zero or first order pole of the solution y1 gives

a second order pole of the coefficient b(x).

Those theorems of recognition are important for practice. By them, a form of

solution is constructed, and looked after exactly afterwards.

Theorem 17. (The second Liouville formula for Hill’s equation) There is

the following relation between the solution y1 and the coefficient b(x):

y1(x) =

∫

√

b(x)

π′(x)
dx

where π(x) is a periodical function.
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6. ACTUAL ELEMENTARY EXAMPLES

Example 2. Consider a Hill’s equation with discontinuous coefficient

y′′ +
1

4

(

1 +
1

sin2 x

)

y = 0

The theoretical form of general solution, the addend 1
sin2 x

and the known trigono-

metric relation between sinx and cotx: 1 + cot2 x = 1
sin2 x

suggest that a particular

integral of the type

y1 =
√
sinx

should be looked for. The direct test proves that it is a solution of the equation. The

common procedures then give the second solution:

y2 =
√
sin x ln cot

x

2
,

and the general solution is:

y =
√
sin x

(

C1 + C2 ln cot
x

2

)

.

The solution is periodical. Therefore, y1 and y2 are in a periodical coexistence.

The corresponding Riccati equation (4) writes

P ′ + P 2 = −b(x) = −1
4

(

1 +
1

sin2 x

)

Its solution is not evident. However, from (5)

y1 = e
∫

Pdx =
√
sin x,

wherefrom
∫

Pdx = ln
√
sin x and P (x) =

1

2
cot x.

Example 3. Consider a Hill’s equation with discontinuous coefficient

y′′ − 3

sin2 x cos2 x

(

1

4
+ sin2 x

)

y = 0.
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The corresponding Riccati equation (4) writes

P ′ + P 2 = −b(x) =
(

3

sin2 x
+

3

cos2 x

)

and suggests that a periodical solution should be looked for in the form α
sin 2x

+β. We

find α = 3, β = 0, and P (x) = 3
sin 2x

. From (5), one solution is

y = e
∫

3
sin 2x

dx = e
3
2

∫

dx

sin x cos x = e
3
2

∫

dx

cos2 x
tan x = e

3
2

∫

d(tan x)
tan x = e

3
2

ln tanx = eln tan
3
2 x =

√
tan3 x.

The second solution is easily obtained in a common way, as well as the general solution

y1 =
√
tan3 x

(

C1 + C2

(

ln sinx+
1

2 sin2 x

))

.

The solution is periodical, and the periodical solutions y1 and y2 are in coexistence.

Example 4. The Hill’s equation

y′′ −
(

cos x+ sin2 x
)

y = 0

has the corresponding Riccati equation

P ′ + P 2 = −b(x) = cos x+ sin2 x

where P (x) should be a periodical function. It is obvious that it is valid to write

P = sinx, P 2 = sin2 x, P ′ = cos x. Therefore, one solution is, according to (5),

y1 = e
∫

Pdx = e− cosx. The second solution is y2 = y1

∫

1
y2
1
dx = e− cosx

∫

e2 cosxdx, and

it is not periodical since e2 cosx has no zeroes, and its integral is monotone, i.e. the

integral cannot be a periodical function. The solution is entire and non-oscillating

y = e− cosx

(

C1 + C2

∫

e2 cosxdx

)

.

This complies with our theory in the case 4.1., that is if b(x) is entire function and
∫

b(x)dx is non-periodical (as in this case), the general solution of (1) cannot be

periodical.

Thus, there is no coexistence of periodicities. One solution is periodical, entire

and elementary, and positive. The other solution is non-periodical, non-elementary,

and positive.
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Example 5. The Hill’s equation

y′′ − 2

cos2 x
y = 0

has the coefficient

b(x) =
2

cos2 x
= −

(

1

cos2 x
+

1

cos2 x

)

= −
((

1 + tan2 x
)

+ tan′ x
)

,

that differs from the condition (4) for a single one. However, this still suggests

checking if y1 = tanx is a solution. It is easily confirmed. By means of Liouville’s

formula y2 is obtained

y2 = y1

∫

dx

y2
1

= tanx

∫

dx

tan2 x
= tanx

∫

cos2 x

sin2 x
dx = tanx

∫

1− sin2 x

sin2 x
dx

= tan x

(∫

dx

sin2 x
− x

)

= tanx (− cot x− x) = −x tan x− 1

The general solution is

y = C1 tanx+ C2 (x tanx+ 1) ,

and is not periodical, since the quadrature in y2 is non-periodical:
∫

dx
tan2 x

. One class

of the solutions is periodical, the other one only oscillating.

The solutions are not in coexistence.

7. APPLICATIONS

The Hill’s equation has been treated in several hundreds papers in mathematics

and especially its applications in almost all of the natural sciences and engineering

fields. According to [1], about 300 mathematical papers, and more than 700 applica-

tions had been published until 1965.

Thus, it would not be possible nowadays to collect all the literature without a

widely organized venture, which could not be carried by individuals.

Let us mention only a few applications:
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- Astronomy, Mechanics

- Physics, Engineering

- Theory of Electrical Circuits

- Metal Conductivity

- Cyclotron

Example 6. Pulse function. Related to a quantum theory problem (an electron

in one-dimensional conductor), Kronig and Penney [6] were solving a special form of

Hill’s equation

y′′ + (λ+Q(x)) y = 0

where Q(x) is a periodical function with the features:

(i) Q(x) = −U0, −b < x < 0

(ii) Q(x) = 0, 0 < x < a

(iii) Q(x+ c) = Q(x), c = a+ b

Example 7. Equation of Frequency Modulation [7]

(1 + a cos 2x) y′′ + λy = 0

|a| < 1 and λ ∈ R (b(x) is quotient in this case).
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