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Abstract. Let E be a real uniformly smooth Banach space, T : E — FE be a generalized
Lipschitzian and ®-strongly accretive mapping. It is shown that under suitable conditions
the Ishikawa iterative process converges strongly to the unique solution of the equation
Tx = f. A related result deals with approximation of the unique fixed point of a generalized
Lipschitzian and ®-strongly pseudo-contractive mapping.

1. INTRODUCTION

Let E be real Banach space and E* be the dual space on E. The normalized
duality mapping J : E — 2" is defined by

Jr=A{f € E" :<x f>= |l [Ifll = I/II} (1)

!The author was supported by the National Science Foundation of China and Shijiazhuang Rail-
way Institute Sciences Foundation.
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for all x € E, where < -,- > denotes the generalized duality pairing. It is well known
that if £ is an uniformly smooth Banach space, then J is single-valued and such
that J(—z) = —J(z), J(tz) = tJ(x) for all z € F and ¢t > 0; and J is uniformly
continuous on any bounded subset of E. In the sequel we shall denote single-valued
normalized duality mapping by j. By means of the normalized duality mapping J.

In the following we give some concepts.

Definition 1.1. A mapping T with domain D(T) and range R(T') in E is said
to be strongly accretive if for any x,y € D(T), there exist a constant k € (0,1) and
jx —y) € J(x —y) such that

<Tz—Ty,jx—y)>>kllz—y|* (2)

The mapping T is called ®-strongly accretive if there exists a strictly increasing func-

tion ® : [0,00) — [0,00) with ®(0) = 0 such that the inequality
<Tx =Ty, jlx—y) >= |z —yl)llz -yl (3)

holds for all x,y € D(T). It is well known that the class of strongly accretive mappings
is a proper subclass of the class of ®-strongly accretive mappings(see [1]). On the
other hand, closely related to the class of accretive type mappings are those of pseudo-

contractive mappings.

Definition 1.2. A mapping T : D(T) C E — E is called strongly pseudo-
contractive if and only if (I —T) is strongly accretive, and is called ®-strongly pseudo-
contractive if and only if (I —T) is ®-strongly accretive, where I denotes the identity

mapping on E.

The classes of mappings introduced above have been studied by several authors.
In [2], Chidume proved that if E = L,(or I?), p > 2, K is a nonempty closed convex
and bounded subset of F and T : K — K is a Lipschitz strongly pseudocontractive
mapping, then Mann iteration process converges strongly to the unique fixed point
of T. In [3], Deng extended the above result to the Ishikawa iteration process. After
Tan and Xu [4] extended the results of both Chidume [2] and Deng [3] to g-uniformly
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smooth Banach spaces(1 < ¢ < 2). Recently, Osilike [1] proved that if ¢ > 1, E is real
g-uniformly smooth Banach space and T': F — FE is a Lipschitz ®-strongly accretive
mapping and equation T'r = f has a solution, then both the Mann and Ishikawa
iteration sequence converges strongly to the solution. It is our purpose in this paper
to generalize and extend the results of [1] from Lipschitz mapping to generalized
Lipschitzian, from g-uniformly smooth to uniformly smooth.

For this purpose, we need to introduce the following concept and some related

Lemmas:

Definition 1.3. [8] A mapping T : D(T) C E — E is called a generalized Lips-

chitzian if there exists a constant C > 0 such that
[Tz —Ty|| < C(1+ ||z —yl) (4)

holds for all x,y € D(T). Clearly, every Lipschitz mapping is a generalized Lip-
schitzian, and every mapping with a bounded range too. Conversely, in general, a
generalized Lipschitzian mapping neither is Lipschitzian nor the bounded range. (see,

for example[8])

Lemma 1. 4. [7] Let E be a real Banach space, then there exists j(x+y) € J(x+y)
such that
lz +yl* < llz)* +2 < y,j(z +y) > (5)

for any x,y € E.

Lemma 1.5. Let E be a real Banach space, T : E — E be continuous ®-strongly
pseudo-contractive mapping with ®(t) — +oo as t — +oo. Then, for any given
f € E, the equation x = f + Tx has the unique solution in E.

Proof. We choose a positive real number sequence {t,,} -, with t,, — 0 asn — oo.

oo
n=0"

Define an operator sequence {7}, } where T, : F — E by T,x = t,x +x — Tx, for
any n > 0 and x € E, then T, must be continuous strongly accretive mapping in F
for any n > 0. Thus, for any f € E, the equation T,,x = f has the unique solution,

denote y,, i.e. t,y, + vy, — Ty, = f, where n =0,1,2,.... It yields that

tnYn — toYo + Yn — Yo +Tyo — Ty, =0
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so that
< tptn —toyo + (I = T)yn — (I = T)yo, j(yn — yo) >= 0,

which implies that
< (I =T)yn — (I =T)yo, 5(Yn — 90) >= ~tallyn — voll*~ < tayo — toyo, j (Y — y0) > -
Since (I — T) is ®-strongly accretive mapping, then we have

v — Yol ®(lyn — woll) < —tallyn — vol>— < taYo — tovo, 5 (Yn — Yo) >

IN

— < tw¥o — toYo, J(Yn — Yo) >

< tn = tol - 1ol - llym — woll,

and this implies that
(llyn = woll) < [tn —tol - Iy,
le.
(1yn = woll) < @7 (It — tol - lwoll)-
Since t, — 0 as n — oo, it is easily seen that {y,} -, is bounded. Therefore

Yn — Ty, — f as n — oo. Since (I — T) is $-strongly accretive mapping, we obtain

that

| = TYn) = Y = TY)| - Nt —Umll = < T =Ty — (I = T)Ym, j(Yn — Ym) >
> D([lyn — ymll) - N1yn — Ymll,

ie. [[(yn = Tyn) = Wm — TYm) | = 2(yn — ymll), then {y,},, is a Cauchy sequence,
there exists y € F such that y, — y as n — oo. By using continuous of T" such that
y = f 4+ Ty. About uniqueness of solution, we may get it by applying definition of

d-strongly accretive mapping. The proof Lemma is completed. a

Remark 1.6. In Lemma 1.5, if f = 0, then the mapping 7" has the unique fixed

point.

Remark 1.7. In Lemmal.5, suppose T : F — FE is a continuous ®-strongly

accretive mapping, then the equation Tx = f has unique solution in E.
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2. MAIN RESULTS

Now we prove the main the results of this paper, In the sequel, we always assume

that E is a uniformly smooth real Banach space.

Theorem 2.1. Let E be a real uniformly smooth Banach space, andT : E — F is
a continuous and generalized Lipschitzian ®-strongly accretive mapping with ®(t) —
400 as t — +oo. Let {a,} - jand {B,},—, be two real sequences in [0, 1] satisfying
the following conditions: (i) au, B, — 0 as n — oo; (ii) § oy, = 00. For any given
f € E, define a mapping S : E — E by Sx =x—Tx+ f, 7}:1(1 allx € E. The Ishikawa

iterative sequence {x,}. ., generated from an arbitrary o € E by (IS)

(6)

Yn = (1 - 611)'7% + ﬁnsxny n = 07
Tpr1 = (1 —ap)x, + Sy, n>0.

Then the sequence {x,} -, converges strongly to the unique solution of the equation
Tx=f.

Proof. By Remark 1.7, we know that the equation Tx = f has the unique solution
in F, set q. Since T is generalized Lipschitzian ®-strongly accretive mapping, then

for any x,y € E such that the following inequalities hold:
1Sz — Syll < L1 + ||z — yl)), (7)

and

< Sz — Sy, J(x —y) >< ||z —y|> — (lz — y|)[lz — . (8)

Set A, = || J(2=1) — J(=—L0)||, B = ||J(32L) — J(=2—L-)||. Observe

I+lzn—qll 1+ [lzn—qll 1+ lzn—qll I+|lzn—qll
lZn+1—qll 2 _lzn—ql lyn—all : :
that o < 1+ 2L+ 2L°, T ol < 1 and T ol < 1+ 2L. It is easily

obtained that, in view of the uniform continuity of J on any bounded subset of F,
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A, B, — 0 as n — oo. Using Lemma 1.4, (7) and (8), we computer as follows:

[EmE

= [[(1 = an)(@n — @) + o (Syn — Sg)|1?

< (1—an)?|zn — ql]? + 20 < Syn — Sq, J (X1 — q) >
< (1= an)?wn —ql* + 20 < Syn — Sq, J (Y — q) >
20, < Syn — 5¢, J(Tn11 — q) — (Yo — @) > (9)
< (1= an)?llzn = ql* + 2an([yn — qll? = 2(yn — al) lyn — all)
+200 < Sy — Sq. (=) — J (a5 D > U+ flzw — qll)
< (1= an)?lon —ql* + 200 (llyn — all* = 2(lya — alDllyn —all)

+20, A L(1 4 [[yn — all) (1 + [lzs — ql])-

Furthermore, observe that

20, Ay L(1 + ||y — )1 + ||z — )
< 20, A, L(1 + B, L)(1 + ||lzn — ql])? (10)

Again using Lemma 1.4, (7) and (8), we obtain

Y — g

IAINA

IN

IN

IA

IA

(1= 80)? |20 — all* + 28, < Sz — Sq, I (yn — q) >

(1 = Bn)*llzn — qlI* + 26, < Szn — 5S¢, J(yn — @) — J (20 — q) >
+206, < Sz, — Sq,J(x, — q) >

(1= Bu)?llzn — qll* + 260 < Sz — Sq, I (120) — T (L) >
X (L4 [lwn = qll) + 28u (20 — al* = @(lzn — gl]) 1z — l|)

(1 + B)llwn — ql” + 28, L(1 + lz — gll) Bu(1 + [z — qll)
—=26,2(||zn — gl |z — all)

(L+B2)zn — all® + 48, BoL(1 + ||z, — q[?)

—263,®(|zn — ql) |z — 4l

(1+ 32 +4LB,By) |0 — gl?

+4LB, By, — 26,2([|zn — gl |20 — 4l

(11)
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Substituting (10) and (11) into (9) yields that
[zn41 — all?

< (L= an)’llen = all* + 200 ((1 + B2 + 4LB, By l|2n — gl®

+ALGn Br = 26, ® ([l — qlDllzn — qll = 2([lyn — alDllyn — 4ll)
+205, A L(1 + B L) (1 + [|lzn — ql|*) (12)
(1+ 02 + 20032 + 8Ly B, By + 200, Ay L(1 + 3,L)) |2 — ql?
+203, A0 L(1 + Bo L) + 8Low 33 Br — 2000 ®(||ym — all) 1y — all)

< lon = qll* + 200 Chllzn — ql1* + 200(Dn = 2(llyn — al)llgn — all)

where C,, = o, + 32 +4L3, B, +A,L(1+3,L), D, = A, L(1+3,L)+4L3,B,. Base on
(8), we have < z— Sz, J(xr—q) >> ®(||z—ql|)||z—q||, Vx € E, thus ||z—Sz||-||lx—q| >

IN

O (||z — q|))||lz — ¢||. Hence ®(||z — q||) < ||z — Sz|. At this point, we may choose any
xo € E such that ||xg — Sxo|| # 0, i.e. xg # ¢.(Ifxg = ¢, then conclusion of Theorem

is obvious.) so we obtain ||zg — ¢|| < ®7(||zg — Sxl|). Since ay,, 3, — 0 as n — oo,

>~ ([|lzo—Szo) B, <
2(14+L+L2)®1(|[zo—Szo||)+L(1+L)* =7
& L(||lzg—Sa _
o(2—U2g=5200)) g1 (o —Swoll)
I .

then there exists an integer N such that «, <

2((1+;:I>1_(gaTﬁl;)S—?ﬂ3\\)+L)’ Cr(227 (|lmo — Swol]))? + Dy <
for all n > N. Suppose ||zn — q|] < 207 (]|zg — Sx¢l),by the mathe induction, we
want to show ||zy11 — q]] < 2071(||xg — Szol|). If not, we assume that ||zy, 1 — q| >
20" |z — Szol)).

Using (6) and the above formule, we obtain the following inequalities

|lzn — Syn|

lzn — g+ Sq— Synl|

len — gl + L1 + llyx — qll) (13)
< 207 ([|lwo — Swoll) + L(L = By + Bn L)y — qll + L(1 + By L)

20+ L+ L)@ (|lwo — Sxol|) + L(1 + L),

IN

IN

and get also

len —ql = (1 —oan)|lzy —qll
> |lens —qll — anllen — Syn|
> 207 Y(||z — Szol|) (14)
—an(2(1+ L+ L?)®(||wg — Szo|)) + L(1 + L))
> @7H([lzo — Smol)),
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lyv —all = (1= 0n)lley — gl = On L1+ lzy —ql])
= (1=Py = BnL)llzy —qll = BrL (15)

> ‘1>_1(||$3—T10||)

Thus &(|yx — gl})lyw — gl| > ®(T—eg=Teoldy 2 UreTorol) - Using (12) and above

formula, we have

IN

loy = all* + 208 (Cxllzx — all* + Dy — 2(lyx — all)llyw — all)
7 (flo — Two\l))¢>‘1(\\$o — T'zol])

2 2
< ax —all* < 227 ([lzo — Twol])*

-1 — qll”

< oy —q|> — an®(

contradicting with assumption. Hence ||zni1—¢|| < 297 (||xo—T'xol|) holds, {||z, — ql[}or,
is bounded, so that {||y, — q||},—, is also bounded. Set W = sup {||z,, — ql| + |lv» — ¢l|},
E,=C,W?+ D,. Then,

|2ps1 — q|?
< ||z — q|? + 200 (E, — @(||yn — gl |1y — all) (16)
= l|zn — qlI* + an(2En — @(lyn — al)llm — all) — an®(|lyn — al)llyn — al)-

Hence, lim inf llyn — q|| = 0 holds. Suppose this is not true. Let lim inf lyn — ¢l =
25 > 0. Then there exists an integer N; such that ||y, — ¢|| > 9, for all n > Ny, i.e,
S(||yn —al)llyn —ql| = P()d. Since E,, — 0(n — o0), there exists an integer Ny > Ny
such that E,, < ®(0)d for all n > Ny, thus E, < ®(||y, — ql|)||y» — ¢||- Hence, for all
n > Ny, we obtain that

IN

20 — qll* = @ ®(|yn — al]) lyn — 4ll)
2, — q|* — an®(8)d,

|1 — glf?

A

which implies that

®(0)6 > ay < lon, —ql]’ < oo
n=Ns

which is a contradiction and so § = 0. Consequently, there exists a subsequence
{ynj — q}oo of {yn, — ¢} —, such that lim ||y, —q|| = 0, and so there exists an infinite
J=0 - j—o0 7

subsequence {xnj — q}?oo such that lim ||z, —¢|| = 0. Let € > 0 be any given, Jjo
: j= j—00



211

such that, for all n; > nj,, ([0, —qll <&, an, (LW + L) < $, 8, < smrriwis-

choose an integer Ny > nj, such that £, < ®(5)% for all n > N,. By induction, we

Again

want to prove||z,, .m — ¢l < &, for all Vm > 1. We first prove that ||z, 41 —¢| <e.
Suppose this is not ture. Then 3n;, > ny,, such that ||z, 11 — ¢l > . Using (6), we

have

20,11 = qll < (1=, )ln;, — gl + an,, [1Syn;, — Sl
< (1= an,)llzn,, —all + o, (Lllyn,, —aqll + L)
< lwny, —all + any (LW + L)
<

£
||x77»j1 - QH + Z
thus [|z,, — qll > |20, +1 — qll =5 > 2. By (6), we obtain

Hynjl - QH 2 (1 - /6nj1>Hxnjl - qH - anl (LHxnjl - QH + L)
— ||xnj1 - q” - (/BTLJ'1 +/8’1’L]'1 L)”xn“ - QH - /anlL

3¢
> Z o (B"h +6"J’1L)W_ﬁnj1L
s £

5"

Thus, ®([|yn,, — ql)llyn,, —all > ®(5)5. Applying (16) and the above form, we obtain

e < w11 —qlf
< Naw,, = all” + 20, (Bny, — @(yn,, — alDllym,, — all)
< €420, (9(5) - 2(5)3)
= % — anhcb(%)g
< €

contradiction. Hence the conclusion holds for m = 1. Assume now it holds for m.
Following the above argument, we easily proves that it holds for m + 1. This shows

that {z,} -, converges strongly to ¢ as n — oo, completing proof of Theorem 2.1.0

Theorem 2.2. Let E be a real uniformly smooth Banach space, and T : F — FE

1s a continuous and generalized Lipschitzian ®-strongly pseudo-contractive mapping
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with ®(t) — +o00 ast — +oo. Let {a,} -, and {B,},—, be two real sequences in
0, 1] satisfying the following conditions: (i) au,, 3, — 0 as n — oo; (ii) Z a, = 00.
The Ishikawa iterative sequence {x,} -, generated from an arbitrary E E by (1S)

Tor1 = (1 —ap)x, +a,Tyn, n>0.

Then the sequence {x,},, converges strongly to the unique fized point of T'.

Proof. Using Lemma 1.5, we know that the mapping T has unique fixed point,
let ¢ denote the fixed point. Since T is a continuous and generalized Lipschitzian
®-strongly pseudo-contractive mapping, then the conclusion of Theorem 2.2 follows

exactly from Theorem 2.1. This completes the proof. O
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