
141

Kragujevac J. Math. 29 (2006) 141–150.

THE SPECIAL FUNCTION �� , II

Andrea Ossicini

FINSIEL - Consulenza e Applicazioni Informatiche SpA,
Via delle Azzorre 352-D2, 00121 Roma, Italy

(e-mail: a.ossicini@finsiel.it)

(Received September 08, 2005)

Abstract. We describe a method for estimating the special function �� , in the complex

cut plane A = C\ (−∞, 0], with a Stieltjes transform, which implies that the function ��
is logarithmically completely monotonic. To be complete, we find a nearly exact integral
representation. At the end, we also establish that 1/ �� (x) is a complete Bernstein function
and we give the representation formula which is analogous to the Lévy-Khinchin formula.

1. INTRODUCTION

In [8] the author introduces a new special function, named with the Arabian letter1

��, and proves that this is logarithmically convex and completely monotonic for all

the closed real intervals I` with ` = 1, 2, 3, ... .

The explicit formula of the special function �� , in the discrete field, is:

�� [k, Ω (I`)] =

(
1 +

1

3k − Ω (I`)

)2k+1

(1)

1The letter �� (shin) is the thirteenth letter of the Arabian alphabet.
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where is always valid the following boundary2:

�� [k, Ω (I` − 1)] ≺ 2 ≺ �� [k, Ω (I`)] with Ω (I`−1) = Ω (I`)−1 ; ∀ I` , k, ` ∈ N

The auxiliary integer function Ω(I`), that really represents a growing “step func-

tion”, is defined, for the intervals of 8 or 9 following values of k, in the following

way:

• Ω (I1) = 0 for k=1,. . . ,8

• Ω (I2) = 1 for k=9,. . . ,16 ; Ω (I3)=2 for k=17,. . . ,25 ; Ω (I4)=3 for k=26,. . . ,34

• Ω (I5) = 4 for k=35,. . . ,43 ; Ω (I6) =5 for k=44,. . . ,51 ; Ω (I7)=6 for k=52,. . . ,60

• Ω (I8) = 7 for k=61,. . . ,69; Ω (I9) =8 for k=70,. . . ,78 ; Ω (I10)=9 for k=79,. . . ,86

• Ω (I11) = 10 for k=87,. . . ,95 ; Ω (I12)=11 for k=96,. . . ,104. ; etc.

Successively we give (Fig. 1) the graphs, related to the families of �� functions,

that are �� [k, Ω (I`)] and �� [k, Ω (I` − 1)] , or better, to the set of the arcs belonging

to them, and to the auxiliary function Ω (I`) .

Fig. 1.

2The boundary can include the sign “=” if the integer variable k goes towards zero or the infinity.
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Let’s extend the dependence of the integer step function Ω (Il) to the real field

and let’s use the following definition:

Ω(x) = min {k ∈ N: Sk+1 (x) ≥ 2 } ; x ∈ R+ and where Sk (x) =
(

1 +
1

3x− k + 1

)2x+1

By simple algebraic passages we have, by a more appropriate notation, due to

Iverson, that:

Ω (x) =

⌈
3x− 1

2
1

2x+1 − 1

⌉
(2)

where d xe means the smallest integer, greater than x or equal to it.

Therefore the special function �� possesses the following explicit formula in the

real field:

�� (x) =

(
1 +

1

3x− Ω (x)

)2x+1

=


1 +

1

3x−
⌈
3x− 1

2
1

2x+1−1

⌉




2x+1

Extending the field of definition of the variable k to the real positive numbers, it’s

possible to notice that such function, being represented by the union of continuous

arcs (all above the straight line of height 2, see Fig.1) is actually assimilable to a

piecewise continuous function.

That being stated, an important subclass of completely monotonic functions con-

sists of the Stieltjes transforms defined as the class of functions f : (0,∞) → R of the

form:

f (x) = a +

∞∫

0

dµ (t)

x + t
(3)

where a ≥ 0 and µ (t) is a nonnegative measure on [0,∞ ) with
∞∫
0

dµ (t)
1+t

≤ ∞, see [2].

In the Addenda and Problems in ([1], p.127), it is stated that if a function f is

holomorphic in the cut plane A = C\ (−∞, 0] and satisfies the following conditions :

(i) =f (z) ≤ 0 for = (z) Â 0
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(ii) f(x) ≥ 0 for x Â 0

then f is a Stieltjes transform.

2. THE REPRESENTATION AS A STIELTJES TRANSFORM

In ([8], §6) the author characterizes the holomorphy (piecewise analytic) of the

special function �� (z) in the cut plane B = C\
[
−2/3,−1/3

]
and proves a remarkable

result that implies :

lim
|z|→∞

��(z) = 2 (z ∈ B) (4)

To prove that the harmonic function =( ��) satisfies = �� (z) ≤ 0 for = (z) Â 0 ,

we use that maximum principle for subharmonic functions, that can be found in ([4],

p. 20), and show that lim sup of =( ��) at all boundary points including infinity is

less than or equal to 0.

From (4) we conclude that this is true at infinity.

How, for definition �� (x) Â 0 for x Â 0; these last statements imply the result

(3).

The constant a in (3) is given by :

a = lim
x→∞

�� (x)

and therefore for the fundamental theorem of the special function �� we have, see

([8], §2):

a = lim
x→∞

�� (x) = 2

In (3) µ (t) is the limit in the vague topology of measures

dµ (t) = lim
y→0+

− 1

π
=f (−t + iy) dt

For z ∈ B = C\
[
−2/3,−1/3

]
we have in the close interval [−1, 0] :
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�� (z) =
(
1 +

1

3z + 1

)2z+1

= exp
(
(2z + 1) · Log

(
1 +

1

3z + 1

))
(5)

where Log denotes the principal branch of the logarithm.

Let t ∈ R and z ∈ C with = (z) Â 0.

If z tends to t , then for (1) and (5), results ( with ` ∈ Z ) 3:

�� (z) =





(
1 + 1

3t−Ω (I`)

)2t+1
if t Â 0

2 if t = 0

exp
[
(2t + 1) · log

(∣∣∣3t+2
3t+1

∣∣∣
)
− k · i π (2t + 1)

]
with k = 1 if − 2

3 ≺ t ≺ −1
3

and with k = 0 if − 1 ≺ t ≺ −2
3 or if − 1

3 ≺ t ≺ 0

2 if t = −1
(
1 + 1

3t−Ω (I`)

)2t+1
if t ≺ −1

In particular then we obtain , if y tends to 0+, for4 t ∈ R:

− 1
π
=f (−t + iy) →





0 if t ≤ 1/3 or t ≥ 2/3

1
2π

((3t−1)2) t

((3t−2)2) t
· sin (2πt) ·

{∣∣∣3t−2
3t−1

∣∣∣− 3t−2
3t−1

}
if 1/3 ≺ t ≺ 2/3

and using the identity (the Euler reflection formula):

Γ (α) · Γ (1− α) =
π

sin (απ)

we are now in a position to determine the following nearly exact integral representa-

tion (Stieltjes transform):

�� (x) ≈ 2 +
1
2
·

2/3∫

1/3





1
Γ (2 · t) · Γ (1− 2 · t)

(
(3t− 1)2

)
t

(
(3t− 2)2

) t

[∣∣∣∣
3t− 2
3t− 1

∣∣∣∣−
3t− 2
3t− 1

]




dt

(x + t)
(6)

3Z denotes the relative integer set.
4In the discontinuity points 1/3 and 2/3 we respectively compute the limits of the real variable

t on the left and on the right (see Fig. 2).
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The approximation is essentially origined by neglecting the point of discontinuities

of the first kind of the special function �� , in the real field, between an interval I`

and the following I`+1 as far as the interval I [0,∞ ) .

Successively we give (Fig. 2: x → t) the graphs (red color) related to the function5

•
µ (t) in the real interval I [−1, 1]: for t = 1/2 ⇒

•
µ (t) = 0 and this point is a flex point

with oblique tangent.

Fig. 2: The graph of
•
µ (t)

That being stated, we denote the set of completely monotonic functions with C.

Now, we also recall that a function f : ]0,∞[ → ]0,∞[ is said to be logarithmically

completely monotonic [5], if it is C∞ and

(−1)k · [log f (x)](k) ≥ 0 for k = 1, 2, 3, ...

To simplify we denote the class of logarithmically completely monotonic functions

by L and the set of Stieltjes transforms by S .

In order to prove that the special function �� (x) is logarithmically completely

monotonic, we need the following lemma:

S \ {0} ⊂ L
5
•
µ (t) = dµ(t)

dt
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This lemma is a consequence of the following result, established by Horn [6], that

allows also to characterize the class of logarithmically completely functions as the

infinitely divisible completely monotonic functions:

Theorem 1. For a function f : ]0,∞[ → ]0,∞[ the following are equivalent:

(i) f ∈ L ; (ii) fα ∈ C for all α Â 0 and α ∈ R ; (iii) n
√

f ∈ C for all n = 1, 2, 3...

In fact, let f ∈ S ( S ⊂ C ) and non-zero and let α Â 0, by Theorem 1 it is

immediate to prove that fα ∈ C.

Now, writing α = n + a with n = 0, 1, 2, ... and 0 ≤ a ≺ 1 we have fα = fn · fa,

and using the stability of C under multiplication and that fa ∈ S ⇒ S \ {0} ⊂ L.

In conclusion for (6) also the special function �� (x) ∈ L.

3. THE CLASS OF BERNSTEIN FUNCTIONS

There is an important relation between the set S of Stieltjes transforms and the

class B of Bernstein functions.

We recall that a function f : (0,∞) → [0,∞) is called a Bernstein function, if f

has derivatives of all orders and f ′ is completely monotonic.

Now, if f is non-zero Stieltjes transform, then 1/f is a Bernstein function ([3],

Prop. 1.3).

The special function �� (x) ∈ S \ {0} and this fact implies that 1/ �� (x) is a

Bernstein function.

In addition, using the identity :

1
/

�� (x) = x
/

x · �� (x)

and remembering the following definition:
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A Bernstein function φ is called a special Bernstein function if the function λ/φ (λ)

is also a Bernstein function.

we can conclude that x · �� (x) is a special Bernstein function.

The family of special Bernstein functions is very large, and it contains in partic-

ular the family of complete Bernstein functions (also known as operator-monotone

functions, see [7], for instance).

Recall that a function φ : (0,∞) → < is called a complete Bernstein function if

there exits a Bernstein function η such that :

φ(λ) = λ2L [η (λ)] , λ Â 0

where L stands for the Laplace transform.

Now, using the main results about the special function �� (x) ([8], §5 and §6) it

is immediate to establish that x · �� (x) is a complete Bernstein function.

Note also that a function f (x) is called a complete Bernstein function if, and only

if,

f (x) = a + bx +

∞∫

0+

x

t + x
ρ (dt) (7)

where a, b ≥ 0 and ρ is a Radon measure on (0,∞) such that
∞∫

0+
(1/(1 + t))ρ (dt) < ∞.

From this one, we may deduce that the function x → f (x)/x is a Stieltjes

transform [2].

This result was actually already obtained with the representation (6) of Stieltjes

of the special function ��.

At the end, recall that the following conditions are equivalent:

(i) φ is a complete Bernstein function;

(ii) λ/φ (λ) is a complete Bernstein function.

This result implies also that the function 1/ �� (x) is a complete Bernstein function
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and, remembering the standard form (7) and that the functions 1/
[
x · �� (x)

]
and

1/ ��
(

1
x

)
are Stieltjes transforms, it is easy and immediate to estabilish that the

constant a (killing rate) and b (drift coefficient) are given by:

a = lim
x→∞ 1/ ��

(
1

x

)
= 1/ �� (0) =

1

2

b = lim
x→∞ 1/

[
x · �� (x)

]
= 0

and the following representation formula which is analogous to the Lévy-Khinchin

formula:

1/ �� (x) ≈ 1
2

+
1
2
·
∞∫

0+





1
Γ (2 · t) · Γ (1− 2 · t)

(
(3t− 2)2

)
t

(
(3t− 1)2

) t

[∣∣∣∣
3t− 1
3t− 2

∣∣∣∣−
3t− 1
3t− 2

]




x · t
(t + x)

dt

For the interplay between complete Bernstein functions and Stieltjes transforms

we refer also to [9].

Finally, with an Euler-Venn diagram, we give the most important analytic prop-

erties of the special function �� .

Completely Monotonic Functions ∼ vs ∼ Bernstein Functions
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