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Abstract. In this paper we define the space BVσ (p, f, q, s) on a seminormed complex linear
space, by using modulus function. We give various properties and some inclusion relations
on this space. Furthermore, we construct the sequence space BVσ

(
p, fk, q, s

)
and we give

properties and some inclusion relations on this space.

1. INTRODUCTION

Let `∞ and c denote the Banach spaces of real bounded and convergent sequences

x = (xn) normed by ‖x‖ = supn |xn| , respectively.

Let σ be a one to one mapping of the set of positive integers into itself such that

σm (n) = σ (σm−1 (n)) , m = 1, 2, ... . A continuous linear functional ϕ on `∞ is said

to be an invariant mean or a σ−mean if and only if

i) ϕ (x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n,

ii) ϕ (e) = 1 where e = (1, 1, 1, ...) and
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iii) ϕ
({

xσ(n)

})
= ϕ ({xn}) for all x ∈ `∞.

If σ is the translation mapping n → n+1, a σ−mean is often called a Banach limit

[2], and Vσ, the set of σ−convergent sequences, that is, the set of bounded sequences

all of whose invariant means are equal, is the set f̂ of almost convergent sequences

[6].

If x = (xn) , set Tx = (Txn) =
(
xσ(n)

)
. It can be shown (see Schaefer [13]) that

Vσ =
{

x = (xn) : lim
m

tmn (x) = Le uniformly in n, L = σ − lim x
}

, (1.1)

where

tmn (x) =
1

m + 1

m∑
j=0

T jxn.

The special case of (1.1) , in which σ (n) = n + 1 was given by Lorentz [6].

Subsequently invariant means have been studied by Ahmad and Mursaleen[1],

Mursaleen [9], Raimi [11] and many others.

The space

BVσ =

{
x ∈ `∞ :

∑
m

|φm,n (x)| < ∞, uniformly in n

}

were defined by Mursaleen [8], where

φm,n (x) = tmn (x)− tm−1,n (x)

assuming that tmn (x) = 0, for m = −1.

A straightforward calculation shows that

φm,n (x) =

{
1

m(m+1)

∑m
j=1 j

(
xσj(n) − xσj−1(n)

)
(m ≥ 1)

xn, (m = 0)
.

Note that for any sequences x, y and scalar λ, we have

φm,n (x + y) = φm,n (x) + φm,n (y) and φm,n (λx) = λφm,n (x) .

The notion of a modulus function was introduced by Nakano [10] in 1953. We

recall that a modulus f is a function from [0,∞) to [0,∞) such that (i) f(x) = 0
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if and only if x = 0, (ii) f(x + y) ≤ f(x) + f(y), for all x ≥ 0, y ≥ 0, (iii) f is

increasing, (iv) f is continuous from the right at 0.

Since |f (x)− f (y)| ≤ f (|x− y|) , it follows from condition (iv) that f is contin-

uous on [0,∞) . Furthermore, we have f (nx) ≤ nf (x) for all n ∈ N, from condition

(ii) and so

f (x) = f

(
nx

1

n

)
≤ nf

(x

n

)
hence

1

n
f (x) ≤ f

(x

n

)
for all n ∈ N.

A modulus may be bounded or unbounded. For example, f (x) = xp, (0 < p ≤ 1)

is unbounded and f (x) = x
1+x

is bounded. Maddox [7] and Ruckle [12] used a modulus

function to construct some sequence spaces.

After then some sequence spaces, defined by a modulus function, were introduced

and studied by Bhardwaj [3], Connor [5], Waszak [14], and many others.

Proposition 1.1. Let f be a modulus and 0 < δ < 1. Then for n ∈ N and

t ∈ [0,∞)

fn−1 (t) > δ ⇒ fn−1 (t) ≤ 2f (1)

δ

{
fn−1 (t)

}
[4].

Definition 1.2. Let q1, q2 be seminorms on a vector space X. Then q1 is said to

be stronger than q2 if whenever (xm) is a sequence such that q1(xm) → 0, than also

q2(xm) → 0. If each is stronger than the others q1 and q2 are said to be equivalent

(one may refer to Wilansky [15]).

Lemma 1.3. Let q1 and q2 be seminorms on a linear space X. Then q1 is stronger

than q2 if and only if there exists a constant M such that q2 (x) ≤ Mq1 (x) for all

x ∈ X (see for instance Wilansky [15]).

A sequence space E is said to be solid (or normal) if (αmxm) ∈ E whenever

(xm) ∈ E for all sequences (αm) of scalars with |αm| ≤ 1.

It is well known that a sequence space E is normal implies that E is monotone.

Lemma 1.4. If f is a modulus then fk is also modulus for each k = 1, 2, ... ,

where fk = f ◦ f ◦ . . . ◦ f ( k times).
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Let p = (pm) be a sequence of strictly positive real numbers and X be a semi-

normed space over the field C of complex numbers with the seminorm q. We define

the sequence space as follows:

BVσ (p, f, q, s) =

{
x = (xm) ∈ X :

∞∑
m=1

m−s [f (q (φm,n (x)))]pm < ∞, s ≥ 0, uniformly in n

}
,

where f is a modulus function.

We get the following sequence spaces from BVσ (p, f, q, s) by choosing some of the

special p, f, and s :

For f (x) = x we get

BVσ (p, q, s) =

{
x = (xm) ∈ X :

∞∑
m=1

m−s [(q (φm,n (x)))]pm < ∞, s ≥ 0, uniformly in n

}
,

for pm = 1, for all m, we get

BVσ (f, q, s) =

{
x = (xm) ∈ X :

∞∑
m=1

m−s [f (q (φm,n (x)))] < ∞, s ≥ 0, uniformly in n

}
,

for s = 0 we get

BVσ (p, f, q) =

{
x = (xm) ∈ X :

∞∑
m=1

[f (q (φm,n (x)))]pm < ∞, uniformly in n

}
,

for f(x) = x and s = 0 we get

BVσ (p, q) =

{
x = (xm) ∈ X :

∞∑
m=1

[(q (φm,n (x)))]pm < ∞, uniformly in n

}
,

for pm = 1, for all m, and s = 0 we get

BVσ (f, q) =

{
x = (xm) ∈ X :

∞∑
m=1

[f (q (φm,n (x)))] < ∞, uniformly in n

}
,

for f (x) = x, pm = 1, for all m, and s = 0 we have

BVσ (q) =

{
x = (xm) ∈ X :

∞∑
m=1

q (φm,n (x)) < ∞, uniformly in n

}
,
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The following inequalities will be used throughout the paper. Let p = (pm) be

a bounded sequence of strictly positive real numbers with 0 < pm ≤ sup pm = H,

C = max
(
1, 2H−1

)
, then

|am + bm|pm ≤ C {|am|pm + |bm|pm} , (1.2)

where am, bm ∈ C and

n∑
m=1

(am + bm)i ≤
n∑

m=1

ai
m +

n∑
m=1

bi
m (1.3)

where a1, a2, ..., an ≥ 0, b1, b2, ..., bn ≥ 0 and 0 < i ≤ 1.

2. MAIN RESULTS

In this section we will prove the general results of this paper on the sequence space

BVσ (p, f, q, s) , those characterize the structure of this space.

Theorem 2.1. The sequence space BVσ (p, f, q, s) is a linear space over the field

C of complex numbers.

Proof. Let x, y ∈ BVσ (p, f, q, s) and λ, µ ∈ C. Then there exist integers Mλ and

Nλ such that |λ| ≤ Mλ and |µ| ≤ Nµ. Since f is subadditive, q is a seminorm

∞∑
m=1

m−s [f (q (λφm,n (x) + µφm,n (y)))]pm

≤
∞∑

m=1

m−s [f (|λ| q (φm,n (x))) + f (|µ| q (φm,n (y)))]pm

≤ C (Mλ)
H

∞∑
m=1

m−s [f (q (φm,n (x)))]pm + C (Nµ)H
∞∑

m=1

m−s [f (q (φm,n (y)))]pm

< ∞.

This proves that BVσ (p, f, q, s) is a linear space. ¤

Theorem 2.2. BVσ (p, f, q, s) is a paranormed (need not be total paranormed)

space with

g (x) =

( ∞∑
m=1

m−s [f (q (φm,n (x)))]pm

) 1
M

,
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where M = max (1, sup pm) , H = supm pm < ∞.

Proof. It is clear that g
(
θ̄
)

= 0 and g (x) = g (−x), for all x ∈ BVσ (p, f, q, s) ,

where θ̄ = (θ, θ, ...) . It also follows from (1.2), Minkowski’s inequality and definition

of f that g is subadditive and

g (λx) ≤ K
H/M
λ g (x) ,

where Kλ is an integer such that |λ| < Kλ. Therefore the function (λ, x) → λx

is continuous at λ = 0, x = θ̄ and that when λ is fixed, the function x → λx is

continuous at x = θ̄. If x is fixed and ε > 0, we can choose m0 such that
∞∑

m=m0

m−s [f (q (φm,n (x)))]pm <
ε

2

and δ > 0, so that |λ| < δ and definition of f gives

m0∑
m=1

m−s [f (q (λφm,n (x)))]pm =

m0∑
m=1

m−s [f (|λ| q (φm,n (x)))]pm <
ε

2
.

Therefore |λ| < min (1, δ) implies that g (λx) < ε. Thus the function (λ, x) → λx is

continuous at λ = 0 and BVσ (p, f, q, s) is a paranormed space. ¤

Theorem 2.3. Let f, f1, f2 be modulus functions q, q1, q2 seminorms and

s, s1, s2 ≥ 0. Then

i) If s > 1 then BVσ (p, f1, q, s) ⊆ BVσ (p, f ◦ f1, q, s) ,

ii) BVσ (p, f1, q, s) ∩BVσ (p, f2, q, s) ⊆ BVσ (p, f1 + f2, q, s) ,

iii) BVσ (p, f, q1, s) ∩BVσ (p, f, q2, s) ⊆ BVσ (p, f, q1 + q2, s) ,

iv) If q1 is stronger than q2 then BVσ (p, f, q1, s) ⊆ BVσ (p, f, q2, s) ,

v) If s1 ≤ s2 then BVσ (p, f, q, s1) ⊆ BVσ (p, f, q, s2) .

Proof. (i) Since f is continuous at 0 from right, for ε > 0 there exists 0 < δ < 1

such that 0 ≤ c ≤ δ implies f (c) < ε. If we define

I1 = {m ∈ N : f1 (q (φm,n (x))) ≤ δ}

I2 = {m ∈ N : f1 (q (φm,n (x))) > δ} ,
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then, when f1 (q (φm,n (x))) > δ we get

f (f1 (q (φm,n (x)))) ≤ {2f (1) /δ} f1 (q (φm,n (x))) .

Hence for x ∈ BVσ (p, f1, q, s) and s > 1

∞∑
m=1

m−s [f ◦ f1 (q (φm,n (x)))]pm

=
∑
m∈I1

m−s [f ◦ f1 (q (φm,n (x)))]pm +
∑
m∈I2

m−s [f ◦ f1 (q (φm,n (x)))]pm

≤
∑
m∈I1

m−s [ε]pm +
∑
m∈I2

m−s [{2f (1) /δ} f1 (q (φm,n (x)))]pm

≤ max
(
εh, εH

) ∞∑
m=1

m−s

+ max
(
{2f (1) /δ}h , {2f (1) /δ}H

) ∞∑
m=1

m−s [f1 (q (φm,n (x)))]pm

< ∞.

(Where 0 < h = inf pm ≤ pm ≤ H = supm pm < ∞).

(ii) The proof follows from the following inequality

m−s [(f1 + f2) (q (φm,n (x)))]pm ≤ Cm−s [f1 (q (φm,n (x)))]pm + Cm−s [f2 (q (φm,n (x)))]pm .

(iii), (iv) and (v) follow easily. ¤

Corollary 2.4. Let f be a modulus function, then we have

i) If s > 1, BVσ (p, q, s) ⊆ BVσ (p, f, q, s) ,

ii) If q1
∼= (equivalent to) q2, then BVσ (p, f, q1, s) = BVσ (p, f, q2, s) ,

iii) BVσ (p, f, q) ⊆ BVσ (p, f, q, s) ,

iv) BVσ (p, q) ⊆ BVσ (p, q, s) ,

v) BVσ (f, q) ⊆ BVσ (f, q, s) .

The proof is straightforward.

Theorem 2.5. Suppose that 0 < pm ≤ tm < ∞ for each m ∈ N. Then
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i) BVσ (f, p, q) ⊆ BVσ (f, t, q) ,

ii) BVσ (f, q) ⊆ BVσ (f, q, s) .

Proof. (i) Let x ∈ BVσ (f, p, q) . This implies that

[f (q (φi,n (x)))]pm ≤ 1

for sufficiently large values of i, say i ≥ m0 for some fixed m0 ∈ N. Since f is non

decreasing, we have

∞∑
m=m0

[f (q (φm,n (x)))]tm ≤
∞∑

m=m0

[f (q (φm,n (x)))]pm < ∞.

Hence x ∈ BVσ (f, t, q) .

The proof of (ii) is trivial. ¤

The following result is a consequence of the above result.

Corollary 2.6. (i) If 0 < pm ≤ 1 for each m, then BVσ (p, f, q) ⊆ BVσ (f, q) .

(ii) If pm ≥ 1 for all m, then BVσ (f, q) ⊆ BVσ (p, f, q) .

Theorem 2.7. The sequence space BVσ (p, f, q, s) is solid.

Let x ∈ BVσ (p, f, q, s) i.e

∞∑
m=1

m−s [f (q (φk,n (x)))]pm < ∞.

Let (αm) be sequence of scalars such that |αm| ≤ 1 for all m ∈ N. Then the result

follows from the following inequality

. ∞∑
m=1

m−s [f (q (αmφk,n (x)))]pk ≤
∞∑

m=1

m−s [f (q (φk,n (x)))]pm

Corollary 2.8. The sequence space BVσ (p, f, q, s) is monotone.

Proposition 2.9. For any two sequences p = (pk) and t = (tk) of pos-

itive real numbers and any two seminorms q1 and q2 we have BVσ (p, f, q1, r) ∩
BVσ (t, f, q1, s) 6= φ for all r > 0, s > 0 .
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3. SOME RELATIONS ON BVσ

(
p, fk, q, s

)

If we replace fk by f in the definition of BVσ (p, f, q, s) from Lemma (1.4), then

we have

BVσ

(
p, fk, q, s

)
=

{
x = (xk) ∈ `∞ :

∞∑
m=1

m−s
[
fk (q (φm,n (x)))

]pm
< ∞, s ≥ 0 uniformly in n

}
.

The all results obtained for BVσ (p, f, q, s) also hold for BVσ

(
p, fk, q, s

)
.

Theorem 3.1. If s > 1 and k1 < k2 then

BVσ

(
p, fk1 , q, s

) ⊆ BVσ

(
p, fk2 , q, s

)
.

Proof. The proof can be proved by using mathematical induction. Let k2−k1 = r.

So r ≥ 1. Now we show that the assertion is true for r = 1. That is,

BVσ

(
p, fk1 , q, s

) ⊆ BVσ

(
p, fk1+1, q, s

)
.

By the continuity of f, for ε > 0, there exists 0 < δ < 1 such that 0 ≤ c ≤ δ implies

f (c) < ε. Let

I1 =
{
m ∈ N : fk1 (q (φm,n (x))) ≤ δ

}
,

I2 =
{
m ∈ N : fk1 (q (φm,n (x))) > δ

}
.

Hence for x ∈ BVσ

(
p, fk1 , q, s

)
and s > 1,

∞∑
m=1

m−s
[
fk1+1 (q (φm,n (x)))

]pm

=
∑
m∈I1

m−s
[
f

(
fk1 (q (φm,n (x)))

)]pm
+

∑
m∈I2

m−s
[
f

(
fk1 (q (φm,n (x)))

)]pm

≤
∑
m∈I1

m−s [ε]pm +
∑
m∈I2

m−s
[{2f (1) /δ} fk1 (q (φm,n (x)))

]pm

≤ max
(
εh, εH

) ∞∑
m=1

m−s + max
(
a1, a2

)
.

∞∑
m=1

m−s
[
fk1 (q (φm,n (x)))

]pm

where a1 = {2f (1) /δ}h , a2 = {2f (1) /δ}H . Thus x ∈ BVσ

(
p, fk1+1, q, s

)
. Now

assume that the assertion is true for any r, that is

BVσ

(
p, fk1 , q, s

) ⊆ BVσ

(
p, fk1+r, q, s

)
. (3.1)
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We show that it is also true for r + 1, that is,

BVσ

(
p, fk1 , q, s

) ⊆ BVσ

(
p, fk1+r+1, q, s

)
.

But from (3.1) it suffices to show that

BVσ

(
p, fk1+r, q, s

) ⊆ BVσ

(
p, fk1+r+1, q, s

)
.

This can be easily done as in the proof for r = 1.

(Where 0 < h = inf pm ≤ pm ≤ H = supm pm < ∞).

Corollary 3.2. Let s > 1 and k ∈ N, then

i) BVσ (p, f, q, s) ⊆ BVσ

(
p, fk, q, s

)
,

ii) BVσ (p, q, s) ⊆ BVσ

(
p, fk, q, s

)
.

Theorem 3.3. Let k1, k2 ∈ N and k1 < k2, then

i) If f (c) < c for all c ∈ [0,∞) , then BVσ (p, q, s) ⊆ BVσ

(
p, fk1 , q, s

) ⊆
BVσ

(
p, fk2 , q, s

)

ii) If f (c) ≥ c for all c ∈ [0,∞) , then BVσ

(
p, fk2 , q, s

) ⊆ BVσ

(
p, fk1 , q, s

) ⊆
BVσ (p, q, s) .

Proof. Since f (c) < c and f is increasing we have

fk2 (c) ≤ fk2−1 (c) ≤ . . . ≤ fk1 (c) ≤ . . . ≤ f (c) < c.

Thus for each m and pm > 0, the proof follows from

m−s
[
fk2q (φm,n (x))

]pm ≤ m−s
[
fk2−1q (φm,n (x))

]pm

≤ . . . ≤ m−s
[
fk1q (φm,n (x))

]pm ≤ . . .

≤ m−s [f (q (φm,n (x)))]pm < m−sq (φm,n (x))pm .

(ii) Omitted. ¤
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