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Abstract. In this paper we define the space BV, (p, f, q, s) on a seminormed complex linear
space, by using modulus function. We give various properties and some inclusion relations
on this space. Furthermore, we construct the sequence space BV, (p, f*.q, s)and we give
properties and some inclusion relations on this space.

1. INTRODUCTION

Let /, and ¢ denote the Banach spaces of real bounded and convergent sequences
x = (x,) normed by ||z| = sup,, |z,|, respectively.

Let o be a one to one mapping of the set of positive integers into itself such that
o™ (n) =0 (c™ 1 (n)), m=1,2,.... A continuous linear functional ¢ on /, is said

to be an invariant mean or a c—mean if and only if

i) ¢ () > 0 when the sequence x = (z,,) has z,, > 0 for all n,

ii) ¢(e) =1 where e = (1,1,1,...) and
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iii) ¢ ({:rg(n)}) = ({z,}) for all x € (.

If o is the translation mapping n — n+1, a c—mean is often called a Banach limit
2], and V,, the set of o—convergent sequences, that is, the set of bounded sequences
all of whose invariant means are equal, is the set f of almost convergent sequences
6].

If © = (z,), set To = (Tx,) = (24(n)) - It can be shown (see Schaefer [13]) that

V, = {x = (x,,) : limt,,, () = Le uniformly in n, L = o — lim a:} : (1.1)
where
1 oy
m+1 4
7=0

The special case of (1.1) , in which o (n) =n + 1 was given by Lorentz [6].
Subsequently invariant means have been studied by Ahmad and Mursaleen|[1],
Mursaleen [9], Raimi [11] and many others.

The space

BV, = {:1: €l Z |mn ()] < 0o, uniformly in n}
were defined by Mursaleen [8], where

Pmon () = tyn (7) — tm—1n (z)

assuming that t,,, () =0, for m = —1.

A straightforward calculation shows that

v

1)
0)

1 m .
G ( >_{ D) 2t J (Toim) = Torr) - (m

T, (m

Note that for any sequences z, y and scalar A, we have

P (T +Y) = O (T) + G (¥)  and Gy (AT) = AP (2) .

The notion of a modulus function was introduced by Nakano [10] in 1953. We
recall that a modulus f is a function from [0,00) to [0,00) such that (i) f(z) = 0
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if and only if z = 0, (i) f(x +y) < f(z) + f(y), for all 2 > 0, y > 0, (iii) f is
increasing, (i) f is continuous from the right at 0.

Since |f (z) — f(y)| < f (Jx — yl|), it follows from condition (iv) that f is contin-
uous on [0, 00) . Furthermore, we have f (nz) < nf (z) for all n € N, from condition
(ii) and so

fF@)=f <nx%) <nf <§) hence

%f(x)ﬁf(%) for all n € N.

A modulus may be bounded or unbounded. For example, f (z) =P, (0 <p < 1)
is unbounded and f () = 777 is bounded. Maddox [7] and Ruckle [12] used a modulus
function to construct some sequence spaces.

After then some sequence spaces, defined by a modulus function, were introduced

and studied by Bhardwaj [3], Connor [5], Waszak [14], and many others.

Proposition 1.1. Let f be a modulus and 0 < § < 1. Then for n € N and
t €[0,00)
2f(1
pr>as o< XDy

Definition 1.2. Let ¢, ¢ be seminorms on a vector space X. Then g is said to
be stronger than qo if whenever (x,,) is a sequence such that q(x,,) — 0, than also
¢@2(xy) — 0. If each is stronger than the others ¢ and qo are said to be equivalent

(one may refer to Wilansky [15]).

Lemma 1.3. Let q; and go be seminorms on a linear space X. Then ¢, is stronger
than qo if and only if there exists a constant M such that gs () < Mq, (x) for all
x € X (see for instance Wilansky [15]).

A sequence space E is said to be solid (or normal) if (a,,z,) € E whenever
(xm) € E for all sequences (ay,) of scalars with |a,,| < 1.

It is well known that a sequence space E is normal implies that E is monotone.

Lemma 1.4. If f is a modulus then f* is also modulus for each k = 1,2, ... ,

where f* = fofo...of (k times).
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Let p = (pm) be a sequence of strictly positive real numbers and X be a semi-
normed space over the field C of complex numbers with the seminorm ¢q. We define

the sequence space as follows:

BV, (p, f,q,s) = {x = (xm) € X : Z m”=° [f (g (dmn (2))]"™ < oo, s>0, uniformly in n} ,

where f is a modulus function.
We get the following sequence spaces from BV (p, f,q, s) by choosing some of the
special p, f, and s :
For f (z) = = we get
BV, (p,q,s) = {x =(xm) € X : Z m~* (¢ (Pmn (2)))]'™ < oo, s>0, uniformly in n} ,

m=1

for p,, = 1, for all m, we get
m=1

BV, (f,45) = {x — (2m) €X: 3 M [f (@ (Gmn (0)))] < 00, >0, uniformly in n}

for s = 0 we get

BV, (p, f,q) = {JJ = () € X : Z ¢ (Gmn (2)))]'™ < 00, uniformly in n} ,

for f(z) =2 and s = 0 we get

BVO‘ (pv q) = {l’ - xm € X Z ¢mn ] < o0, uniformly in n} ,

for p,, = 1, for all m, and s = 0 we get

BV, (f,q) = {x =(xm) € X: Z q(Pmn (7)))] < 0o, uniformly in n} )

for f(z) =z, pm = 1, for all m, and s = 0 we have

BV, (q) = {x =(xm) € X: Z q (Pmn (z)) < oo, uniformly in n} )
m=1
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The following inequalities will be used throughout the paper. Let p = (p,,) be
a bounded sequence of strictly positive real numbers with 0 < p,, < supp,, = H,

C = max (1, 2H*1) , then

@ + b7 < C {Jam[™ + [bp]""}, (1.2)
where a,,, b,, € C and

D (am +bm) <Y ah,+ > b, (1.3)

m=1 m=1 m=1

where aq,as,...,a, >0, by, bo,....,0, > 0and 0 <7 < 1.

2. MAIN RESULTS

In this section we will prove the general results of this paper on the sequence space

BV, (p, f,q,s), those characterize the structure of this space.

Theorem 2.1. The sequence space BV, (p, f,q, s) is a linear space over the field
C of complex numbers.

Proof. Let z,y € BV, (p, f,q,s) and A\, u € C. Then there exist integers M, and
N, such that [A| < M) and |p| < N,. Since f is subadditive, ¢ is a seminorm

Zm ° >\¢mn< >+N¢m,n (y)))]pm
< Zm *[f A @ (D (2))) + £ ([l @ (Drmn ()]

< C(M)) Zm_s ¢ (Smn ()" +C (N st ¢ (Smn ()™

< 0oQ.

This proves that BV, (p, f,q, s) is a linear space. O

Theorem 2.2. BV, (p, f,q,s) is a paranormed (need not be total paranormed)

space with

L
M

(Z = 1 (0 (G ()] ) ,
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where M = max (1,supp,,), H = sup,,, pm < 00.

Proof. It is clear that g (5) =0and g(z) = g(—x), for all z € BV, (p, f,q, s),
where § = (6,0, ...). It also follows from (1.2), Minkowski’s inequality and definition
of f that ¢ is subadditive and

g () < K{™Mg (),

where K is an integer such that |A\| < K. Therefore the function (A\,z) — Az
is continuous at A = 0, x = 6 and that when \ is fixed, the function * — Az is

continuous at z = . If z is fixed and € > 0, we can choose mg such that

oo

ST [ (@ (G (@) <

m=mgo

and § > 0, so that |A\| < ¢ and definition of f gives

DO ™

st ¢ (Apmn ( st (1AL q (Gmm ()™ <

DO ™

Therefore |A| < min (1,6) implies that g (Az) < e. Thus the function (A, z) — Az is

continuous at A = 0 and BV, (p, f,q, s) is a paranormed space. 0]

Theorem 2.3. Let f, fi,fo be modulus functions q,qi,q2 seminorms and

S, 81,580 > 0. Then
i) If s > 1 then BV, (p, f1,q9,8) € BV, (p, f o f1,4,$),
it) BV, (p, f1,4,8) N BV; (p, f2,4,5) € BVy (p, f1 + fo, 4, 5)
iti) BV, (p, f,q1,8) N BVy (p, f,a2,5) € BVo (p, fo a1 + @2,8)
i) If q1 is stronger than gy then BV, (p, f,q1,s) € BV, (p, f,q2,5) ,
v) If s1 < so then BV, (p, f,q,51) € BV, (p, f,4q, s2) -

Proof. (i) Since f is continuous at 0 from right, for £ > 0 there exists 0 < § < 1
such that 0 < ¢ < ¢§ implies f (¢) < e. If we define

I = {meN: fi(q(dmn(x))) <6}
Iy = {meN: fi(q(dmn(r))) >},
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then, when fi (¢ (¢m.n (z))) > 0 we get

F(f1(q(dmn () <421 (1) /6} f1 (g (dmn (2))) -

Hence for x € BV, (p, f1,q,s) and s > 1

_ Zm [f 0 f1(q (Gmm @D+ Y m* [f 0 fi (¢ ($mn ()"

mely mels

< S w4 Y m e {2 (1) /6) fi (0 (G ()P

mel; mEI2

< max(eh, 6H)Zm_s
+max ({2f (1) /0}" {2 (1) /6 )Zm q (D (1))

< 0Q.

(Where 0 < h = inf p,,, < p,,, < H = sup,,, pm < 00).
(ii) The proof follows from the following inequality

m=*[(f1 + f2) (@ (Pmn ()P < Cm7° [f1 (g (dmn (2)))]P" + Cm™ [f2 (¢ (dmn (2)))]7"

(iii), (iv) and (v) follow easily. O
Corollary 2.4. Let f be a modulus function, then we have
i) If s> 1, BV, (p,q.s) € BV;(p, f.¢,5),
i) If g1 = (equivalent to) qz, then BV, (p, f,q1,8) = BV, (p, f,q2, ),
iii) BV, (p, f,q) € BVy (p, f.q,5),
w) BV, (p,q) € BV, (p,q,5),
v) BV, (f,q) € BV, (f.q,s).
The proof is straightforward.

Theorem 2.5. Suppose that 0 < p,, < t,, < oo for eachm € N. Then
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Z) BVO’(f7p7Q>gBVU(f7t7q)a
7’7’) BVU(f7Q>gBVU(f7Q7S)'
Proof. (i) Let z € BV, (f,p,q) . This implies that

[f (g (din (2)))]P" <1

for sufficiently large values of i, say ¢ > myq for some fixed mg € N. Since f is non

decreasing, we have

> (@ (Gma @D <D [ (@ (S ()] < 0.
m=my m=mg
Hence z € BV, (f,t,q).
The proof of (ii) is trivial. O

The following result is a consequence of the above result.

Corollary 2.6. (i) If 0 < p,, <1 for each m, then BV, (p, f,q) € BV, (f,q) .
(i) If pm > 1 for all m, then BV, (f,q) € BV, (p, f,q) -

Theorem 2.7. The sequence space BV, (p, f,q,s) is solid.
Let x € BV, (p, f,q,s) i.e

Zm [ (@ (B @) < o0,

Let (o) be sequence of scalars such that |a,,| < 1 for all m € N. Then the result

follows from the following inequality
Zm *[f (g (am@pn (x p’“<zm *[f (@ (Ppm ()"

Corollary 2.8. The sequence space BV, (p, f,q,s) is monotone.

Proposition 2.9. For any two sequences p = (px) and t = (tx) of pos-
itive real numbers and any two seminorms q; and qo we have BV, (p, f,q1,7) N

BV, (t, f,q1,s) £ ¢ forallr >0, s>0.
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3. SOME RELATIONS ON BV, (p, f*,q, )

If we replace f* by f in the definition of BV, (p, f,q,s) from Lemma (1.4), then

we have

BV, (P,fk,q,s) = {z— Zm q(Ppmn (x )))]pm <00, s> 0 uniformly in n}

The all results obtained for BV, (p, f, q, s) also hold for BV, (p, f*.q, s) )
Theorem 3.1. If s > 1 and ki < ky then

BV, (p, f*,q.s) € BV, (p, f*,q.s) .

Proof. The proof can be proved by using mathematical induction. Let ky—k; = 7.

So r > 1. Now we show that the assertion is true for » = 1. That is,

BV, (p, f*,q.s) € BV, (p, [, q,s).

By the continuity of f, for € > 0, there exists 0 < § < 1 such that 0 < ¢ < § implies
f(c) <e. Let

I, = {mEN:fkl(Q(qsm,n(x)))Sa}’
I, = {mENifkl(Q(¢m,n(x)))>5}’

Hence for « € BV, (p, f*,q¢,s) and s > 1,

Zm fk1+1 Qbmn( )))}pm

e U G @]+ X [ (4 D))
< Do Y mT [{2F (1) /0 (G ()]

< max (e, Zm + max (a', a® im [ (q (G ()]

=1

where a' = {2f (1) /6}", a2 = {2/ (1) /6}" . Thus = € BV, (p, f511,q,s) . Now

assume that the assertion is true for any r, that is

BV, (p, f*,q,s) € BV, (p, """, q,s). (3.1)
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We show that it is also true for » 4+ 1, that is,
BV, (p, f*,4:5) € BV, (p. f27 1 q,5) .
But from (3.1) it suffices to show that
BV, (p, flatr o 8) C BV, (p, flatrel o S) '

This can be easily done as in the proof for r = 1.

(Where 0 < h = inf p,,, < p,,, < H = sup,, pm < 00).
Corollary 3.2. Let s > 1 and k € N, then
i) BV, (p, f,q.s) € BV, (p, f*.q,s)

i) BV; (p,q,s) € BV, (pa fk>Q; 3) .

Theorem 3.3. Let k1,kys € N and ki < ko, then

7’) [f f(C) < c fOT all ¢ € [0700)7 then BVU (p7Q7S) - BVO’ (p7fk17Q75) =
BV, (p. f*,q. s)

ZZ) [ff(c) > c fOT' all ¢ € [0,00), then BVO’ (pafk2>Q7S) g BVU (pafklaqas) =

BV, (p,q,s) .

Proof. Since f (¢) < ¢ and f is increasing we have
)<t . <ffMe)<...<flo)<e

Thus for each m and p,, > 0, the proof follows from

m= [ (G ()]
L <mT g (G (:c))}pm <...
m”* [ (q (Gmm (@)™ <™ (G () .

m~* [fk2q (¢m,n (x))}pm

IN A

IN

(ii) Omitted.
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