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35000 Jagodina, Serbia

(Received October 25, 2004)

Abstract. In this work we shall prove the theorems of the fixed points of some classes of
mapping on the sets from the normed and reflexed space, which have some of the properties
NST, NSTN or KŠ.

1. INTRODUCTION

For some of the mappings on Banach’s spaces having the normal structure there

are many results about the existence of the fixed point. For the example, in paper [2]

it has been proved that if K is a subset of reflexive Banach’s space, having the normal

structure, the nonexpansive mapping T : K → K has a fixed point. In paper [5] it

has been proved the existence of the fixed point for mappings T : K → K which are

diametral contractions, under the condition that K has the normal structure. In the

paper [3] there is the proof of the existence of the fixed point for general nonexpansive

mapping on the sets of Banach’s space having the normal structure. The existence of

the fixed point for one class of mapping on the sets which have the normal structure

is given in the paper [1].
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Now we introduce the conditions for subsets on the normed and reflexive spaces

which extend the normal structure.

Let M be nonempty, bounded, closed and convex subset of the normed and reflex-

ive space X and S any closed and convex subset of M having more than one element.

Let use δ(S) to denote diameter of the set S. For the set M ⊂ X we say that it has

the property NST if there is a mapping T : M → M , so that for some point x0 ∈ S

there is

sup
z∈S

‖ x0 − T kz ‖ < δ(S), (1.1)

and there is for some k ∈ N , T k(S) ⊂ S.

Let’s assume that sets M , S satisfy conditions of the above definition. For the set

M ⊂ X we say that it has the property NSTN if there is a mapping T : M → M ,

having the property

sup
n∈N

‖ x0 − T nx0 ‖ < δ(S). (1.2)

for some point x0 ∈ S for which Tx0 ∈ S.

2. THE NEW RESULTS

Let us prove the existence of the fixed point for T defined on the sets from normed

and reflexive space X, satisfying the condition NST or NSTN.

Theorem 1. Let K be nonempty, bounded, closed and convex subset of the normed

and reflexive space X, and let K have the property NST, where T is one of the

mappings defining the property NST. If for every closed and convex subset E ⊂ K it

is valid that T (E) ⊂ E and for the number k ∈ N for which set K has the property

NST is valid that

‖ Tx − Ty ‖≤ sup
z∈E

‖ x− T kz ‖, (2.1)

then the mapping T has a fixed point.
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Proof. Let G be the set of all nonempty and closed and convex subsets E of set

K for which T (E) ⊂ E. The set G is nonempty, because K ⊂ G. Let us introduce

into the set G the relation of the order being the set relation of inclusion. From

the norming and mapping of the space X, it follows that the space X is complete,

so on the basis caracterisation of Šmulijan’s [4] every chain in G, which consists of

nonempty, bounded, closed and convex set of G has nonempty intersection. By Zorn’s

lemma there is the minimal element S of the set G.

If S consists only of one element, on the basis of supposition that T (S) ⊂ S, this

element is also the fixed point of the mapping T .

If S has more than one point on the property NST it is valid that

sup
z∈S

‖ x0 − T kz ‖ < δ(S),

for certain k ∈ N , and x0 ∈ S.

If in the inequality (2.1) we put that x = x0 we have that

‖ Tx0 − Ty ‖≤ sup
z∈S

‖ x0 − T kz ‖,

so that all Ty, y ∈ S are in the ball with the center in Tx0 and radius

sup
z∈S

‖ x0 − T kz ‖ = r , i.e. T (S) ⊂ B(Tx0, r) , and that is also T k(S) ⊂ B(Tx0, r).

Since T (S) ⊂ S it implies that T k(S) ⊂ S so that T k(S) ⊂ B(Tx0, r) ∩ S,

and on the basis of minimality of the set S, it is valid B(Tx0, r) ∩ S = S, so that

S ⊂ B(Tx0, r). From the relation S ⊂ B(Tx0, r) it implies that

‖ Tx0 − y ‖≤ sup
z∈S

‖ x0 − T kz ‖, (2.2)

for all y ∈ S.

Let us form the set

S ′ = {v ∈ S : sup
z∈S

‖ v − z ‖ ≤ sup
z∈S

‖ x0 − T kz ‖}.

On the basis of definition of the set S ′ and the relation 2.2 we conclude that the

set S ′ is bounded and closed, regarding that Tx0 ∈ S ′, than S ′ also nonempty set.
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Let us prove that for all v ∈ S ′ it is valid that Tv ∈ S ′. Since S is a nonempty,

limited, closed and convex set having more than one element and it is a minimal

element of the family G and is valid that TS ⊂ S, then is S = CoTS.

If z ∈ S, than z can be calculated as convex combination of the elements from

TS, i.e.

z =
n∑

i=1

αiTzi ,
n∑

i=1

αi = 1 , αi ≥ 0 and zi ∈ S.

Now

‖ Tv − z ‖ =

∥∥∥∥∥Tv −
n∑

i=1

αiTzi

∥∥∥∥∥ ≤
n∑

i=1

αi ‖Tv − Tzi‖

≤
n∑

i=1

αi sup
z∈S

‖ v − T kz ‖ ≤
n∑

i=1

αi sup
z∈S

‖ v − z ‖

≤ sup
z∈S

‖ x0 − T kz ‖
n∑

i=1

αi = sup
z∈S

‖ x0 − T kz ‖,

so that

TS ′ ⊂ S ′.

Let us give the sequence {αn} ⊂ S ′, for all n ∈ N and let αn → α ∈ S when

n →∞.

Now
sup
z∈S

‖ α− z ‖ ≤ sup
z∈S

(‖ α− αn ‖ + ‖ αn − z ‖)
= ‖ α− αn ‖ + sup

z∈S
‖ αn − z ‖

≤ ‖ α− αn ‖ +r

When n →∞ we get that

sup
z∈S

‖ α− z ‖ ≤ r,

then the set S ′ is closed.

Let u and v be two points from S ′.

For λ ∈ [0, 1] we have that

‖ λv + (1− λ)u− z ‖ = ‖ λv + (1− λ)u− λz + λz − z ‖
≤ λ sup

z∈S
‖ x0 − T kz ‖+ (1− λ) sup

z∈S
‖ x0 − T kz ‖

= r,
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so the set S ′ is convex.

For v, w ∈ S ′ we have that

δ(S ′) = sup
v∈S′
w∈S′

‖ v − w ‖ ≤ sup
v∈S′
z∈S

‖ v − z ‖ ≤ sup
z∈S

‖ x0 − T kz ‖ < δ(S)

Now S ′ is a nonempty, closed, bounded and convex subset of K for which T (S ′) ⊂
S ′, S ′ belongs to the family G, and it is valid that S ′ ⊂ S and S ′ 6= S, which is

impossible for the reason of minimality of the set S, so the set S has only one point,

and it is fixed point of mapping T . By this the proof of Theorem 1. is completed. 2

Theorem 2. Let us introduce the mapping T : K → K where K is a nonempty,

bounded, closed and convex subset of the normed and reflexive space X, and let K

have the property NSTN, where T is one of the mappings defining the property NSTN.

If for any closed and convex subset E ⊂ K having more than one element it is valid

that T (E) ⊂ E and the condition is valid that

‖ Tx− Ty ‖≤ sup
k∈N

‖ x− T kx ‖, (2.3)

for all x, y ∈ E, then the mapping T has the fixed point.

Proof. In the same way as in Theorem 1. we come to the set S. If set S has one

element, regarding that TS ⊂ S it is also the fixed point of mapping T.

Let us presume that the set S has more than one element. On the basis of the

property NSTN and the condition 2.3 for x = x0 we get that

‖ Tx0 − Ty ‖≤ sup
k∈N

‖ x0 − T kx0 ‖,

for all y ∈ S.

By the similar reasoning as in the Theorem 1. we come to the relation

‖ Tx0 − y ‖≤ sup
k∈N

‖ x0 − T kx0 ‖, (2.4)

for all y ∈ S.

Let us form the set

S ′′ = {v ∈ S : sup
z∈S

‖ v − z ‖ ≤ sup
k∈N

‖ x0 − T kz ‖}.
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The set S ′′ is nonempty. If v ∈ S ′′ let us prove that also Tv ∈ S ′′. Since the set

S is a convex combination of elements from T (S) for every zi ∈ S and k ∈ N , the

inequalities are valid.

‖ Tv − z ‖ =

∥∥∥∥∥Tv −
n∑

i=1

αiTzi

∥∥∥∥∥ ≤
n∑

i=1

αi ‖Tv − Tzi‖

≤
n∑

i=1

αi sup
k∈N

‖ v − T kv ‖ ≤ sup
z∈S

‖ v − z ‖
≤ sup

k∈N
‖ x0 − T kx0 ‖,

then T (S ′′) ⊂ S ′′.

It is simple to prove that the set S ′′ is closed and convex. On the basis of the

definition of the set S ′′ for all v, w ∈ S ′′ we have that

δ(S ′′) = sup
v∈S′′
w∈S′′

‖ v − w ‖ ≤ sup
v∈S′′
z∈S

‖ v − z ‖ ≤ sup
k∈N

‖ x0 − T kz ‖ < δ(S).

Now S ′′ is a nonempty, closed, bounded and convex subset of S and it is valid that

S ′′ 6= S, which is impossible because of the minimality of the set S. This completes

the proof of Theorem 2. 2

For normed and reflexive space X we say that it satisfies the property KŠ, if every

decreasing sequence of nonempty, bounded, closed and convex subsets from X has

the compact intersection.

In paper [5] it has been proved that if M is a nonempty and compact subset of

Banach’s space X, and K is a closed and convex shell of M and if δ(M) > 0, then

there is an element u ∈ K so that

sup
x∈M

‖ x− u ‖ < δ(M).

Theorem 3. Let K be a nonempty, bounded, closed and convex subset of the

normed and reflexive space X having the property KŠ and let there be mapping T :

K → K. If there is k ∈ N so that for any subset E ⊂ K for which T (E) ⊂ E the

condition (2.1) is valid, then the mapping T has a fixed point.

Proof. By the same reasoning as in the Theorem 1. we come to the set S. If S

has one element than the proof is completed.
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Let us suppose that S has more than one element, and on the basis of the sup-

position of the Theorem 3., it is also compact so regarding the statement from paper

[5] there is a point x0 ∈ S so that

sup
z∈S

‖ x0 − z ‖ < δ(S), (2.5)

and it means that the set K has the property NST. The further proof of the Theorem

3. resembles the proof of the Theorem 1. 2

Theorem 4. Let K be a nonempty, bounded, closed and convex subset of the

normed and reflexive space X which has the property KŠ and let there be mapping

T : K → K. If for every subset E ⊂ K for which T (E) ⊂ E the inequality (2.3) is

valid, then the mapping T has the fixed point.

Proof. In the same manner as in Theorem 1. we get the nonempty, closed, convex

and compact subset S, of the set K.If S has one element the proof is completed.

If S has more than one element then regarding the statement of the paper [5]

there is an element x0 ∈ S so that the inequality (2.5) is valid and the set K satisfies

the condition NSTN.

The further proof of the Theorem 4. resembles the proof of the Theorem 1. 2
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