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Abstract. To LAP logic we add a new type of CP-quantifiers and prove the complete-
ness theorem for new logic Lk

ACP . The new axioms result from the condition probability
introduced by Kolmogorov, which explains the ”k” letter in the name of the new logic.

INTRODUCTION

In this paper we will introduce the logic Lk
ACP . This logic is similar to infinitary

logic LAP (see [2], [3]); Our logic will include a new types of quantifiers CP~x > r

and CP~x 6 0 (~x ia a finite sequence of variables). A model of this logic is also a

classical model with a probability measure in the universe, such that each relation is

measurable.

1. BASIC DEFINITION

Syntax. We assume that A is an admissible set such that A ⊆ HC and ω ∈ A.
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Let L be a countable, Σ-definable set of finitary relation and constant symbols

(no function symbols).

We need the following logical symbols:

(1) The parentheses (, ).

(2) The variables v0, v1, . . . , vn, . . . , n ∈ N.

(3) The connectives ¬ and
∧

.

(4) The quantifiers

(i) P~x > r, where r ∈ A ∩ [0, 1]

(ii) CP~x > r, where r ∈ A ∩ [0, 1]

(iii) CP~x 6 0

(5) The equality symbol = (optional).

Definition 1.1. The formulas of Lk
ACP are defined as follows:

(1) An atomic formula of first-order logic is a formula of Lk
ACP .

(2) If ϕ is a formula of Lk
ACP , then ¬ϕ is a formula of Lk

ACP .

(3) If Φ ∈ A is a set of formulas of Lk
ACP with only finitly many free variables,

then
∧

Φ is a formula of Lk
ACP .

(4) If ϕ is a formula of Lk
ACP , then (P~x > r)ϕ is a formula of Lk

ACP .

(5) If ϕ and ψ are the formulas of Lk
ACP , then (CP~x > r)(ϕ | ψ) and (CP~x ≤

0)(ϕ | ψ) are also formulas of logic Lk
ACP .

We shall assume that Lk
ACP ⊆ A and denote Lk

ACP , where A = HC, by Lω1CP .

Thus, Lk
ACP = A∩Lω1CP . All other syntactical notions are defined similarly as in the

LAP case.

Definition 1.2. We shall use the following abbreviations:

(1) (P~x < r)ϕ for ¬(P~x > r)ϕ

(2) (P~x 6 r)ϕ for (P~x > 1− r)¬ϕ

(3) (P~x > r)ϕ for ¬(P~x > 1− r)¬ϕ

(4) (CP~x < r)(ϕ | ψ) for ¬(CP~x > r)(ϕ | ψ)

(5) (CP~x 6 r)(ϕ | ψ) for (CP~x > 1− r)(¬ϕ | ψ) where r 6= 0

(6) (CP~x > r)(ϕ | ψ) for ¬(CP~x 6 r)(ϕ | ψ)
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(7) (CP~x = r)(ϕ | ψ) for (CP~x > r)(ϕ | ψ) ∧ (CP~x 6 r)(ϕ | ψ)

(8) The connectives
∨

, → and ↔ are defined as usual.

Models. Let 〈A, F , µ〉 be a probability space such that each singleton is mea-

surable. Then, for each n ∈ N, one shows that 〈A, F (n), µ(n)〉 is a probability space,

where F (n) is the σ-algebra generated by the measurable rectangles and the diagonal

sets, and µ(n) is the restriction of the completion of µn to F (n).

Definition 1.3. A probability model for L is a structure

A = 〈A, RA
i , cA

j , µ〉i∈I, j∈J

where 〈A, RA
i , cA

j 〉i∈I,j∈J is a classical model, µ is a countably additive probability

measure on A such that each singleton is measurable, each n-placed relation RA
i is

µ(n)-measurable, and each cA
j ∈ A

Definition 1.4. A graded probability model for L is a structure

A = 〈A, RA
i , cA

j , µn〉i∈I, j∈J, n∈N

such that:

(1) 〈A, RA
i , cA

j 〉i∈I, j∈J is a classical model;

(2) Each µn is a countably additive probability measure on An;

(3) For all m, n ∈ N, µm+n is an extension of the product measure µm × µn;

(4) Each µn is invariant under permutations, that is, whenever π is a permutation

of {1, 2, . . . , n} and B ∈ dom(µn), if

πB =
{(

aπ(1), . . . , aπ(n)

) | (a1, . . . , an) ∈ B
}

,

then πB ∈ dom(µn) and µn(πB) = µn(B);

(5) 〈µn|n ∈ N〉 has the Fubini property: If B is µm+n-measurable, then

(a) for each ~x ∈ Am, the section B~x = {~y ∈ An | (~x, ~y) ∈ B} is µn-measurable;

(b) the function f(~x) = µn(B~x) is µm-measurable;

(c)
∫

f(~x)dµm = µm+n(B).

(6) Each atomic formula with n free variables is measurable with respect to µn.
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Let A be one of the models defined above and let nµ denotes either µ(n) or µn. The

satisfaction relation is defined recursively in the same way as it was for LAP except

for the quantifier clause:

for ϕ(~y) ∈ Lk
ACP and ~a ∈ Ak, ψ(~z) ∈ Lk

ACP and ~c ∈ Al

A ² (CP~x > r) (ϕ (~x, ~y) [~a] | ψ (~x, ~z) [~c])

iff

nµ
{
~b ∈ An | A ² ϕ

[
~b,~a

]
∧ A ² ψ

[
~b,~c

]}

nµ
{
~b ∈ An | A ² ψ

[
~b,~c

]} ≥ r

at condition that nµ
{
~b ∈ An | A ² ψ

[
~b,~c

]}
> 0.

A ² (CP~x ≤ 0) (ϕ (~x, ~y) [~a] | ψ (~x, ~z) [~c])

iff

nµ
{
~b ∈ An | A ² ϕ

[
~b,~a

]
∧ A ² ψ

[
~b,~c

]}
= 0

and

nµ
{
~b ∈ An | A ² ψ

[
~b,~c

]}
> 0.

Remark. If we had nµ
{
~b ∈ An | A ² ψ

[
~b,~c

]}
= 0, then we could claim that

the formula is trivially satisfied in structure, analogous to the definition of condition

probability being one.

Theorem 1.1. (Fubini theorem.) Let µ be a probability measure such that

each singleton is measurable, and let B ⊆ Am+n be µm+n measurable. Then:

(1) Every section B~x = {y ∈ An | (~x, ~y) ∈ B} is µ(n)-measurable.

(2) The function f(~x) = µ(n)(B~x) is µ(m)-measurable.

(3) µ(m+n)(B) =
∫

f(~x)dµ(m).
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Proof theory. We now give a list of axioms and rules of inference for Lk
ACP .

In what follows, ϕ, ψ are arbitrary formulas of Lk
ACP , Φ ∈ A is an arbitrary set of

formulas of Lk
ACP and r, s ∈ A ∩ [0, 1].

Definition 1.5. The axioms of the weak Lk
ACP are the following:

(A1) All axioms of LA without quantifiers;

(A2) Monotonicity: (P~x > r)ϕ → (P~x > s)ϕ, where r > s

(A3) (a) (P~x > r)ϕ(~x) → (P~y > r)ϕ(~y)

(b) (CP~x > r)(ϕ(~x) | ψ(~x)) → (CP~y > r)(ϕ(~y) | ψ(~y))

(A4) (P~x > 0)ϕ

(A5) Finite additivity:

(a) (P~x 6 r)ϕ ∧ (P~x 6 s)ψ → (P~x 6 r + s)(ϕ ∨ ψ)

(b) (P~x > r)ϕ ∧ (P~x > s)ψ ∧ (P~x 6 0)(ϕ ∧ ψ) → (P~x > r + s)(ϕ ∨ ψ)

(A6) The Archimedean property:

(P~x > r)ϕ ↔
∨

n∈N

(
P~x > r +

1

n

)
ϕ

(A7) (CP~x > r)(ϕ|ψ) ∧ (P~x > s)ψ → (P~x > r · s)(ϕ ∧ ψ), where s > 0.

(A8) (P~x = 0)(ϕ ∧ ψ) ∧ (P~x > 0)ψ ↔ (CP~x 6 0)(ϕ|ψ)

(A9)
∧

r∈[0,1]∩Q

[(P~x > r)ψ → (P~x > r · s)(ϕ ∧ ψ)] → (CP~x > s)(ϕ|ψ)

Definition 1.6. The axioms for graded Lk
ACP consist of the axioms for weak Lk

ACP

plus following set of Hoover’s axioms:

(B1) Countable additivity:

∧
Ψ⊆Φ

(P~x > r)
∧

Ψ → (P~x > r)
∧

Φ

where Ψ ranges over the finite subset of Φ.

(B2) Symmetry:

(Px1 . . . xn > r)ϕ ↔ (Pxπ(1) . . . xπ(n) > r)ϕ

where π is a permutation of {1, 2, . . . , n}.
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(B3) Product independence:

(P~x > r)(P~y > s)ϕ → (P~x~y > r · s)ϕ

Definition 1.7. The axioms for the full Lk
ACP consist of the axioms for graded

Lk
ACP plus the following Keisler’s axiom:

(B4) Product measurability:

(P~x > 1)(P~y > 0)(P~z > r)(ϕ(~x, ~z) ↔ ϕ(~y, ~z))

for each r < 1, where all variables in ~x, ~y, ~z are distinct.

Definition 1.8. The rules of inference for all of the above logics are:

(MP) Modus Ponens:
ϕ, ϕ → ψ

ψ

(C) Conjuction:
ϕ → ψ, ψ ∈ Φ

ϕ → ∧
Φ

(G) Generalization:
ϕ → ψ(~x)

ϕ → (P~x > 1)ψ(~x)
~x is not free in ϕ.

Proposition 1.1. The following are theorems of graded Lk
ACP :

(1)
∧

n

∨
m

(
P~y <

1

n

)((
P~x > r − 1

m

)
ϕ(~x, ~y) ∧ ¬(P~x > r)ϕ(~x, ~y)

)

(2)
∧

n

∨
Φ0⊆Φ

(
P~x <

1

n

)
(
∧

Φ0(~x) ∧ ¬∧
Φ(~x)), where Φ is finite and

∧
Φ(~x) ∈ A.

2. COMPLETENESS THEOREM

Consistency properties and weak models.

Definition 2.1. A weak model for Lk
ACP is a structure

A = 〈A, RA
i , cA

j , µn〉i∈I, j∈J, n∈N
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such that 〈A, RA
i , cA

j 〉i∈I,j∈J is a classical model, each µn is a finitely additive proba-

bility measure on An with each singleton measurable, and with the set

{~c ∈ An | A ² ϕ[~a,~c]}

µn measurable for each ϕ(~x, ~y) ∈ Lk
ACP and each ~a ∈ A.

Let us introduce some convenient notation. ϕ¬ is defined as follows:

ϕ¬ = ¬ϕ, ϕ atomic (
∧

n ϕn)¬ =
∨

n ¬ϕn

(¬ϕ)¬ = ϕ (
∨

n ϕn)¬ =
∧

n ¬ϕn

((P~x > r)ϕ)¬ = (P~x > 1− r)¬ϕ

((CP~x > r)(ϕ|ψ))¬ = (CP~x > 1− r)(¬ϕ|ψ)

((CP~x ≤ 0)(ϕ|ψ))¬ = (CP~x < 1)(¬ϕ|ψ)

We can suppose that A is a countable set. Let C be a countable set of new

constant symbol, and let K = L ∪ C. Then we form the logic Kk
ACP coresponding to

K and we introduce a notion of a consistency property.

Definition 2.2. A consistency property for Lk
ACP is a set S of countable sets s

of sentences of Kk
ACP which satisfies the following conditions for each s ∈ S:

(C1) (Triviality rule) φ ∈ S;

(C2) (Consistency rule) either ϕ /∈ s or ¬ϕ /∈ s;

(C3) (¬ − rule) If ¬ϕ ∈ s, then s ∪ {ϕ¬} ∈ S;

(C4) (
∧ − rule) If

∧
Φ ∈ s, then for all ϕ ∈ Φ, s ∪ {ϕ} ∈ S;

(C5) (
∨ − rule) If

∨
Φ ∈ s, then for some ϕ ∈ Φ, s ∪ {ϕ} ∈ S;

(C6) (P - rule) If (P~x > 0)ϕ(~x) ∈ s, then for some ~c ∈ C, s ∪ {ϕ(~c)} ∈ S;

(C7) If ϕ(~x) ∈ Kk
ACP is an axiom, then

(a) s ∪ {(P~x > 1)ϕ(~x)} ∈ S,

(b) s ∪ {ϕ(~c)} ∈ S, where ~c ∈ C.

Theorem 2.1. (Model Existence Theorem) If S is a consistency property,

then any s0 ∈ S has a weak model.
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Proof. Let ϕ0, ϕ1, ϕ2, . . . be a enumeration of the sentences of Kk
ACP . We shall

construct a sequence s0 ⊆ s1 ⊆ s2 ⊆ . . . of elements of S as follows. s0 is given. Given

sn choose sn+1 to satisfy the following conditions:

(1) sn ⊆ sn+1.

(2) If sn ∪ {ϕn} ∈ S, then ϕn ∈ sn+1.

(3) If sn ∪ {ϕn} ∈ S, ϕn =
∨

Φ, then for some θ ∈ Φ, θ ∈ sn+1.

(4) If sn ∪ {ϕn} ∈ S, ϕn = (P~x > 0)ψ(~x), then for some ~c ∈ C, ψ(~c) ∈ sn+1.

We now define a model A of s0. Let sω =
⋃
n<ω

sn. Let T be a set of constants of

Kk
ACP . For c, d ∈ T , let c ∼ d iff c = d ∈ sω. Then, ∼ is an equivalence relation.

Let [c] denote the equivalence class of the constant c. Let A have the universe set

A = {[c] | c ∈ T}. If R is an n-placed relation symbol and c1, . . . , cn ∈ C, then

A ² R([c1], . . . , [cn]) iff R(c1, . . . , cn) ∈ sω

Define µn on the subset of An definable by formulas of Lk
ACP with parameters from

A, by

µn {~a ∈ An | A ² ϕ[~a,~c]} = sup{r | (P~x > r)ϕ(~x,~c) ∈ sω}

Only difference in relation to the logic LAP is that formula ϕ can also contain quan-

tifiers CP~x > r, resulting in no change.

It is not difficult to show that everything is well-defined, µn’s are finitely additive

probability measures, and it is routine to check that

A ² ϕ [[c1], . . . , [cn]] iff ϕ(c1, . . . , cn) ∈ sω

Therefore A is a weak model of sω, and hence a model of s0. ¤

Theorem 2.2. (Weak Completeness Theorem) A set T of sentences of Lk
ACP

has a weak model if and only if T is consistent in weak Lk
ACP .

Proof. Let S be the set of all countable sets s of sentences of Kk
ACP such that

only finitely many c ∈ C occur in s and not `Kk
ACP

¬∧
s. We claim that S is a

consistency property. We check that S satisfies (C6).
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Let (P~x > 0)ϕ(~x) ∈ s but for all ~c ∈ C, s∪ {ϕ(~c)} /∈ S. Take a ~c ∈ C which does

not occur in s. Then `Kk
ACP

¬∧
(s ∪ {ϕ(~c)}), hence `Kk

ACP
¬ (

∧
s ∧ ϕ(~c)) and `Kk

ACP∧
s → ¬ϕ(~c). Let ~y be a type of variables not occuring in s. Then replacing ~c by ~y

in the proof and using axioms and rule (G) we get `Kk
ACP

∧
s → ¬(P~y > 0)ϕ(~y) and

hence `Kk
ACP

¬∧
s. A contradiction. ¤

Graded Models.

Theorem 2.3. (Graded Completeness Theorem) Every countable set T of

sentences which is consistent in graded Lk
ACP has a graded model.

Proof. Let V (S) be a superstructure over S and R ∪ A ⊆ S. We suppose that

a formula ϕ(~x,~a) with parameters from A, a weak model A of T , and the relation ²
are represented by sets in V (S). Then ∗ϕ(~x,~a) and ∗A are sets in the nonstandard

universe V (∗S), and ∗F is an internal relation. If the context is clear we write simply

F .

〈(∗A)n, L(µn)〉 is a probability space by Loeb’s theorem. The model

〈∗A, ∗RA
i , cA

j , L(µn)〉i∈I, j∈J, n∈N

is graded because of the fact that the weak model A is a model for graded Lk
ACP .

The main step in our proof is to show that for each ϕ(~x) ∈ Lk
ACP and ~a ∈ A

〈A, µn〉 ² ϕ[~a] iff 〈 ∗A, L(µn)〉 ² ϕ[~a]

To prove this, we prove by induction on formulas that for ϕ(~x, ~y) ∈ Lk
ACP , ~a ∈ A

L(µn) ({~e ∈ (∗A)n | 〈∗A, L(µn)〉 ² ϕ[~e,~a]} M {~e ∈ (∗A)n | ∗〈A, µn〉 ² ∗ϕ[~e,~a]}) = 0

The nontrivial steps in our induction are conjunction and quantification.

Case 1. ϕ(~x) =
∧

n ψn(~x)

Then ∗(
∧

n ψn) =
∧

n∈∗N
∗ψn 6=

∧
n∈ N

∗ψn. By proposition 1.1.(2) we have:

t = L(µn)
{
~e ∈ (∗A)n | ∗〈A, L(µm)〉 ² ∗(

∧
mψm[~e]) M

∧
m

∗ψm[~e]
}

= 0

The introduction step follows by the triangle argument and the induction hypoth-
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esis:

L(µn) {~e ∈ (∗A)n | ∗〈A, L(µm)〉 ² ∗(ϕ[~e]) M ϕ[~e]}
6 t +

∑
m L(µn){~e ∈ (∗A)n | ∗〈A, L(µm)〉 ² ∗(ψm[~e]) M ψm[~e]} = 0

Case 2. ϕ(~x) = (P~y > r)ψ(~x, ~y)

Then we have ∗((P~x > r)ψ(~x)) ↔ ∗µn{~a | ∗ψ[~a]} > r and

((P~x > r)∗ψ(~x)) ↔ (∀n ∈ N)

(
∗µn{~a | ∗ψ[~a]} > r − 1

n

)

By the triangle argument:

L(µn) {~e ∈ (∗A)n | ∗〈A, L(µm)〉 ² ∗(ϕ[~e]) M ϕ[~e]}
6 L(µn) {~e ∈ (∗A)n | ∗〈A, L(µm)〉 ² ∗((P~y > r)ψ(~e, ~y)) M (P~y > r) ∗ψ(~e, ~y)}

+L(µn)({~e ∈ (∗A)n | ∗〈A, L(µm)〉 ² (P~y > r) ∗ψ(~e, ~y)}
M {~e ∈ (∗A)n | 〈∗A, L(µm)〉 ² (P~y > r)ψ(~e, ~y)})

The first term is 0 by proposition 1.1.(1). By applying the induction hypothesis:

L(µn+m)({(~e,~c) ∈ (∗A)n+m | ∗〈A, µk〉 ² ∗ψ[~e,~c]}
M {(~e,~c) ∈ (∗A)n+m | 〈∗A, L(µk)〉 ² ψ[~e,~c]}) = 0

So, for all ~e’s but a set of L(µn)-measure 0 we have:

L(µm)({~c ∈ (∗A)m | ∗〈A, µk〉 ² ∗ψ[~e,~c]} M {~c ∈ (∗A)m | 〈∗A, L(µk)〉 ² ψ[~e,~c]}) = 0

So, for all ~e’s but a set of L(µn)-measure 0 we have:

L(µm)({~c ∈ (∗A)m | ∗〈A, µk〉 ² ∗ψ[~e,~c]} > r

iff

L(µm)({~c ∈ (∗A)m | 〈∗A, µk〉 ² ψ[~e,~c]} > r

Hence the second term in the inequality is 0.

Case 3. CP - quantification

We should, in fact, only prove that

〈A, µn〉 ² (CP~x > r)(ϕ(~x,~b) | ψ(~x,~c))
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iff

〈∗A, L(µn)〉 ² (CP~x > r)(ϕ(~x,~b) | ψ(~x,~c)), ~b,~c ∈ A

Then we will have

〈A, µn〉 ² (CP~x > r)(ϕ(~x,~b) | ψ(~x,~c))

iff
µn{~a | 〈A, µm〉 ² ϕ[~a,~b] ∧ 〈A, µm〉 ² ψ[~a,~c]}

µn{~a | 〈A, µm〉 ² ψ[~a,~c]} > r

iff
L(µn){~a | 〈∗A, µm〉 ² ϕ[~a,~b] ∧ 〈∗A, L(µm)〉 ² ψ[~a,~c]}

L(µn){~a | 〈∗A, L(µm)〉 ² ψ[~a,~c]} > r

iff

〈∗A, L(µn)〉 ² (CP~x > r)(ϕ(~x,~b) | ψ(~x,~c))

because of:

µn{~a | 〈A, µm〉 ² ϕ[~a,~b] ∧ 〈A, µm〉 ² ψ[~a,~c]}
= L(µn){~a | 〈∗A, µm〉 ² ϕ[~a,~b] ∧ 〈∗A, L(µm)〉 ² ψ[~a,~c]}

since 〈A, µn〉 ² (P~x > t)ϕ(~x,~b) ⇔ 〈∗A, L(µn)〉 ² (P~x > t)ϕ(~x,~b)

and 〈A, µn〉 ² (P~x > t)ψ(~x,~b) ⇔ 〈∗A, L(µn)〉 ² (P~x > t)ψ(~x,~b)

We only have to prove that all this is also true for the formula with quantifier

(CP~x 6 0)

〈A, µn〉 ² (CP~x 6 0)(ϕ|ψ) iff 〈∗A, L(µn)〉 ² (CP~x 6 0)(ϕ|ψ)

This is direct consequence of case 2 and axiom (A8).

Probability Models.

Lemma 2.1. Let λ, ν and µ be probability measures on A, B and A×B such that

λ× ν ⊆ µ. Let T be µ-measurable . Then, for each ε > 0, there is a finite union M

of λ×ν-measurable rectangles such that µ(T M M) < ε iff there is a λ×ν-measurable

set N such that µ(T M N) = 0.

Lemma 2.2. (Rectangle Approximation Lemma for LAP logic) Let A

be a graded probability structure satisfying axiom (B4). Then for each ε > 0 and a
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formula ϕ(~x) of LAP , there are finitely many formulas ψij(~y, xj), where i = 1, . . . , m

and j = 1, . . . , n such that

A ² (P~y > 0)(P~x > 1− ε)(ϕ(~x) ↔
m∨

i=1

n∧
j=1

ψij(~y, xj))

The lemma says that any definable set ϕ(~x) in A can be approximated within ε

by a finite union of definable rectangles and this can be done uniformly in parameters

~y from a set of positive measure. In the proof, axiom (B4) is used n times.

Theorem 2.4. (Soundness and Completeness Theorem for full Lk
ACP ) A

set of sentences T of the full Lk
ACP has a probability model if and only if T is consistent

in the full Lk
ACP .

Sketch of the proof. Soundness of our logic is the consequence of the soundness

of logic LAP since the axiom (A7), (A8) and (A9) relate to the properties of condition

probability.

Let us prove the second part of the theorem. Since T is consistent to axiom

(B4), we immediately get Rectangle Approximation Lemma for Lk
ACP logic, i.e. we

extend the original version of lemma also to the case when formula ϕ can contain

CP-quantifiers.

We use ”new” Rectangle Approximation Lemma in order to find an ordinary

probability model B such that B is Lk
ACP -equivalent to A (A is graded model for T

which we have). Models A and B have the same universe, constants and measures.

For each RA and ε > 0 there is a finite union M of µn-measurable rectangles such

that µn(M M RA) < ε. Then, by lemma 7.1. there is a µn-measurable (and also

µ(n)-measurable) RB such that µn(RA M RB) = 0.

By induction on ϕ we can show that

A ² ϕ[~a] iff B ² ϕ[~a]

for µn-almost all ϕ. It follows that B ² T . ¤
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