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Abstract. In this paper we achieve a classification of transitive 3-groups of degrees 9 and
27. Other unique properties of these groups are discovered as a result.

INTRODUCTION

Let G be a group acting on a non-empty set Ω. The action of G on Ω is said to

be transitive if for any α, β in Ω there exists some g in G such that β = αg. In this

case |Ω| is called the degree of G on Ω. In [4], M. S. Audu, determined the number

of transitive p-groups of degree p2 and in [10], E. Apine, achieved a classification

of transitive and faithful p-groups (abelian and non-abelian) of degrees at most p3

whose center is elementary abelian of rank two. In this paper, we determine, up to

equivalence, the actual transitive p-groups (abelian and non-abelian) of degrees p2

and p3 for p = 3 and achieve a classification according to small degrees.
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1. RESULTS

1.1 TRANSITIVE 3-GROUPS OF DEGREE 32 = 9

Let G be a transitive 3-group of degree 32, then |G| = 3n, n=1,2,3,4. Clearly,

n 6= 1 and when n = 2, then |G|=9, G is essentially abelian and either G ∼= C9

or G ∼= C3 × C3. For transitivity,|αG| = 9, |Gα| = 1, ∀α ∈ Ω If G ∼= C9, then

G ∼= G1,2 =< a >, with generator, say, a = (1, 2, 3, 4, 5, 6, 7, 8, 9). If G ∼= C3 × C3,

then G ∼= G2,2 =< a, b : a3 = 1, b3 = 1, ab = ba > with generators, say, a =

(1, 4, 7)(2, 5, 8)(3, 6, 9) and b = (1, 2, 3)(4, 5, 6)(7, 8, 9).

Clearly G1,3 and G2,2 are transitive on Ω and we have:

Lemma 1.1.1. There are, up isomorphism, two transitive 3-groups of degree 9

and order 9, namely the abelian groups G1,2 and G2,3 described above.

When n=3, then |G|=27 and for transitivity we must have |αG=9, |Gα|=3,∀α ∈ Ω.

Here G is non-abelian and we have the following possibilities for G: G ∼= G1,3 =<

a, b : a9 = 1, b3 = 1, ab = ba4 > or G ∼= G2,3 =< G2,2, c > with c3=1, G2,2/G2,3.

Consider first G1,3 =< a, b : a9 = 1, b3 = 1, ab = ba4 > with a=(1,2,3,4,5,6,7,8,9),

then, b=(2,5,8)(3,9,6) (obtained by a Gap-programme (see PROGRAMME 1)).

For the case G2,3, we obtain a presentation as follows:

G2,3 =< a, b, c : a3 = 1, ab = ba, c3 = 1, ac = cab, bc = cb >, with, say, generators

a = (1, 3, 2)(4, 6, 5)(7, 9, 8), b = (1, 5, 8)(3, 4, 7)(6, 9, 2) and c = (2, 9, 6)(3, 4, 7) (ob-

tained by a modification to PROGRAMME 1). Clearly the above groups are transi-

tive on Ω and thus:

Lemma 1.1.2. There are, up to isomorphism, two transitive 3-groups of degree

9 and order 27, namely the non-abelian groups G1,3 and G2,3 described above.

When n = 4, |G|=81 and for transitivity, |αG, |Gα|=9 ∀α ∈ Ω.

Thus G is non-abelian and the following are the possibilities for G: G ∼= G1,4 =

< G1,3, c >, where c3=1, G1,3/G1,4 or G ∼= G2,4 =< G2,3, d >, where d3 = 1, G2,3/G2,4

For G1,4, we have as a presentation:

G1,4 =< a, b, c : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca7b, bc = cb >, where a and b
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are the same generators as those of G1,3 and c = (3, 6, 9).

For G2,4, we have as a presentation:

G2,4 =< a, b, c, d : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = cab, bc = cb, d3 = 1, ad = dac,

bd = db, cd = dc >, with the same generators a, b, c as those of G2,3 and d=(3,4,7).

Here we notice that G1,4
∼= G2,4. Thus we have:

Lemma 1.1.3. There is, up to isomorphism, only one transitive 3-group of degree

9 and order 81, namely the non-abelian group G1,4 described above.

We summarize our findings into the table below:

|G| = 3n Number of Number of Number of

transitive transitive non- transitive 3-
abelian 3-group of abelian 3-group of groups of degree

degree 9 up to degree 9 up to 9 up to
isomorphism isomorphism isomorphism

n = 1 3 0 0 0
n = 2 9 2 0 2
n = 3 27 0 2 2
n = 4 81 0 1 1
Total 2 3 5

Hence we have:

Proposition 1.1.4. There are, up to isomorphism, 5 transitive 3-groups of degree

32, 2 of these are abelian and of the remaining 3 non-abelian, 2 are of exponent 9 and

1 is of exponent 3.

1.2 TRANSITIVE 3-GROUPS OF DEGREE 33 = 27

Let G be a transitive 3-group of degree 27, then |G| = 3n, n = 1, 2, . . . , 13. Clearly

n 6= 1, n 6= 2. When n = 3, then |G| = 27 and for transitivity we must have |αG|=27,

|Gα|=1, ∀α ∈ Ω.

Assuming first G abelian, then either G ∼= C27 or G ∼= C3×C9 or G ∼= C3×C3×C3.

If G ∼= C27, then G ∼= G1,3 =< a >, where we may take a = (1, 2, . . . , 27).
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If G ∼= C3 × C9, then G ∼= G2,3 =< a, b : a9 = 1, b3 = 1, ab = ba >, with, say,

a = (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), and

b = (1,17,19)(2,18,20)(3,10,21)(4,11,22)(5,12,23)(6,13,24)(7,14,25)(8,15,26)(9,16,27).

If G ∼= C3 × C3 × C3, then G ∼= G3,3 =< a, b, c : a3 = 1, b3 = 1, c3 = 1, ab = ba,

ac = ca, bc = cb >, with, say,

a = (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27),

b = (1,5,6)(2,3,7)(4,8,9)(10,14,15)(11,12,16)(13,17,18)(19,23,24)(20,21,25)(22,26,27),

c = (1,13,26)(2,14,24)(3,15,19)(4,16,20)(5,17,27)(6,18,22)(7,10,23)(8,11,21)(9,12,25).

We next assume G non-abelian. Then the following are the possibilities for G:

G ∼= G4,3 =< a, b : a9 = 1, b3 = 1, ab = ba4 > or G ∼= G5,3 =< K, c >, with c3 = 1,

K ∼= C3 × C3, K/G6,3.

Taking a = (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)

and

b=(1,10,19)(2,14,26)(3,18,24)(4,13,22)(5,17,20)(6,12,27)(7,16,25)(8,11,23)(9,15,21) sat-

isfy the requirement of G4,3.

For G5,3, we obtain a presentation as follow:

G5,3 =< a, b, c : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = cb, bc = ca2b2 > with generators:

a = (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27),

b = (1,5,6)(2,3,7)(4,8,9)(10,14,15)(11,12,16)(13,17,18)(19,23,24)(20,21,25)(22,26,27),

c = (1,10,19)(2,11,20)(3,13,23)(4,14,21)(5,12,22)(6,17,25)(7,15,26)(8,16,24)(9,18,27)

We easily check that the above-named groups are transitive on Ω and we conclude:

Lemma 1.2.1. There are, up to isomorphism, five transitive 3-groups of degree

33 and order 27, namely the groups G1,3 (of exponent 27), G2,3 and G4,3 (of exponent

9) and G3,3 and G5,3 (of exponent 3) described above.

When n = 4, then |G| = 81 and for transitivity we must have

|αG| = 27, |Gα| = 3, ∀α ∈ Ω.

Thus G must not be abelian and we have the following possibilities for G:

G ∼= G1,4 =< a, b : a27 = 1, b3 = 1, ab = ba10 > or G ∼= G2,4 =< G2,3, c >, with

c3=1, G2,3/G2,4. or G ∼= G3,4 =< G3,3, d > with d3=1, G3,3/G3,4 or G4,4 =< G4,3, c >

with c3=1, G4,3/G4,4. or G ∼= G5,4 =< G5,3, d > where d3=1, G5,3/G5,4 or G ∼=
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G6,4 =< a, b : a9 = 1, b9 = 1, ab = ba4 > or G ∼= G7,4 =< K, c >, with c9=1,

K ∼= C3 × C3, K/G7,4. Of these groups only four satisfy the requirements for G,

namely G1,4, G3,4, G4,4 and G5,4.

Now taking a = (1, 2, . . . , 27) and by an argument similar to the case n = 3, we

get b=(1,19,10)(3,12,21)(4,22,13)(6,15,24)(7,25,16)(9,18,27).

For G4,4, we have a presentation as follows:

G4,4 =< a, b, c : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca, bc = ca6b >, where the

generators a and b are the same for G4,3 and

c=(1,4,7)(2,5,8)(3,6,9)(19,25,22)(20,26,23)(21,27,24)

(obtained by a Gap-programme(see PROGRAMME 2)). For G3,4, we have a presen-

tation as follow:

G3,4 =< a, b, c : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = ca, bc = cb, d3 = 1, ad = dab,

bd = db, cd = dc >, where a, b and c are the same generators of G3,3 and

d=(1,27,18)(2,24,14)(3,19,15)(4,21,11)(5,22,12)(6,26,16) (7,23,10)(8,20,12)(9,20,16).

For G5,4, we have the presentation as follows:

G5,4 =< a, b, c, d : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = cb, bc = ca2b2, d3 = 1, ad = da,

bd = db, cd = dc > when a, b, c are the same generators of G6,3 and

d = (1, 27, 11)(2, 19, 18)(3, 23, 13)(4, 21, 14)(5, 22, 12)(6, 26, 16)(7, 24, 17)(8, 25, 15)(9, 20, 10).

We easily check that the above-named groups are transitive on Ω and we conclude:

Lemma 1.2.2. There are, up to isomorphism, four transitive 3-groups of degree

33 and order 81, namely the non-abelian groups G1,4 (exponent 27), G4,4 (exponent

9), G3,4 and G5,4 (both of exponent 3) described above.

When n=5, then|G| = 243 and for transitivity we must have

|αG|=27, |Gα|=9,∀α ∈ Ω. Thus G must be non-abelian and we have the following

possibilities for G:

G ∼= G1,5 =< G1,4, c > with c3=1, G1,4/G1,5 or G ∼= G2,5 =< G4,4, d > with d3=1,

G4,4/G2,5 or G ∼= G3,5 =< G3,4, d > with e3=1, G5,4/G4,5 or G ∼= G5,5 =< K, c >

with c3=1,

K ∼= C27 × C3, K/G9,5 or G ∼= G6,5 =< G2,3, c > with c9=1,

G2,3/G6,5 or G ∼= G7,5 =< K, c > with c27=1,
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K ∼= C3 × C3, K/G7,5 or G ∼= G8,5 =< K, d > where d3=1,

K ∼= C9 × C3 × C3, K/G8,5 or G ∼= G9,5 =< K, d > where c3=1,

K ∼= C9 × C9, K/G9,5 or G ∼= G10,5 =< K, d >, where d3=1,

K ∼= C9 × C3 × C3, K/G10,5 or G ∼= G11,5 =< G6,3, d > where d9=1,

G6,3/G11,5 or G ∼= G12,5 =< K, d >, where d9=1,

K ∼= C3 × C3 × C3, K/G12,5 or G ∼= G13,5 =< K, d >, where d3=1,

K ∼= C9 × C3 × C3, K/G13,5.

For obvious reasons, only G1,5, G3,5, G4,5 and G2,5 satisfy the requirements for G.

For G1,5, we obtain as a presentation:

G1,5 =< a, b, c : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = cb, ac = ca10b2 >, where a,

b are the same generators of G1,4 and c = (1,19,10)(4,22,13)(7,25,16) (obtained by a

modification to PROGRAMME 2).

For G3,5, we have a presentation as follows:

G3,5 =< a, b, c, d, e : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = ca, bc = cb, d3 = 1, ad = dab,

bd = db, cd = dc, e3 = 1, ae = ea, be = eb, ce = eb2c, de = eb2d >, where a, b, c, d are

the same generators of G3,4 and

e = (1,14,21)(2,12,22)(3,16,26)(4,17,24)(5,15,25)(6,10,20)(7,11,27)(8,18,19)(9,13,23).

For G4,5, we have a presentation as follows:

G4,5 =< a, b, c, d, e : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = cb, bc = ca2b2, d3 = 1,

ad = da, bd = db, cd = dc, e3 = 1, ae = ea, be = eb, ce = ec, de = eab2d >, where a, b,

c, d are the same generators of G5,4 and

e = (1,3,8)(2,4,6)(5,7,9)(10,13,16)(11,14,17)(12,15,18)(19,23,24)(20,21,25)(22,26,27).

For G2,5, we have:

G2,5 =< a, b, c, d : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca, bc = ca6b, d3 = 1, ad = da,

bd = da6bc2, cd = da6c >, where the generators a, b, c are the same for G4,4 and

d=(1,27,11)(2,19,12)(3,20,13)(4,21,14)(5,22,15)(6,23,16)(7,24,17) (8,25,18)(9,26,10).

Hence we have:

Lemma 1.2.3. There are, up to isomorphism, four transitive 3-groups of degree

33 and order 243, namely the non-abelian groups G1,5 (exponent 27), G2,5 (of exponent

9), G3,5 and G4,5 (of exponent 3) described above.
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When n=6, thenG = 729 and for transitivity we must have

|αG|=27, Gα|=27, ∀α ∈ Ω. Thus G must be non-abelian and we have the following

possibilities for G: G ∼= G1,6 = < G1,5, d > with d3=1, G1,5/G9,6 or G ∼= G2,6 =

< G2,5, e > with e3=1,

G1,5/G2,6 or G ∼= G3,6 =< G3,5, f > with f 3=1,

G3,5/G3,6 or G ∼= G4,6 =< G4,5, f > with f 3=1,

G4,5/G4,6 or G ∼= G13,6 =< K, c > with c27=1,

K ∼= C9 × C3, K/G13,6 or G ∼= G14,6 =< G4,3, c > with c27=1,

G4,3/G14,6 or G ∼= G15,6 =< G3,3, d > where d27=1,

G3,3/G15,6 or G ∼= G16,6 =< G5,2, d > where d27=1,

G5,2/G16,6 or G ∼= G17,6 =< K, d > with d3=1,

K ∼= C9 × C9 × C3, K/G17,6 or G ∼= G18,6 =< K, e > where e9=1,

K ∼= C3 × C3 × C3 × C3, K/G18,6 or G ∼= G19,6 =< K, e > where e3=1,

K ∼= C9 × C3 × C3 × C3, K/G19,6 or G ∼= G20,6 =< G3,4, e >, where e9=1,

G3,4/G20,6 or G ∼= G21,6 =< G5,4, e > where e9=1,

G5,4/G21,6 or G ∼= G22,6 =< K, f >, where f 3=1,

K ∼= C3 × C3 × C3 × C3 × C3, K/G22,6

It is readily seen that of the above groups, G9,6, G10,6,G11,6 and G12,6 are accept-

able.

For G9,6, we have a presentation:

G9,6 =< a, b, c, d : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = cb, ac = ca10b2, d3 = 1,

ad = da19c2, bd = db, cd = dc >, where a, b, c are the same for G10,5 and

d = (1,10,19)(3,21,12)(4,22,13)(5,14,23)(8,26,17)(9,18,27)

For G10,6, we have a presentation:

G10,6 =< a, b, c, d, e, f : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = ca, bc = cb, d3 = 1,

ad = dab, bd = db, cd = dc, e3 = 1, ae = ea, be = eb, ce = eb2c, de = eb2d, f 3 = 1,

af = fa, bf = fb, cf = fab2e, ef = fabc2e2 >, where a, b, c, d, e are the same

generators of G16,5 and

f = (1,3,8)(2,4,6)(5,7,9)(10,12,17)(11,13,15)(14,16,18)(19,20,27)(21,22,23) (24,25,26).

For G11,6, we have a presentation as follows:
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G11,6 =< a, b, c, d, e, f : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = cb, bc = ca2b2, d3 = 1,

ad = da, bd = db, cd = dc, e3 = 1, ae = ea, be = eb, ce = ec, de = eab2d,

f 3 = 1, af = fa, bf = fb, cf = fac, df = fde2, ef = fe >, where a, b, c, d, e are

the same generators of G5,4 and

f = (1,5,6)(2,3,7)(4,8,9)(10,16,13)(11,17,14)(12,18,15).

We notice here that G10,6 and G11,6 aer non-isomorphic and are of exponent 9.

For G12,6, we have a representation as follows:

G12,6 =< a, b, c, d, e : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca, bc = ca6b, d3 = 1,

ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb, ce = ea3c, de = ecd >, where

the generators a, b, c and d are the same for G2,5 and

e=(1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25) (8,17,26)(9,18,27).

Clearly, G12,6 is neither isomorphic to G10,6 nor to G11,6. Moreover, Gap-programme

and computations in Sym(27) show that there are no transitive p-groups of degree

p3, exponent p and orders greater than and equal to 36. Hence we have:

Lemma 1.2.4. There are, up to isomorphism, four transitive 3-groups of degree

33 and order 729, namely the non-abelian groups G9,6 (of exponent 27), G11,6, G12,6

and G10,6 (of exponent 9) described above.

When n=7, then |G| = 2187 and for transitivity we must have

|αG|=27, |Gα|=81, ∀α ∈ Ω.

Thus, G must be non-abelian and arguing in a fashion similar to the case n=6,

we have the following five representations for G as follows:

G1,7 =< a, b, c, d, e : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = cb, ac = ca10b2,

d3 = 1, ad = da19c2, bd = db, cd = dc, e3 = 1, ae = eab2d, be = eb, ce = ec, de = ed >,

where a, b, c, d are the same generators of G9,6 and

e = (1,19,10)(2,20,11)(5,14,23)(7,16,25).

G2,7 =< a, b, c, d, e, f, g : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = cb, bc = ca2b2,

d3 = 1, ad = da, bd = db, cd = dc, e3 = 1, ae = ea, be = eb, ce = ec, de = eab2d,

f 3 = 1, af = fa, bf = fb, cf = fac, df = fde2, ef = fe, g3 = 1, ag = ga,

bg = gb, cg = ga2bce, dg = ga2b2de, eg = ge, fg = gf >, where a, b, c, d, e, f

are the same generators of G11,6 and
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g = (1,4,7)(2,5,8)(3,6,9)(10,15,14)(11,16,12)(13,18,17).

G3,7 =< a, b, c, d, e, f : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca, bc = ca6b, d3 = 1,

ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb, ce = ea3c, de = ecd, f 3 = 1,

af = fa7b2c2e, bf = fa3b2ce2, cf = fc, df = fd, ef = fbc >, where a, b, c, d, e, are

the same generators of G12,6 and

f = (1,4,7)(3,6,9)(10,13,16)(11,14,17)(20,23,26)(21,24,27).

G4,7 =< a, b, c, d, e, f, g : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = ca, bc = cb, d3 = 1,

ad = dab, bd = db, cd = dc, e3 = 1, ae = ea, be = eb, ce = eb2c, de = eb2d, f 3 = 1,

af = fa, bf = fb, cf = fab2e, ef = fabc2e2, g3 = 1, ag = gab2c2d2, bg = gb, cg = gc,

eg = ga2cde, fg = gabdef >, where a, b, c, d, e, f are the same generators of G10,6

and

g = (1,27,18)(2,24,14)(3,19,15)(4,21,12)(5,22,13)(6,26,17)(7,23,10) (8,25,16)(9,20,11).

G5,7 =< a, b, c, d : a9 = 1, b9 = 1, ab = ba, c9 = 1, ac = ca, bc = cb, d3 = 1, ad = da,

bd = dab8c4, cd = db2 >, with generators a, b, c and d given as:

a=(1, 2, . . . , 9)(10, 11, . . . , 18)(19, 20, . . . , 27), b=(1, 2, . . . , 9),

c=(10, 12, 14, 16, 18, 11, 13, 15, 17)

d=(1,27,11)(2,19,12)(3,20,13)(4,21,14)(5,22,15)(6,23,16)(7,24,17)(8,25,18) (9,26,10).

Now we easily see that G3,7
∼= G4,7. Hence, we have:

Lemma 1.2.5. There are, up to isomorphism, four transitive 3-groups of degree

33 and order 2187, namely the non-abelian groups G1,7, G5,7 (both of exponent 27),

G2,7, G3,7 (both of exponent 9) described above.

When n = 8, then|G| = 6561 and for transitivity we must have

|αG| = 27, |Gα| = 243, ∀α ∈ Ω.

Thus G must be non-abelian and arguing in a fashion similar to case n=6, we

have the following presentations for G:

G1,8 =< a, b, c, d, e, f : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = bc, ac = ca10b2,

d3 = 1, ad = da19c2, bd = db, cd = dc, e3 = 1, ae = eab2d, be = eb, ce = ec,

de = ed, f 3 = 1, af = fa10bcde2, bf = fb, cf = fc, df = fd, , ef = fe >, where

a, b, c, d, e, are the same for G1,7 and

f=(1,10,19)(3,12,21)(4,22,13)(6,24,15).
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G2,8 =< a, b, c, d, e, f, g, h : a3 = 1, b3 = 1, ab = ba, c3 = 1, ac = cb, bc = ca2b2,

d3 = 1, ad = da, bd = db, cd = dc, e3 = 1, ae = ea, be = eb, ce = ec, de = eab2d,

af = fa, bf = fb, cf = face2, df = fa2de, ef = fe, g3 = 1, ag = ga, bg = gb,

cg = gce2, dg = gabde2, eg = ge, fg = gf, h3 = 1, ah = ha, bh = hb, ch = hce2g,

dh = habdfg, eh = he, fh = hf, gh = hg >, where a, b, c, d, e, f , g are the same

generators for G11,7 and h = (1,3,8)(2,4,8)(5,7,9).

G3,8 =< a, b, c, d, e, f, g : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca, bc = ca6b,

d3 = 1, ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb, ce = ea3c,

de = ecd, f 3 = 1, af = fa7b2c2e, bf = fa3b2ce2, cf = fc, df = fd, ef = fbc,

g3 = 1, ag = gac, bg = ga3ce, cg = gc, dg = ga3bc2de2, eg = gb2ce2, fg = gf >, where

the generators a, b, c, d, e, f , are the same generators for G3,7 and

g = (1,4,7)(2,8,5)(19,22,25) (21,27,24).

We easily see that G3,8
∼= G2,8. G4,8 =< a, b, c, d, e : a9 = 1, b9 = 1, ab = ba, c9 = 1,

ac = ca, bc = cb, d3 = 1, ad = da, bd = dab8c4, cd = db2, e3 = 1, ae = ea4, be = eb4,

ce = ec4, de = ea6d >, where the generators a, b, c and d are the same for G1,7 and

e=(2,5,8)(3,9,6)(11,14,17)(12,18,15)(20,23,26)(21,27,24).

Hence we have:

Lemma 1.2.6. There are, up to isomorphism, three transitive 3-groups of degree

33 and order 6561, namely the non-abelian groups G1,8, G4,8 (both of exponent 27)

and G3,8 (of exponent 9) described above.

When n=9, then |G|=19683 and for transitivity we must have

|αG|=27,Gα|=729, ∀α ∈ Ω.

Thus, G must be non-abelian and arguing in a fashion similar to case n=6, we

have as presentations for G:

G1,9 =< a, b, c, d, e, f, g : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = bc, ac = ca10b2,

d3 = 1, ad = da19c2, bd = db, cd = dc, e3 = 1, ae = eab2d, be = eb, ce = ec,

de = ed, f 3 = 1, af = fa10bcde2, bf = fb, cf = fc, df = fd, ef = fe, g3 = 1,

ag = ga19cd2e2f 2, bg = gb, cg = gc, dg = gd, eg = ge, fg = gf >, where a, b, c, d, e,

f are the same for G1,8 and g=(1,10,19)(2,11,20)(9,18,27).

G2,9 =< a, b, c, d, e, f, g, h : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca, bc = ca6b,
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d3 = 1, ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb, ce = ea3c,

de = ecdf 3 = 1, af = fa7b2c2e, bf = fa3b2ce2, cf = fc, df = fd, ef = fbc, g3 = 1,

ag = gac, bg = ga3ce, cg = gc, dg = ga3bc2de2, eg = gb2ce2, fg = gf, h3 = 1,

ah = ha3b2c2d2, bh = ha4b2c2dg, ch = hc, dh = hbde2g2, eh = ha4bcdeg, hg = gh,

fh = hf >, where the generators a, b, c, d, e, f , g are the same for G3,8 and

h = (1,4,7)(3,6,9)(12,18,15)(21,27,24).

G3,9 =< a, b, c, d, e, f : a9 = 1, b9 = 1, ab = ba, c9 = 1, ac = ca, bc = cb, d3 = 1,

ad = da, bd = dab8c4, cd = db2, e3 = 1, ae = ea4, be = eb4, ce = ec4, de = ea6d, f 3 = 1,

af = fa4b3c3, bf = fb7, cf = fc, df = fa3b6c6de2, ef = fe >, where the generators a,

b, c, d, e, are the same for G1,8 and f = (1,7,4)(2,5,8)(19,22,25)(20,26,23).

Hence, we have:

Lemma 1.2.7. There are, up to isomorphism, three transitive 3-groups of degree

33 and order 19683, namely the non-abelian groups G1,9, G3,9 (both of exponent 27)

and G2,9 (of exponent 9) described above.

When n=10, then |G| = 59049 and for transitivity we must have

|αG|=27, |Gα|=2187.

Thus G must be non-abelian and arguing in a fashion similar to case n=6, we

have the following presentations for G:

G1,10 =< a, b, c, d, e, f, g, h : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = bc, ac = ca10b2,

d3 = 1, ad = da19c2, bd = db, cd = dc, e3 = 1, ae = eab2d, be = eb, ce = ec, de = ed,

f 3 = 1, af = fa10bcde2, bf = fb, cf = fc, df = fd, ef = fe, g3 = 1, ag = ga19cd2e2f 2,

bg = gb, cg = gc, dg = gd, eg = ge, fg = gf, h3 = 1, ah = hac2dg2, bh = hb, ch = hc,

dh = hd, eh = he, fh = hf, gh = hg >, where a, b, c, d, e, f , g are the same for G1,9

and h=(1,10,19)(3,21,12)(4,22,13)(7,16,25).

G3,10 =< a, b, c, d, e, f, g, h, k : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca, bc = ca6b,

d3 = 1, ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb, ce = ea3c, de = ecd,

f 3 = 1, af = fa7b2c2e, bf = fa3b2ce2, cf = fc, df = fd, ef = fbc, g3 = 1, ag = gac,

bg = ga3ce, cg = gc, dg = ga3bc2de2, eg = gb2ce2, fg = gf, h3 = 1, ah = ha3b2c2d2,

bh = ha4b2c2dg, ch = hc, dh = hbde2g2, eh = ha4bcdeg, hg = gh, fh = hf, k3 = 1,

ak = kd2e2g, bk = ka4bcdef, ck = kc, dk = kcdf 2g2, ek = ka7de2f, fk = kf, gk = kg,
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hk = kh >, where the generators a, b, c, d, e, f , g, h are the same for G3,9 and

k=(1,4,7)(10,13,16)(12,18,15)(21,27,24).

G2,10 =< a, b, c, d, e, f, g : a9 = 1, b9 = 1, ab = ba, c9 = 1, ac = ca, bc = cb, d3 = 1,

ad = da, bd = dab8c4, cd = db2, e3 = 1, ae = ea4, be = eb4, ce = ec4, de = ea6d, f 3 = 1,

af = fa4b3c3, bf = fb7, cf = fc, df = fa3b6c6de2, ef = fe, ag = gab3, bg = gb4,

cg = gc, dg = gb3c6df 2, eg = ge, fg = gf >, where the generators a, b, c, d, e, f are

the same for G1,9 and g=(1,7,4)(3,6,9).

Hence we have:

Lemma 1.2.8. There are, up to isomorphism, three transitive 3-groups of degree

33 and order 59049, namely the non-abelian groups G1,10, G2,10 (of exponent 27) and

G3,10 (of exponent 9) described above.

When n=11, then |G|=177147 and for transitivity we must have

|αG|=27, |Gα|=6561 ∀α ∈ Ω.

Thus G must be non-abelian and arguing in a fashion similar to case n=6, we

have the following presentations for G as follows:

G1,11 =< a, b, c, d, e, f, g, h, k : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = bc,

ac = ca10b2, d3 = 1, ad = da19c2, bd = db, cd = dc, e3 = 1, ae = eab2d, be = eb,

ce = ec, de = ed, f 3 = 1, af = fa10bcde2, bf = fb, cf = fc, df = fd, ef = fe, g3 = 1,

ag = ga19cd2e2f 2, bg = gb, cg = gc, dg = gd, eg = ge, fg = gf, h3 = 1, ah = hac2dg2,

bh = hb, ch = hc, dh = hd, eh = he, fh = hf, gh = hg, k3 = 1, ak = kab2d2e2fgh,

bk = kb, ck = kc, dk = kd, ek = ke, fk = kf, gk = kg, hk = kh >, where a, b, c, d, e,

f , g, h are the same for G1,10 and k=(1,10,19)(5,14,23)(6,24,15)(8,17,26).

G3,11 =< a, b, c, d, e, f, g, h, k,m : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca,

bc = ca6b, d3 = 1, ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb,

ce = ea3c, de = ecd, f 3 = 1, af = fa7b2c2e, bf = fa3b2ce2, cf = fc, df = fd,

ef = fbc, g3 = 1, ag = gac, bg = ga3ce, cg = gc, dg = ga3bc2de2, eg = gb2ce2,

fg = gf, h3 = 1, ah = ha3b2c2d2, bh = ha4b2c2dg, ch = hc, dh = hbde2g2,

eh = ha4bcdeg, hg = gh, fh = hf, k3 = 1, ak = kd2e2g, bk = ka4bcdef, ck = kc,

dk = kcdf 2g2, ek = ka7de2f, fk = kf, gk = kg, hk = kh, m3 = 1, am = ma8cdefgh2,

bm = ma4bdef 2g2h2k2, cm = mc, dm = mbc2de2fg2h2k, em = mae2de2f 2g2k2,
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fm = mf, gm = mg, hm = mh, km = mk >, where the generators a, b, c, d, e, f, g, h, k

are the same for G3,10 and m=(1,4,7)(10,13,16)(11,14,17)(12,15,18).

G2,11 =< a, b, c, d, e, f, g, h : a9 = 1, b9 = 1, ab = ba, c9 = 1, ac = ca, bc = cb,

d3 = 1, ad = da, bd = dab8c4, cd = db2, e3 = 1, ae = ea4, be = eb4, ce = ec4,

de = ea6d, f 3 = 1, af = fa4b3c3, bf = fb7, cf = fc, df = fa3b6c6de2, ef = fe,

ag = gab3, bg = gb4, cg = gc, dg = gb3c6df2, eg = ge, fg = gf, h3 = 1,

ah = hab6c3e, bh = hb, ch = ha6b3c7e2fg2, dh = ha6c3def 2, he = eh, hf = fh,

hg = gh >, where the generators a, b, c, d, e, f, g are the same for G1,10 and

h = (1,7,4)(2,8,5)(12,15,18)(20,23,26).

Hence we have:

Lemma 1.2.9.There is, up to isomorphism, three transitive 3-groups of degree 33

and order 177147, namely the non-abelian groups G1,11, G2,11 (of exponent 27) and

G3,11 (of exponent 9) described above.

When n=12, then |G| = 531441 and for transitivity we must have

|αG| = 27, |Gα| = 19683,∀α ∈ Ω.

Thus G must be non-abelian and, arguing in a fashion similar to case n=6, we

have the following presentations for G:

G1,12 =< a, b, c, d, e, f, g, h, k, m : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = bc,

ac = ca10b2, d3 = 1, ad = da19c2, bd = db, cd = dc, e3 = 1, ae = eab2d, be = eb, ce = ec,

de = ed, f 3 = 1, af = fa10bcde2, bf = fb, cf = fc, df = fd, ef = fe, g3 = 1,

ag = ga19cd2e2f 2, bg = gb, cg = gc, dg = gd, eg = ge, fg = gf, h3 = 1,

ah = hac2dg2, bh = hb, ch = hc, dh = hd, eh = he, fh = hf, gh = hg, k3 = 1,

ak = kab2d2e2fgh, bk = kb, ck = kc, dk = kd, ek = ke, fk = kf, gk = kg,

hk = kh, m3 = 1, am = ma16bcdefg2h, bm = mb, cm = mc, dm = ma9bd,

em = ma18bc, fm = mb2cf, gm = mcd2eg, hm = ma18b2c2f 2h, km = mbcde2k >,

where a, b, c, d, e, f, g, h, k are the same for G1,11 and

m = (1,10,19)(2,17,5)(3,6,27)(7,16,25)(8,23,20)(9,12,15)(11,26,14)(18,21,24).

G3,12 =< a, b, c, d, e, f, g, h, k, m, n : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca,

bc = ca6b, d3 = 1, ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb,

ce = ea3c, de = ecd, f 3 = 1, af = fa7b2c2e, bf = fa3b2ce2, cf = fc, df = fd,
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ef = fbc, g3 = 1, ag = gac, bg = ga3ce, cg = gc, dg = ga3bc2de2, eg = gb2ce2,

fg = gf, h3 = 1, ah = ha3b2c2d2, bh = ha4b2c2dg, ch = hc, dh = hbde2g2,

eh = ha4bcdeg, hg = gh, fh = hf, k3 = 1, ak = kd2e2g, bk = ka4bcdef, ck = kc,

dk = kcdf 2g2, ek = ka7de2f, fk = kf, gk = kg, hk = kh, m3 = 1, am = ma8cdefgh2,

bm = ma4bdef 2g2h2k2, cm = mc, dm = mbc2de2fg2h2k, em = mae2de2f 2g2k2,

fm = mf, gm = mg, hm = mh, km = mk, n3 = 1, an = nab2d2e, bn = nbcdf 2g,

cn = na6bc2e2, dn = nd, en = na3bc2df 2g, fn = nf, gn = nbce2fg, hn = na6b2cef 2gk,

kn = na6b2cef 2gh2k2, mn = nbe2f 2h2km >, where the generators a, b, c, d, e, f , g,

h, k, m are the same for G3,11 and

n=(1,11,27)(2,25,15)(4,14,21)(5,19,18)(7,17,24)(8,22,12).

G2,12 =< a, b, c, d, e, f, g, h, k : a9 = 1, b9 = 1, ab = ba, c9 = 1, ac = ca, bc = cb,

d3 = 1, ad = da, bd = dab8c4, cd = db2, e3 = 1, ae = ea4, be = eb4, ce = ec4,

de = ea6d, f 3 = 1, af = fa4b3c3, bf = fb7, cf = fc, df = fa3b6c6de2, ef = fe,

ag = gab3, bg = gb4, cg = gc, dg = gb3c6df2, eg = ge, fg = gf, h3 = 1,

ah = hab6c3e, bh = hb, ch = ha6b3c7e2fg2, dh = ha6c3def 2, he = eh, hf = fh,

hg = gh, ak = ka4c3f, bk = kb7g2, ck = kc, dk = kc6de2fgh2, ek = ke, fk = kf,

gk = kg, hk = kh >, where the generators a, b, c, d, e, f , g, h are the same for G1,11

and k = (2,8,5)(21,24,27).

Hence we have:

Lemma 1.2.10. There are, up to isomorphism, three transitive 3-groups of degree

33 and order 531441, namely the non-abelian groups G1,12, G2,12 (of exponent 27) and

G3,12 (of exponent 9) described above.

When n=13, then |G|=1594323 and for transitivity we must have

|αG|=27, |Gα|=19683, ∀α ∈ Ω.

Thus G must be non-abelian and arguing in a fashion similar to case n=6, we

have the following presentations for G:

G1,13 =< a, b, c, d, e, f, g, h, k,m, n : a27 = 1, b3 = 1, ab = ba10, c3 = 1, bc = bc,

ac = ca10b2, d3 = 1, ad = da19c2, bd = db, cd = dc, e3 = 1, ae = eab2d, be = eb,

ce = ec, de = ed, f 3 = 1, af = fa10bcde2, bf = fb, cf = fc, df = fd, ef = fe, g3 = 1,

ag = ga19cd2e2f 2, bg = gb, cg = gc, dg = gd, eg = ge, fg = gf, h3 = 1, ah = hac2dg2,
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bh = hb, ch = hc, dh = hd, eh = he, fh = hf, gh = hg, k3 = 1, ak = kab2d2e2fgh,

bk = kb, ck = kc, dk = kd, ek = ke, fk = kf, gk = kg, hk = kh, m3 = 1,

am = ma16bcdefg2h, bm = mb, cm = mc, dm = ma9bd, em = ma18bc,

fm = mb2cf, gm = mcd2eg, hm = ma18b2c2f 2h, km = mbcde2k, n3 = 1,

an = na16cd2fh2km2, bn = nb, cn = nc, dn = nb2cd, en = ne, fn = nb2cf,

gn = na9c2defg, hn = na18b2c2d2e2f 2h, kn = na18bd2e2f 2k, mn = na18b2d2fm >,

where a, b, c, d, e, f, g, h, k,m and n are the same for G1,12 and

n = (1,10,19)(12,24,27)(6,9,21)(3,15,18)(8,26,17)(7,25,16)(5,23,14).

G3,13 =< a, b, c, d, e, f, g, h, k, m, n, p : a9 = 1, b3 = 1, ab = ba4, c3 = 1, ac = ca,

bc = ca6b, d3 = 1, ad = da, bd = da6bc2, cd = da6c, e3 = 1, ae = ea, be = eb,

ce = ea3c, de = ecd, f 3 = 1, af = fa7b2c2e, bf = fa3b2ce2, cf = fc, df = fd,

ef = fbc, g3 = 1, ag = gac, bg = ga3ce, cg = gc, dg = ga3bc2de2, eg = gb2ce2,

fg = gf, h3 = 1, ah = ha3b2c2d2, bh = ha4b2c2dg, ch = hc, dh = hbde2g2,

eh = ha4bcdeg, hg = gh, fh = hf, k3 = 1, ak = kd2e2g, bk = ka4bcdef, ck = kc,

dk = kcdf 2g2, ek = ka7de2f, fk = kf, gk = kg, hk = kh, m3 = 1, am = ma8cdefgh2,

bm = ma4bdef 2g2h2k2, cm = mc, dm = mbc2de2fg2h2k, em = mae2de2f 2g2k2,

fm = mf, gm = mg, hm = mh, km = mk, n3 = 1, an = nab2d2e, bn = nbcdf 2g,

cn = na6bc2e2, dn = nd, en = na3bc2df 2g, fn = nf, gn = nbce2fg, hn = na6b2cef 2gk,

kn = na6b2cef 2gh2k2,mn = nbe2f 2h2km, n3 = 1, ap = pa7bc2de2f 2n, bp = pceg2h2kn2,

cp = pa3cf 2, dp = pd, ep = pc2ef 2g2h2kn2, fp = pf, gp = pa6fg, hp = pb2efg2h2k2,

kp = pb2efg2h, np = pn >, where the generators a, b, c, d, e, f, g, h, k, m, n are the

same for G3,12 and

p=(1,4,7)(2,12,19)(5,15,22)(8,18,25)(11,14,17)(21,24,27).

G2,13 =< a, b, c, d, e, f, g, h, k, l : a9 = 1, b9 = 1, ab = ba, c9 = 1, ac = ca,

bc = cb, d3 = 1, ad = da, bd = dab8c4, cd = db2, e3 = 1, ae = ea4, be = eb4, ce = ec4,

de = ea6d, f 3 = 1, af = fa4b3c3, bf = fb7, cf = fc, df = fa3b6c6de2, ef = fe,

ag = gab3, bg = gb4, cg = gc, dg = gb3c6df 2, eg = ge, fg = gf, h3 = 1, ah = hab6c3e,

bh = hb, ch = ha6b3c7e2fg2, dh = ha6c3def 2, he = eh, hf = fh, hg = gh,

ak = ka4c3f, bk = kb7g2, ck = kc, dk = kc6de2fgh2, ek = ke, fk = kf, gk = kg,

hk = kh, l3 = 1, al = la7b6c6f 2g2, bl = lb, cl = lc, dl = lb6defghk, el = le,
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fl = lf, gl = lg, hl = lh, kl = lk >, where the generators a, b, c, d, e, f, g, k are

the same for G1,12 and l=(21,27,24).

Hence we have:

Lemma 1.2.11. There are, up to isomorphism, three transitive 3-groups of degree

33 and order 1594323, namely the non-abelian groups G1,13, G2,13 (of exponent 27)

and G3,13 (of exponent 9) described above.

We summarize our findings:

|G| = 3n Number of Number of Number of

transitive transitive non- transitive 3-
abelian 3-group of abelian 3-group of groups of degree
degree 27 up to degree 27 up to 27 up to
isomorphism isomorphism isomorphism

n=1 3 0 0 0
n=2 9 0 0 0
n=3 27 3 2 5
n=4 81 0 4 4
n=5 243 0 4 4
n=6 729 0 4 4
n=7 2187 0 4 4
n=8 6561 0 3 3
n=9 19683 0 3 3
n=10 59049 0 3 3
n=11 177147 0 3 3
n=12 531441 0 3 3
n=13 1594323 0 3 3
Total 3 36 39

We may state:

Proposition 1.2.12. There are, up to isomorphism, 39 transitive 3 - groups of

degree 33, three of these are abelian. Of the remaining 36 non - abelian, 17 are of

exponent 27, 13 are of exponent 9 and 6 are of exponent 3.
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PROGRAMME 1: PROGRAMME 2:

gap>s8:=Group((1,2),(1,2,3,4,5,6,7,8));; gap>s8:=SymmetricGroup(8);;
gap> a:=(1,2,3,4,5,6,7,8);; gap> a:=(1,2,3,4,5,6,7,8);;
b:=(1,7)(3,5)(4,8);; b:=(1,7)(3,5)(4,8);;c:=(1,3)(4,8)(5,7);;
gap > h:=Subgroup(s8,[a,b]);; gap>H:=Subgroup(s8,[a,b,c]);;
gap > diff:= Difference(s8,h);; gap > diff:=Difference(s8,H);;
gap > req:= [];; gap > req:=[];;
gap > for c in diff do gap > for r in diff do
> if c^2=() then > if r^2=() then
> if b^c=b then > if Order(s8,r)<>4 then
> if a^c=a^7 then > if Order(s8,r)<>8 then
> Add(req,c); > if a^r in H then
> fi; > if b^r in H then
> fi; > if c^r in H then
> fi; > if Size(Subgroup(s8,[a,b,c,r]))=64 then
> od; > Add(req,r);
gap>req; > fi;
[(1,3)(4,8)(5,7),(1,7)(2,6)(3,5)] > fi;

> fi;
> fi;
> fi;
> fi;
> fi;
> fi;
> od;
gap>req;
[(3,7)(4,8),(2,6)(3,7),(1,2)(3,4)(5,6)(7,8)
(1,3)(2,4)(5,7)(6,8),(1,3)(2,8)(4,6)(5,7),
(1,4)(2,7)(3,6)(5,8),(1,5)(4,8),(1,5)(2,6),
((1,6)(2,5)(3,8)(4,7),(1,7)(2,4)(3,5)(6,8),
(1,7)(2,8)(3,5)(4,6),(1,8)(2,3)(4,5)(6,7)]
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