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Abstract. In this paper we achieve a classification of transitive 3-groups of degrees 9 and
27. Other unique properties of these groups are discovered as a result.

INTRODUCTION

Let G be a group acting on a non-empty set 2. The action of G on (2 is said to
be transitive if for any «a, 3 in €2 there exists some ¢ in G such that g = «ag. In this
case Q] is called the degree of G on Q. In [4], M. S. Audu, determined the number
of transitive p-groups of degree p* and in [10], E. Apine, achieved a classification
of transitive and faithful p-groups (abelian and non-abelian) of degrees at most p?
whose center is elementary abelian of rank two. In this paper, we determine, up to
equivalence, the actual transitive p-groups (abelian and non-abelian) of degrees p?

and p3 for p = 3 and achieve a classification according to small degrees.
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1. RESULTS

1.1 TRANSITIVE 3-GROUPS OF DEGREE 3% =9

Let G be a transitive 3-group of degree 3%, then |G| = 3", n=1,2,3,4. Clearly,
n # 1 and when n = 2, then |G|=9, G is essentially abelian and either G = Cy
or G = (O3 x C3. For transitivity,|a%| = 9, |Ga| = 1, Va € Q If G = (, then
G = G5 =< a >, with generator, say, a = (1,2,3,4,5,6,7,8,9). If G = C5 x Cs,
then G = Gop =< a,b : a® = 1,0 = 1, ab = ba > with generators, say, a =
(1,4,7)(2,5,8)(3,6,9) and b = (1,2,3)(4,5,6)(7,8,9).

Clearly G 3 and Go 9 are transitive on ) and we have:

Lemma 1.1.1. There are, up isomorphism, two transitive 3-groups of degree 9
and order 9, namely the abelian groups G2 and Gy 3 described above.

When n=3, then |G|=27 and for transitivity we must have |a%=9, |G,|=3,Ya € Q.

Here G is non-abelian and we have the following possibilities for G: G = G 3 =<
a,b:a =1, =1,ab=ba" > or G = Gy3 =< Gog,c > with 3=1, G9249G> 3.

Consider first G13 =< a,b:a’ =1,b% = 1,ab = ba* > with a=(1,2,3,4,5,6,7,8,9),
then, b=(2,5,8)(3,9,6) (obtained by a Gap-programme (see PROGRAMME 1)).

For the case G 3, we obtain a presentation as follows:
Ga3 =< a,b,c:a®=1,ab=ba,c® =1,ac = cab,bc = cb >, with, say, generators
a=(1,3,2)(4,6,5)(7,9,8), b = (1,5,8)(3,4,7)(6,9,2) and ¢ = (2,9,6)(3,4,7) (ob-
tained by a modification to PROGRAMME 1). Clearly the above groups are transi-

tive on €2 and thus:

Lemma 1.1.2. There are, up to isomorphism, two transitive 3-groups of degree
9 and order 27, namely the non-abelian groups G13 and Gz described above.

When n = 4, |G|=81 and for transitivity, |a%, |G.|=9 Va € Q.

Thus G is non-abelian and the following are the possibilities for G: G = G4 =
< (1 3,c >, where =1, G139G 14 or G = Gy =< Ga3,d >, where 43 =1, G2,39Go 4

For G 4, we have as a presentation:

Gy =<a,byc:a®=1,%=1,ab=ba*,c* = 1,ac = ca’,bc = cb >, where a and b
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are the same generators as those of G 3 and ¢ = (3,6,9).

For Go 4, we have as a presentation:
Gay =< a,b,c,d:a®=1,0°=1,ab = ba,c® = 1,ac = cab,bc = cb,d®> = 1,ad = dac,
bd = db, cd = dc >, with the same generators a, b, ¢ as those of Go 3 and d=(3,4,7).

Here we notice that G 4 & G 4. Thus we have:

Lemma 1.1.3. There is, up to isomorphism, only one transitive 3-group of degree
9 and order 81, namely the non-abelian group G4 described above.

We summarize our findings into the table below:

|G| = 3" Number of Number of Number of
transitive transitive non- transitive 3-
abelian 3-group of | abelian 3-group of | groups of degree
degree 9 up to degree 9 up to 9 up to
isomorphism isomorphism isomorphism
n=1 3 0 0 0
n=2 9 2 0 2
n=3 27 0 2 2
n=4 81 0 1 1
Total 2 3 5

Hence we have:

Proposition 1.1.4. There are, up to isomorphism, 5 transitive 3-groups of degree
32, 2 of these are abelian and of the remaining 3 non-abelian, 2 are of exponent 9 and

1 1s of exponent 3.

1.2 TRANSITIVE 3-GROUPS OF DEGREE 32 = 27

Let G be a transitive 3-group of degree 27, then |G| = 3", n =1,2,...,13. Clearly
n#1,n # 2. When n = 3, then |G| = 27 and for transitivity we must have |a%|=27,
|Go|=1, Va € Q.

Assuming first G abelian, then either G = Cy; or G = C3x Cy or G = C3x C3x Cs.
If G = Cyy, then G = G713 =< a >, where we may take a = (1,2,...,27).
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If G = (O3 x Cy, then G = Gy3=<a,b:a’=1,0° =1,ab = ba >, with, say,
a=(1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25 26,27), and
b= (1,17,19)(2,18,20)(3,10,21)(4,11,22)(5,12,23)(6,13,24)(7,14,25)(8,15,26)(9,16,27).

If G = C3 x O3 x Cy, then G = G33 =< a,b,c:a®> =1, =1, =1,ab = ba,
ac = ca,bc = cb >, with, say,
a=(1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27),
b= (1,5,6)(2,3,7)(4,8,9)(10,14,15)(11,12,16)(13,17,18)(19,23,24)(20,21,25)(22,26,27),

c = (1,13,26)(2,14,24)(3,15,19)(4,16,20)(5,17,27)(6,18,22)(7,10,23)(8,11,21)(9,12,25).
We next assume G non-abelian. Then the following are the possibilities for G
G2Gy3=<ab:a’=1,0=1ab=0ba' >or G=Gs53 =<K, c >, with 3 =1,

K = (5 x C5, K1Gg 3.

Taking a = (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)
and
b=(1,10,19)(2,14,26)(3,18,24)(4,13,22)(5,17,20)(6,12,27)(7,16,25)(8,11,23)(9,15,21) sat-
isfy the requirement of Gy 3.

For G5 3, we obtain a presentation as follow:
Gs3=<a,b,c:a®=1,0%=1,ab=ba,c® = 1,ac = cb,bc = ca®b* > with generators:

a = (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27),
b= (1,5,6)(2,3,7)(4,8,9)(10,14,15)(11,12,16)(13,17,18)(19,23,24)(20,21,25)(22,26,27),
¢ = (1,10,19)(2,11,20)(3,13,23)(4,14,21)(5,12,22)(6,17,25)(7,15,26)(8,16,24)(9,18,27)

We easily check that the above-named groups are transitive on ) and we conclude:

Lemma 1.2.1. There are, up to isomorphism, five transitive 3-groups of degree
3% and order 27, namely the groups Gy 3 (of exponent 27), Ga3 and Gy3 (of exponent
9) and G35 and G5 3 (of exponent 3) described above.

When n = 4, then |G| = 81 and for transitivity we must have

|a%] = 27, |G.| = 3, Va € Q.

Thus G must not be abelian and we have the following possibilities for G:
G =Gy =<ab:ad =1 =1ab=0bd" >or G Gyy =< Ga3,¢ >, with
=1, G23<dGay. or G = G54 =< G 3,d > with d3=1, G339G3 4 or Gyg =< Gyg3,c >

with 03:17 G473ﬂG474. or G = G574 =< G573,d > where d3:]_, G573ﬂG574 or G =
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Goa =< a,b:a”> =10 = 1,ab = ba* > or G = G74, =< K,c >, with ’=1,
K = (U3 x C, KaG74. Of these groups only four satisfy the requirements for G,
namely G14,G34,Ga4 and G 4.

Now taking a = (1,2,...,27) and by an argument similar to the case n = 3, we
get b=(1,19,10)(3,12,21)(4,22,13)(6,15,24)(7,25,16)(9,18,27).

For G4 4, we have a presentation as follows:

G4 =< a,b,c:a =1,0* =1,ab = ba*,c* = 1,ac = ca,bc = ca®h >, where the
generators a and b are the same for G4 3 and
c=(1,4,7)(2,5,8)(3,6,9)(19,25,22)(20,26,23)(21,27,24)

(obtained by a Gap-programme(see PROGRAMME 2)). For G54, we have a presen-
tation as follow:

G34 =< a,b,c:a® =10 = 1,ab = ba,® = 1,ac = ca,bc = cb,d®> = 1,ad = dab,
bd = db, cd = dc >, where a, b and ¢ are the same generators of G35 and
d=(1,27,18)(2,24,14)(3,19,15)(4,21,11)(5,22,12)(6,26,16) (7,23,10)(8,20,12)(9,20,16).

For G5 4, we have the presentation as follows:
Gs4=<a,bc,d:a®>=1,0>=1,ab = ba,c® = 1,ac = cb,bc = ca®?,d* = 1,ad = da,
bd = db, cd = dc > when a, b, c are the same generators of G 3 and
d = (1,27,11)(2,19,18)(3, 23, 13)(4, 21, 14)(5, 22, 12) (6, 26, 16)(7, 24, 17)(8, 25, 15)(9, 20, 10).

We easily check that the above-named groups are transitive on €2 and we conclude:

Lemma 1.2.2. There are, up to isomorphism, four transitive 3-groups of degree
3% and order 81, namely the non-abelian groups G4 (exponent 27), Gy4 (exponent
9), Gs4 and G54 (both of exponent 3) described above.

When n=>5, then|G| = 243 and for transitivity we must have
|a%|=27, |Go|=9,Ya € Q. Thus G must be non-abelian and we have the following
possibilities for G:

G~ G5 =< Gi4,c> with =1, G144G 5 or G = Ga5 =< Gy4,d > with d*=1,
G149Ga5 or G = G35 =< G34,d > with €3=1, G544G,5 or G = G55 =< K,c >
with 3=1,

K = Oy x O3, KaGyg 5 or G = Gg5 =< Ga3,c¢ > with =1,

G273ﬂG675 or G = G775 =< K, ¢ > with 027:1,
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K = (03 x C3, K<dGr5 or G = Gy 5 =< K,d > where d*=1,

K = Cy x C3 x O3, KaGys 5 or G = Gg5 =< K, d > where *=1,

K = Cy x Cy, K<Gg5 or G = Gyo5 =< K, d >, where d*=1,

K = Cy x C3 x C3, KaG15 or G = G115 =< Gg3,d > where d°=1,

G639G115 or G = Gia5 =< K, d >, where d”=1,

K = (03 x C3 x O, KaG1a5 or G = G135 =< K, d >, where d*=1,

K = Cy x U5 x C3, K4G135.

For obvious reasons, only G5, G35, G415 and G5 satisfy the requirements for G.

For GGy 5, we obtain as a presentation:
Gis =< a,b,c:a® =1,0° = 1,ab = ba'®, 3 = 1,bc = cb,ac = ca'®b* >, where a,
b are the same generators of G4 and ¢ = (1,19,10)(4,22,13)(7,25,16) (obtained by a
modification to PROGRAMME 2).

For (G35, we have a presentation as follows:
G35 =< a,b,c,d,e:a®=1,0>=1,ab=ba,c® = 1,ac = ca,bc = cb,d* = 1,ad = dab,
bd = db,cd = dc,e® = 1,ae = ea,be = eb, ce = eb’c,de = eb*d >, where a, b, ¢, d are
the same generators of G4 and
e = (1,14,21)(2,12,22)(3,16,26)(4,17,24)(5,15,25)(6,10,20)(7,11,27)(8,18,19)(9,13,23).

For G4 5, we have a presentation as follows:
Guis =< a,b,c,d,e : a®> = 1,0 = 1,ab = ba,c® = 1,ac = cb,bc = ca®V*,d® = 1,
ad = da,bd = db,cd = dc,e® = 1,ae = ea, be = eb, ce = ec,de = eab*d >, where a, b,
c, d are the same generators of G54 and
e =(1,3,8)(2,4,6)(5,7,9)(10,13,16)(11,14,17)(12,15,18)(19,23,24)(20,21,25) (22,26,27).

For Gy 5, we have:
Gas =< a,b,c,d :a® =1,b> =1,ab = ba', * = 1, ac = ca, bc = ca®b, d* = 1, ad = da,
bd = da®bc?, cd = da®c >, where the generators a, b, ¢ are the same for G, 4 and
d=(1,27,11)(2,19,12)(3,20,13)(4,21,14)(5,22,15)(6,23,16)(7,24,17) (8,25,18)(9,26,10).

Hence we have:

Lemma 1.2.3. There are, up to isomorphism, four transitive 3-groups of degree
3% and order 243, namely the non-abelian groups Gy 5 (exponent 27), Gas (of exponent
9), G35 and G5 (of exponent 8) described above.
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|a%|=27, G,|=27, Ya € Q. Thus G must be non-abelian and we have the following
possibilities for G: G = G165 = < Gi5,d > with &®=1, G154Ges or G = Gag =

< Gys,e > with e*=1,
Gr5<Gag or G2 Gy —< Gas, f > with f3=1,
G359G36 or G = Gy =< Gys, f > with f3=1,
G454G6 or G = G136 =< K, c > with =1,
K =~ Cy x C3, KdGh36 or G 2 Gy =< Gy3,c > with ¢2'=1,
G439G46 or G = Gi56 =< G33,d > where d*'=1,
G339G56 or G = Gig6 =< Gs59,d > where d*'=1,
G529G166 or G = Gi76 =< K, d > with d*=1,
K = Cy x Cg x O3, KaG175 or G =~ G136 =< K, e > where e?=1,

K > (03 x C3 x O3 x O3, K4G1g6 or G = Gi96 =< K, e > where e3=1,
K= 09 X Cg X 03 X 03, KﬂGlgﬁ or G = G2076 =< G374, e >, where 6921,

G374ﬂG2076 or G = GQLG =< G574, e > where 69:1,
G5’4ﬂG2176 or G = G2276 =< K, f >, where f3:1,
K= 03 X Cg X 03 X Cg X 03, KﬂGQQ’G

It is readily seen that of the above groups, Ggg, G10,6,G11,6 and G126 are accept-

able.

For Gy, we have a presentation:

Gos =< a,b,c,d : a* = 1,0 = 1,ab = ba'®,® = 1,bc = cb,ac = ca'®V?, d* =

ad = da*c?,bd = db, cd = dc >, where a, b, ¢ are the same for Gy 5 and
d = (1,10,19)(3,21,12)(4,22,13)(5,14,23) (8,26,17)(9,18,27)

For G106, we have a presentation:

Gs =< a,b,c,dye, f : a®> = 1,0 = 1,ab = ba,c® = 1,ac = ca,bc = cb,d?
ad = dab,bd = db,cd = dc,e® = 1,ae = ea,be = eb,ce = eb’c,de = eb?d, f3

=1,
=1,

af = fa,bf = fb, cf = fab’e,ef = fabc*e® >, where a, b, ¢, d, e are the same

generators of G5 and

F=1(1,3,8)(2,4,6)(5,7,9)(10,12,17)(11,13,15)(14,16,18)(19,20,27)(21,22,23) (24,25,26).

For G114, we have a presentation as follows:
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Gue =< a,b,c,dye, f : a® = 1,0° = 1,ab = ba,c® = 1,ac = cb,bc = ca*b*, d* = 1,
ad = da,bd = db,cd = dc,e®> = 1l,ae = ea,be = eb,ce = ec,de = eab?d,
2 =1,af = fa,bf = fb, ¢f = fac,df = fde*,ef = fe >, where a,b,c,d, e are
the same generators of G54 and
f=1(15,6)(2,3,7)(4,8,9)(10,16,13)(11,17,14)(12,18,15).
We notice here that G'ip and G116 aer non-isomorphic and are of exponent 9.
For G126, we have a representation as follows:
Gias =< a,b,c,dye : a® = 1,0 = 1,ab = ba*, & = 1,ac = ca,bc = ca®b, d® = 1,
ad = da,bd = da®bc?, cd = daSc, e® = 1, ae = ea, be = eb, ce = ea’c,de = ecd >, where
the generators a, b, c and d are the same for G35 and
e=(1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25) (8,17,26)(9,18,27).
Clearly, G126 is neither isomorphic to G'p ¢ nor to G1; 6. Moreover, Gap-programme
and computations in Sym(27) show that there are no transitive p-groups of degree

p?, exponent p and orders greater than and equal to 3°. Hence we have:

Lemma 1.2.4. There are, up to isomorphism, four transitive 3-groups of degree
3% and order 729, namely the non-abelian groups Gog (of exponent 27), G116, Grae
and Ghog (of exponent 9) described above.

When n=7, then |G| = 2187 and for transitivity we must have
|a|=27, |G4|=81, Ya € Q.

Thus, G must be non-abelian and arguing in a fashion similar to the case n=6,
we have the following five representations for GG as follows:

Gir =< a,b,c,dye : a® = 1,0° = 1,ab = ba'®,* = 1,bc = cb,ac = ca'*b?
d®> =1,ad = da'®c?,bd = db, cd = dc, e® = 1,ae = eab®d,be = eb, ce = ec,de = ed >,
where a, b, ¢, d are the same generators of Gy and
e = (1,19,10)(2,20,11)(5,14,23)(7,16,25).

Gar =< a,b,c,dye, f,g : a®> = 1,0° = 1,ab = ba,c® = 1,ac = cb,bec = ca®b?,
d®> = 1,ad = da,bd = db,cd = dc,e® = 1,ae = ea,be = eb,ce = ec,de = eab?d,
2 = l,af = fa,bf = fb,cf = fac,df = fde*,ef = fe,¢> = 1l,a9 = ga,
bg = gb,cg = ga*bce,dg = ga*b*de,eq = ge, fg = gf >, where a, b, ¢, d, e,

are the same generators of G114 and
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g = (1,4,7)(2,5,8)(3,6,9)(10,15,14)(11,16,12)(13,18,17).

Gsr =< a,b,c,d,e, f:a® =1, =1,ab = ba*,¢® = 1,ac = ca,bc = ca®b,d* = 1,
ad = da,bd = da®bc?, cd = da’c,e® = 1,ae = ea,be = eb, ce = ea’c,de = ecd, f3 =1,
af = fa'b*c?e,bf = fadb*ce?,cf = fe,df = fd,ef = fbc >, where a, b, ¢, d, e, are
the same generators of G4 and
£ = (1,4,7)(3,6,9)(10,13,16)(11,14,17)(20,23,26)(21,24,27).

Gz =< a,b,c,dye, f,g:a®>=1,>=1,ab=ba,c® =1,ac = ca,bc = cb,d®> = 1,
ad = dab,bd = db,cd = dc,e® = 1,ae = ea,be = eb,ce = eb’c,de = eb?d, f3 = 1,
af = fa,bf = fb,cf = fab’e,ef = fabc*e?, g> = 1,ag = gab*c*d?,bg = gb,cq = gc,
eg = ga*cde, fg = gabdef >, where a, b, ¢, d, e, f are the same generators of Gygg
and
g = (1,27,18)(2,24,14)(3,19,15)(4,21,12)(5,22,13)(6,26,17)(7,23,10) (8,25,16)(9,20,11).

Gsr=<a,b,c,d:a’=1,0°=1,ab=ba,c” = 1,ac = ca,bc = cb,d* = 1,ad = da,
bd = dab®c*, cd = db® >, with generators a, b, ¢ and d given as:
a=(1,2, ..., 9)(10, 11, ..., 18)(19, 20, ..., 27), b=(1, 2, ..., 9),
c=(10, 12, 14, 16, 18, 11, 13, 15, 17)
d=(1,27,11)(2,19,12)(3,20,13)(4,21,14)(5,22,15)(6,23,16)(7,24,17)(8,25,18) (9,26,10).

Now we easily see that G5 7 = G4 7. Hence, we have:

Lemma 1.2.5. There are, up to isomorphism, four transitive 3-groups of degree
3% and order 2187, namely the non-abelian groups Gz, Gsz (both of exponent 27),
Gar, Gsz (both of exponent 9) described above.

When n = 8, then|G| = 6561 and for transitivity we must have
Y| = 27, |G| = 243, Va € Q.

Thus G must be non-abelian and arguing in a fashion similar to case n=6, we
have the following presentations for G:

Gig =< a,b,c,dye, f : a®" = 1,b° = 1,ab = ba'®,c® = 1,bc = bc,ac = ca''b?,
d* = 1,ad = da'®c* bd = db,cd = dc,e® = 1,ae = eab’d,be = eb,ce = ec,
de = ed, 2 = 1, af = fa'bcde®,bf = fb,cf = fe,df = fd,,ef = fe >, where
a, b, c, d, e, are the same for GG; 7 and

F=(1,10,19)(3,12,21)(4,22,13)(6,24,15).
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Gas =< a,b,c,d,e, f,g,h : a®> = 1,b° = 1,ab = ba,c® = 1,ac = cb,bc = cab?,
d®* =1, ad = da,bd = db,cd = dc,e® = 1,ae = ea,be = eb,ce = ec,de = eab?d,
af = fa,bf = fb, cf = face*,df = fa*de,ef = fe,¢g> = 1,a9g = ga,bg = gb,
cg = gce?,dg = gabde®, eq = ge, fg = gf,h® = 1,ah = ha,bh = hb,ch = hce?g,
dh = habdfg,eh = he, fbh = hf,gh = hg >, where a, b, ¢, d, e, f, g are the same
generators for G117 and h = (1,3,8)(2,4,8)(5,7,9).

G3s =< a,b,c,d,e, f,g : a® = 1,b° = 1,ab = ba*,c* = 1,ac = ca,bc = ca®b,
d® =1, ad = da,bd = da®bc?®,cd = dabc,e? = 1,ae = ea,be = eb,ce = ead’c,
de = ecd, f2 = 1,af = fa'b?c?e,bf = fa’b*ce®,cf = fe,df = fd,ef = fbc,
¢> =1,ag9 = gac,bg = ga’ce, cqg = gc,dg = ga*bc*de?, eq = gb*ce?, fg = gf >, where
the generators a, b, ¢, d, e, f, are the same generators for Gs7; and
g = (1,4,7)(2,8,5)(19,22,25) (21,27,24).

We easily see that G3g = Gag. Gug =< a,b,c,d,e:a® =1, =1,ab = ba,c® =1,
ac = ca,bc = cb,d® = 1,ad = da,bd = dab®c*,cd = db?,e* = 1,ae = ea*, be = eb?,
ce = ec', de = ea®d >, where the generators a, b, ¢ and d are the same for G and
e=(2,5,8)(3,9,6)(11,14,17)(12,18,15)(20,23,26)(21,27,24).

Hence we have:

Lemma 1.2.6. There are, up to isomorphism, three transitive 3-groups of degree
3% and order 6561, namely the non-abelian groups Gis, Gug (both of exponent 27)
and Gsg (of exponent 9) described above.

When n=9, then |G|=19683 and for transitivity we must have
|a=27,G4|=729, Va € Q.

Thus, G must be non-abelian and arguing in a fashion similar to case n=6, we
have as presentations for G:

Gio =< a,b,c,de, f,g: a® = 1,0 = 1,ab = ba'®,* = 1,bc = be, ac = ca'*b?,
d® = 1,ad = da*®c?, bd = db,cd = dc,e® = 1,ae = eab’d,be = eb,ce = ec,
de = ed, f3> = 1, af = fa'®bede?,bf = fb,cf = fe,df = fd,ef = fe,g> = 1,
ag = ga*cd?e® f% bg = gb, cg = gc,dg = gd,eqg = ge, fg = gf >, where a, b, ¢, d, e,
f are the same for G g and ¢g=(1,10,19)(2,11,20)(9,18,27).

Gog =< a,b,c,d,e, f,g,h : a® = 1,0 = 1,ab = ba*,¢* = 1,ac = ca,bc = ca,
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d* = 1, ad = da,bd = da®bc? cd = da®c,e® = 1,ae = ea,be = eb,ce = ea’c,
de = ecdf? = 1, af = fa'b?c’e,bf = fa*b*ce®,cf = fe,df = fd,ef = fbe, g = 1,
ag = gac,bg = ga’ce, cqg = gc,dg = ga’bctde?, eqg = gb*ce?, fg = gf,h® = 1,
ah = ha®b*cd?,bh = ha*b*cdg, ch = hc,dh = hbde?g?,eh = ha*bedeg, hg = gh,
fh = hf >, where the generators a, b, c, d, e, f, g are the same for G55 and

h = (1,4,7)(3,6,9)(12,18,15)(21,27,24).

G3g =< a,b,c,d,e, f : a® = 1,0 = 1,ab = ba,® = 1,ac = ca,bc = cb,d® = 1,
ad = da,bd = dab®c*, cd = db?, e = 1,ae = ea, be = eb*, ce = ec*, de = eald, 3 =1,
af = fa*t®c3, bf = fb',cf = fc,df = falbScde?, ef = fe >, where the generators a,
b, ¢, d, e, are the same for G5 and f = (1,7,4)(2,5,8)(19,22,25)(20,26,23).

Hence, we have:

Lemma 1.2.7. There are, up to isomorphism, three transitive 3-groups of degree
33 and order 19683, namely the non-abelian groups Gyg, Gsg (both of exponent 27)
and Gag (of exponent 9) described above.

When n=10, then |G| = 59049 and for transitivity we must have
lag|=27, |G, |=218T.

Thus G must be non-abelian and arguing in a fashion similar to case n=6, we
have the following presentations for G:

G110 =< a,b,c,d,e, f,g,h: a*" = 1,0 = 1,ab = ba'®, & = 1,bc = be, ac = ca'b?,
d®> = 1,ad = da'®c?,bd = db,cd = dc,e® = 1,ae = eab’d,be = eb,ce = ec,de = ed,
f2=1,af = fa'®cde®,bf = fb,cf = fe,df = fd,ef = fe,g> =1,ag = ga*®cd?e? f2,
bg = gb,cqg = gc,dg = gd,eqg = ge, fg = gf,h® = 1,ah = hac*dg*,bh = hb,ch = hc,
dh = hd,eh = he, fh = hf,gh = hg >, where a, b, ¢, d, e, f, g are the same for G g
and h=(1,10,19)(3,21,12)(4,22,13)(7,16,25).

G310 =< a,b,c,d,e, f,g,h,k :a® = 1,0° = 1,ab = ba*,c® = 1,ac = ca,bc = ca,
d® = 1,ad = da,bd = da®bc?, cd = daSc,e® = 1,ae = ea, be = eb, ce = ea’c,de = ecd,
2 =1,af = fa'b*c?e,bf = fa*b’ce®, cf = fe,df = fd,ef = fbe,g> = 1,a9 = gac,
bg = ga3ce,cg = gc,dg = ga’bc*de?, eq = gb*ce?, fg = gf,h® = 1,ah = ha®b*c2d?,
bh = ha*b*c*dg,ch = hc,dh = hbde*q?, eh = ha'bedeg, hg = gh, fh = hf, k3 = 1

- )

ak = kd?*e%g, bk = ka*bedef,ck = ke, dk = kedf?g?, ek = ka"de*f, fk = kf, gk = kg,
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hk = kh >, where the generators a, 0, ¢, d, e, f, g, h are the same for G39 and
k=(1,4,7)(10,13,16)(12,18,15)(21,27,24).

Go10 =< a,b,c,dye, f,g:a’ =1,b" = 1,ab = ba,c” = 1,ac = ca,bc = cb,d* = 1,
ad = da,bd = dab®c*, cd = db?,e® = 1,ae = ea, be = eb*, ce = ec*, de = eald, 3 =1,
af = fa*33 bf = fo',cf = fe,df = fadb®cde? ef = fe,ag = gab®,bg = gb,
cg = gc,dg = gb3cSdf?, eqg = ge, fg = gf >, where the generators a, b, ¢, d, e, f are
the same for Gy and ¢=(1,7,4)(3,6,9).

Hence we have:

Lemma 1.2.8. There are, up to isomorphism, three transitive 3-groups of degree
3% and order 59049, namely the non-abelian groups G 10, Ga1o (of exponent 27) and
G310 (of exponent 9) described above.

When n=11, then |G|=177147 and for transitivity we must have
|a%]|=27, |G4|=6561 Va € Q.

Thus G must be non-abelian and arguing in a fashion similar to case n=6, we
have the following presentations for GG as follows:

G111 =< a,b,c,d,e, fog,hk @ a® = 1,0° = 1,ab = ba'",¢* = 1,bc = b,
ac = ca''V?,d® = 1,ad = da'®c?, bd = db,cd = dec,e® = 1,ae = eab?d,be = eb,
ce =ec,de =ed, f2 = 1,af = fa'’bede?,bf = fb,cf = fe,df = fd,ef = fe,g® =1,
ag = ga*®cd’*e® 2, bg = gb,cqg = gc,dg = gd,eqg = ge, fg = gf, h®> = 1,ah = hac’*dg?,
bh = hb,ch = he,dh = hd,eh = he, fh = hf,gh = hg,k* = 1,ak = kab*d*e®fgh,
bk = kb, ck = kc,dk = kd, ek = ke, fk = kf, gk = kg, hk = kh >, where a, b, ¢, d, e,
f. g, h are the same for Gy ;o and k=(1,10,19)(5,14,23)(6,24,15)(8,17,26).

Gs11 =< a,b,c,dye, f,g,h,k,m : a® = 1,0 = 1,ab = ba*,¢® = 1,ac = ca,
be = ca®h,d® = 1,ad = da,bd = da®bc? cd = dabc,e® = 1,ae = ea,be = eb,
ce = ea’c,de = ecd, f> = 1,af = fa"b?c?e,bf = fa’b’ce®,cf = fe,df = fd,
ef = fbe,¢®> = 1l,a9 = gac, bg = ga’ce,cqg = gc,dg = ga’bcide? eq = gb*ce?,
fg = gf.h* = 1,ah = ha®b*c?d?, bh = ha*b*c*dg,ch = hc,dh = hbde*g?,
eh = ha*bedeg,hg = gh, fh = hf, k3 = 1,ak = kd*e*q,bk = ka*bcdef,ck = ke,
dk = kedf®q?, ek = ka"de?f, fk = kf, gk = kg, hk = kh,m® = 1,am = ma®cdefgh?,

bm = ma*bdef?q*h?k%*,cm = me,dm = mbctde? fg?h*k,em = mae’de? f2g*k?,
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fm=mf,gm = mg, hm = mh, km = mk >, where the generators a, b, c,d,e, f, g, h, k
are the same for G319 and m=(1,4,7)(10,13,16)(11,14,17)(12,15,18).

Go11 =< a,b,c,de, f,g,h : a® = 1,b° = 1,ab = ba,c” = 1,ac = ca,bc = cb,
d®> = 1, ad = da,bd = dab®ct,cd = db?,e® = 1,ae = ea* be = eb* ce = ec,
de = ed®d, 2 = 1, af = fa*b®cE,bf = fb',cf = fe,df = fab®c®de?, ef = fe,
ag = gab®,bg = gb',cg = gc, dg = gb’Pdf*,eg = ge, fg = gf,h® = 1,
ah = hab®ce,bh = hb,ch = ha®b*c’e®fq¢?, dh = haSc*def? , he = eh,hf = fh,
hg = gh >, where the generators a, b, c,d, e, f, g are the same for Gy 10 and
h o= (1,7,4)(2,8,5)(12,15,18)(20,23,26).

Hence we have:

Lemma 1.2.9. There is, up to isomorphism, three transitive 3-groups of degree 33
and order 177147, namely the non-abelian groups Gi11, Go11 (of exponent 27) and
G311 (of exponent 9) described above.

When n=12, then |G| = 531441 and for transitivity we must have
|a%] = 27, |G| = 19683, Va € Q.

Thus G must be non-abelian and, arguing in a fashion similar to case n=6, we
have the following presentations for G:

G112 =< a,b,c,de, f,g,h,k,m : a®" = 1,0° = 1,ab = ba'®,® = 1,bc = be,
ac = ca'®b?, d* = 1,ad = da'®c?,bd = db, cd = dc, e® = 1, ae = eab®d, be = eb, ce = ec,
de = ed, f2 = 1, af = fa'%bcde?,bf = fb,cf = fe,df = fd,ef = fe,¢> =1
ag = gacd’®f?bg = gb, cg = gc,dg = gd,eg = ge,fg = gf.h° = 1,
ah = hac*dg? bh = hb,ch = hc,dh = hd, eh = he, fh = hf,gh = hg,k* = 1
ak = kab’d*e’fgh,bk = kb,ck = kc,dk = kd,ek = ke, fk = kf, gk = kg,

hk = kh,m?® = 1,am = ma'bedefg?h,bm = mb,em = mec, dm = ma’bd,

Y

Y

em = ma'Sbe, fm = mbicf,gm = mecd?eqg, hm = ma'8b>c®f?h, km = mbede*k >,
where a,b,c,d, e, f, g, h, k are the same for G; 1; and
m = (1,10,19)(2,17,5)(3,6,27)(7,16,25)(8,23,20)(9,12,15)(11,26,14)(18,21,24).

G312 =< a,b,c,de, f,g,hk,myn 2 a® = 1,6% = 1,ab = ba*,¢® = 1,ac = ca,
be = cabb, d®* = 1,ad = da,bd = da®bc? cd = dac,e® = 1,ae = ea,be = eb,

ce = ea’c,de = ecd, f? = 1,af = fa"b?c’e,bf = fa’b’ce®,cf = fe,df = fd,
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ef = fbe,¢®> = 1l,a9 = gac, bg = ga’ce,cqg = gc,dg = ga’bcide? eq = gb*ce?,
fg = gf.h* = 1,ah = ha®b*c?d?, bh = ha*b*c*dg,ch = hc,dh = hbde*g?,
eh = ha'bcdeg,hg = gh, fh = hf, k* = 1, ak = kd*e®g,bk = ka*bedef,ck = ke,
dk = kcdf?q?, ek = ka"de* f, fk = kf, gk = kg, hk = kh,m? = 1,am = ma®cdefgh?,
bm = ma*bdef?q*h?k%,cm = me,dm = mbc*de?® fg?h*k,em = mae’de? f2g*k?,
fm = mf,gm = mg,hm = mh,km = mk, n> = 1,an = nab®*d?e,bn = nbedf?g,
cn = nabbce?, dn = nd, en = nadbc*df?q, fn = nf, gn = nbce? fg, hn = na®b*cef? gk,
kn = na®b?cef?ghk?, mn = nbe? f2h%’km >, where the generators a, b, ¢, d, e, f, g,
h, k, m are the same for G317 and
n=(1,11,27)(2,25,15)(4,14,21)(5,19,18)(7,17,24)(8,22,12).

Go1a =< a,b,c,d,e, f,g,h,k : a® = 1,0° = 1,ab = ba,® = 1,ac = ca,bc = cb,
d®> = 1, ad = da,bd = dab®ct,cd = db?,e® = 1,ae = ea* be = eb* ce = ec,
de = ed®d, f3 = 1, af = fa*b3c,bf = fb'.cf = fe,df = fa’b®clde?,ef = fe,
ag = gab’bg = gb'cg = gc, dg = gb’c’df*,eg = ge fg = gf,h® = 1,
ah = hab®c3e,bh = hb,ch = ha®b3c’e*fg?, dh = ha®c3def? he = eh,hf = fh,
hg = gh,ak = ka*c3f,bk = kb"g?,ck = ke, dk = kc®de? fgh?, ek = ke, fk = kf,
gk = kg, hk = kh >, where the generators a, b, ¢, d, e, f, g, h are the same for G 13
and k = (2,8,5)(21,24,27).

Hence we have:

Lemma 1.2.10. There are, up to isomorphism, three transitive 3-groups of degree
3% and order 531441, namely the non-abelian groups G112, G212 (of exponent 27) and
G312 (of exponent 9) described above.

When n=13, then |G|=1594323 and for transitivity we must have
|a%]=27, |G4|=19683, Va € Q.

Thus G' must be non-abelian and arguing in a fashion similar to case n=6, we
have the following presentations for G:

Gii3 =< a,b,c,d,e, f,g,h,k,mn : a®™ = 1,0° = 1,ab = ba'®, ¢ = 1,bc = b,
ac = ca''b?, d® = 1,ad = da'c?,bd = db,cd = dc,e® = 1,ae = eab’d,be = eb,
ce = ec,de = ed, f2 = 1,af = fa'’bede?,bf = fb,cf = fe,df = fd,ef = fe,g® =1,
ag = ga'cd?e®f?,bg = gb,cqg = gc,dg = gd,eqg = ge, fg = gf,h® = 1,ah = hac*dg?,
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bh = hb,ch = he,dh = hd,eh = he, fh = hf,gh = hg,k* = 1,ak = kab*d*e*fgh,
bk = kb,ck = kc,dk = kd,ek = ke, fk = kf,gk = kg, hk = kh,m? = 1,

am = ma'bedefg*h, bm = mb,em = mec,dm = ma’bd,em = ma'®be,
fm = mbicf,gm = mecd?eqg,hm = ma'®b*cfih,km = mbcde?k,n® = 1,
an = na'cd®fh*km?,bn = nb,ecn = nc,dn = nb*cd,en = ne, fn = nbcf,

gn = na’c*defg,hn = na®v*cEd*e® f2h, kn = na'®bd?e® f2k,mn = na'®v*d*fm >,
where a,b,c,d,e, f, g, h,k,m and n are the same for G 12 and

n = (1,10,19)(12,24,27)(6,9,21)(3,15,18)(8,26,17)(7,25,16) (5,23,14).

G313 =< a,b,c,d,e, f,g,h,k,m,n,p : a® = 1,b% = 1,ab = ba*,c* = 1,ac = ca,
be = ca®h,d® = 1,ad = da,bd = da®bc®,cd = dabc,e® = 1,ae = ea,be = eb,
ce = eadc,de = ecd, f3 = 1,af = fa'b*c’e,bf = fa*b*ce® cf = fe,df = fd,
ef = fbe, ¢ = 1,a9 = gac,bg = ga’ce,cqg = gc,dg = ga*bc’de?, eq = gb>ce?,
fg = gf.h* = 1, ah = ha’b*cd?,bh = ha*b*c*dg,ch = hc,dh = hbde*g?,
eh = ha*bedeg,hg = gh, fh = hf, k> = 1,ak = kd*e®q,bk = ka*bedef,ck = ke,
dk = kcdf?qg?, ek = ka"de*f, fk = kf, gk = kg, hk = kh,m?® = 1,am = ma3cde f gh?,
bm = ma*bdef?g*h’*k?, cm = me, dm = mbcide? fg*h’k,em = mae?de® f?¢?k2,
fm = mf,gm = mg,hm = mh,km = mk, n* = 1,an = nab*d’e,bn = nbedf?g,
cn = nabbc?e?, dn = nd, en = nadbc*df?q, fn = nf, gn = nbce? fg, hn = na®b*cef?gk,
kn = nab?cef2gh’k?, mn = nbe? f2h%km, n® = 1, ap = pa’bcde® f?n, bp = pceg?h?kn?,
cp = palef? dp = pd,ep = pc®ef*g*h*kn®, fp = pf,gp = pa®fg, hp = pb®efg*h’k?,
kp = pb%efg*h,np = pn >, where the generators a,b,c,d,e, f, g, h,k,m,n are the
same for G312 and

p=(1,4,7)(2,12,19)(5,15,22)(8,18,25)(11,14,17)(21,24,27).

Goi3 =< a,b,c,dye, fog,h k1 : o = 1,67 = 1,ab = ba,” = 1,ac = ca,
bc = cb, d®> = 1,ad = da,bd = dab®c*, cd = db?,e® = 1,ae = ea®, be = eb?, ce = ec?
de = ea®d, f2 = 1,af = fa*b®’c®,bf = fb',cf = fe,df = fadb5cbde?, ef = fe,
ag = gab®,bg = gb*,cqg = gc,dg = gb’cdf?,eq = ge, fg = gf,h® = 1,ah = hab®c3e,
bh = hb,ch = ha®®c’e’fg?,dh = haSc*def? he = eh,hf = fh,hg = gh,
ak = ka*c®f, bk = kb'g% ck = ke, dk = kcbde’fgh?, ek = ke, fk = kf, gk = kg,
hk = kh,1® = 1, al = 1a"bc5f2¢?,bl = Ib,cl = lc,dl = [bSdefghk,el = le,
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fl = 1f,gl = lg,hl = lh,kl = lk >, where the generators a,b,c,d,e, f, g,k are
the same for Gy 12 and 1=(21,27,24).

Hence we have:

Lemma 1.2.11. There are, up to isomorphism, three transitive 3-groups of degree
3% and order 1594323, namely the non-abelian groups Gi13, Ga13 (of exponent 27)
and G313 (of exponent 9) described above.

We summarize our findings:

|G| = 3" Number of Number of Number of
transitive transitive non- transitive 3-
abelian 3-group of | abelian 3-group of | groups of degree
degree 27 up to degree 27 up to 27 up to

isomorphism isomorphism isomorphism
n=1 3 0 0 0
n=2 9 0 0 0
n=3 27 3 2 5
n=4 81 0 4 4
n=>5 243 0 4 4
n=>06 729 0 4 4
n="7 2187 0 4 4
n=~8 6561 0 3 3
n=9 19683 0 3 3
n=10 59049 0 3 3
n=11| 177147 0 3 3
n=12 | 531441 0 3 3
n=13 | 1594323 0 3 3
Total 3 36 39

We may state:

Proposition 1.2.12. There are, up to isomorphism, 39 transitive 3 - groups of
degree 3%, three of these are abelian. Of the remaining 36 non - abelian, 17 are of

exponent 27, 13 are of exponent 9 and 6 are of exponent 3.
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PROGRAMME 1:

gap>s8:=Group((1,2),(1.2.3,4,5,6,7.8)):
gap> a:=(1,2,3,4,5,6,7,8);;
b:=(1,7)(3,5)(4,8);;

gap > h:=Subgroup(s8,[a,b]);;
gap > diff:= Difference(s8,h);;
gap > req:= [J;;

gap > for ¢ in diff do

> if ¢”2=() then

> if b~ c=b then

> if a”~c=a"7 then

> Add(req,c);

> fi;

> fi;

> fi;

> od;

gap>req;
[(1,3)(4,8)(5,7),(1,7)(2,6)(3,5)]

PROGRAMME 2:

gap>s8:=SymmetricGroup(8);;
gap> a:=(1,2,3,4,5,6,7,8);;
b:=(1,7)(3,5)(4,8);;¢:=(1,3)(4,8)(5,7);;
gap>H:=Subgroup(s8,[a,b,c]);;
gap > diff:=Difference(s8,H);;
gap > req:=[;;

gap > for r in diff do

> if r~2=() then

> if Order(s8,r)<>4 then

> if Order(s8,r)<>8 then

> if a”r in H then

> if b"r in H then

> if ¢"r in H then

> if Size(Subgroup(s8,[a,b,c,r|))=64 then
> Add(req,r);

> fi;

> fi;

> fi;

> fi;

> fi;

> fi;

> fi;

> fi;

> od;

gap>req;
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