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Abstract. Let (Mn, g) be a pseudo-Riemannian manifold of which the Jacobi operator
associated to the Weyl conformal curvature tensor has constant eigenvalues on the bundle
of unit timelike (spacelike) tangent vectors (known as conformally Osserman manifolds).
In this work we study the conformally Osserman Lorentzian manifolds. The established
characterizations indicate the rigidity of conformally Osserman Lorentzian manifolds. We
additionally illustrate that rigidity by reviewing analog recent characterizations in the case
of metrics of other signatures.

1. INTRODUCTION

Let R be the curvature tensor of pseudo-Riemannian n-dimensional manifold

(Mn, g) of signature (p, q), p + q = n. The Jacobi operator JR(x) : TpM −→ TpM is

defined by JR(x)y = R(y, x)x, for tangent vectors x and y. It is a symmetric operator

which eigenvalues could be used to characterize the geometry of M . We say (M, g)

is a timelike (spacelike) Osserman manifold if the eigenvalues of the Jacobi opera-

tors JR(x) are independent on the choice of the unit timelike (spacelike) directions
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x at a given point. If both conditions are satisfied then (M, g) is Osserman. Notice

that in [10] was shown that for p, q > 1 the algebraic curvature tensor R is time-

like Osserman if and only if it is spacelike Osserman. Moreover, if the eigenvalues

of JR(x) are also independent on the point p, M is globally Osserman. The basic

examples are 2-point homogeneous spaces. Osserman conjectured that the inverse is

true in Riemannian setting: globally Osserman manifolds have to be locally isometric

to: Rn, complex projective space CP n, quaternionic-projective space HPn, Cayley

projective plane CaP 2 or to their noncompact duals (see [15]). Chi ([9]) was first

to confirm the conjecture when the dimension of the manifold is not divisible by 4.

Then in [12],the two-step approach to classify Osserman manifolds was suggested.

The first step is to show the existence of a Clifford algebra structure on a tangent

space which is compatible with a given Osserman algebraic curvature tensor. Later

on Nikolayevsky proved that is the case when n 6= 16 ([13], [14]).

The Weyl curvature tensor W as an conformal invariant is important in the under-

standing of conformal pseudo-Riemannian geometry. The corresponding Weyl Jacobi

operator is given by JW (x)y = J (x)y = W (y, x)x, for tangent vectors x, y. We

say that (M, g) is conformally Osserman if the eigenvalues of the symmetric Weyl

Jacobi operator JW (x) = J (x) : {x}⊥ −→ {x}⊥ are independent on the choice of

the unit timelike (spacelike) direction x, as introduced in [7]. This is a conformal

notion. Conformally Osserman manifolds of some particular dimensions and metric

signatures were studied in [4, 7, 5, 6].

The main goal is to extend the study of conformally Osserman manifolds from

the Riemannian to the Lorentzian setting. The only 2-point homogeneous Lorentzian

manifolds are spaces of constant sectional curvature (see [2]). Thus, manifolds confor-

mally equivalent to spaces of constant curvature are examples of conformally Osser-

man manifolds. We will show in Section 4 that the inverse is also true: conformally

Osserman manifolds are conformally flat (Theorem 3.1).

Even this classification is in the spirit of known classification in the Riemannian

setting, it shows some rigidity of the Lorentzian signature. In Section 5, we review

known recent results concerning conformally Osserman manifolds in other signatures
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to illustrate the rigidity of Lorentzian signature. Results in Riemannian and (2, 2)

setting (also known as Kleinian geometry) were discussed and compared to the es-

tablished characterization in the Lorenzian signature. In Section 2, main notions and

notation are introduced and some basic results are commented. In Section 3 the proof

of the Theorem 3.1 is given.

2. PRELIMINARIES

Let (Mn, g) be a pseudo-Riemannian manifold, R(x, y)z = [∇x,∇y]z − ∇[x,y]z

its curvature operator and R(x, y, z, w) = g(R(x, y)z, w) its curvature tensor. Let

{ei} be a local orthonormal frame for the tangent bundle, |ei|2 = εi, εi = ±1. A

vector x ∈ TpM is timelike (spacelike) unit if |x|2 = −1, (|x|2 = 1). The Ricci

curvature ρ and the scalar curvature τ are defined by ρ(x, y) =
∑

i εiR(x, ei, ei, y) and

τ =
∑

k εkρ(ek, ek).

The Weyl conformal curvature operator is defined by

W (x, y) = R(x, y) + c1(n)τR0(x, y) + c2(n)L(x, y), (1)

where

L(x, y)z = g(ρy, z)x− g(ρx, z)y + g(y, z)ρx− g(x, z)ρy, (2)

R0(x, y)z = g(y, z)x− g(x, z)y, (3)

c1(n)−1 = (n− 1)(n− 2), and c2(n)−1 = n− 2, n > 2. Notice that R0 is the curvature

tensor of the constant curvature space.

We say that pseudo-Riemannian metrics g1 and g2 are conformally equivalent if

g1 = α · g2 where α is a smooth positive function. The conformal class of a metric

g is denoted by [g]. The Weyl curvature operator is invariant on a conformal class

[g]. It is well known that the pseudo-Riemannian n-dimensional manifold n ≥ 4 is

conformally flat if and only if its Weyl operator W vanishes. It is important to notice

that the notion of conformally Osserman manifolds is a conformal invariant, i.e. it is

a property of conformal class of metric [g].
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Here recall some basic definitions related to the algebraic curvature tensors. Let

(V, 〈·, ·〉) be an n-dimensional vector space and 〈·, ·〉 a scalar product on V of signature

(p, q). A tensor R ∈ ⊗4V ∗ is said to be an algebraic curvature tensor if it has the

following standard symmetries:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z), (4)

R(x, y, z, w) = R(z, w, x, y), (5)

R(x, y, z, w) + R(y, z, x, w) + R(z, x, y, w) = 0. (6)

The curvature operator R(x, y)z is determined by the algebraic curvature tensor.

In the space of algebraic curvature tensors, an important role is played by the

following curvature tensor introduced by Gilkey, (see [11]) determined by the skew-

symmetric endomorphism Φ, Φ2 = −1,

RΦ(x, y)z = g(Φy, z)Φx− g(Φx, z)Φy − 2g(Φx, y)Φz. (7)

A quaternionic structure (Φ1, Φ2, Φ3) on a vector space (V, 〈·, ·〉) is determined by

the skew-symmetric endomorphisms Φi on (V, 〈·, ·〉) such that

Φ2
1 = Φ2

2 = −Id , Φ1Φ2 = −Φ2Φ1 = Φ3.

If the structures are defined locally in the neighborhood of an arbitrary point of a

manifold, we say that (Φ1, Φ2, Φ3) defines a quaternionic structure on the manifold.

A curvature tensor R is a quaternionic (or Cliff(2)) curvature tensor if there exist a

quaternionic structure (Φ1, Φ2, Φ3) such that R is a linear combination of the curva-

ture tensors R0, RΦi
i.e. if

R = λ0R0 + λ1RΦ1 + λ2RΦ2 + λ3RΦ3 . (8)

The curvatures of the complex projective space CP n and the quaternionic space

HPn are of the form (8) if λ2 = λ3 = 0 and λ1 = λ2 = λ3 respectively. Thus,

the spaces which curvature tensors R are as in (8) are generalized complex space

forms, if λ2 = λ3 = 0 and generalized quaternionic space forms in a general case.

The conformal notions, generalized conformally complex space forms and generalized
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conformally quaternionic space forms are defined by requiring that the Weyl curvature

tensor W is of the corresponding form.

3. LORENTZIAN GEOMETRY

In this section the following characterization will be established.

Theorem 3.1. Let (M, g) be an n-dimensional Lorentzian manifold, n ≥ 4. Then

the following conditions are equivalent:

(a) M is a conformally Osserman manifold,

(b) M is a conformally flat manifold.

Remark 3.2. For n = 3 the theorem holds if we replace (b) with: the Weyl tensor

W vanishes.

The proof of the theorem will follow from the following purely algebraic lemma.

Theorem 3.3. Let V be the Lorentzian vector space of the signature (1, n − 1),

let R be an algebraic curvature tensor and W the corresponding Weyl operator. The

following conditions are equivalent:

(a) R is a conformally Osserman curvature tensor,

(b) W = λR0,

(c) W = 0.

Proof. Let e1, ..., em be a local orthonormal frame for a Lorentzian vector space

V . We choose the notation so that e1 is timelike and e2,..., en are spacelike. Let

Rijkl be the components of the curvature tensor. The proof that (a) implies (b)

in Theorem 3.3 will follow from the following Lemma proved in [2] (see also [11],

Theorem 3.1.8 and Lemma 1.7.5).

Lemma 3.4. [2] Let 1 < i, j, k ≤ m and let k be distinct from i, j. If R is an

algebraic Osserman curvature tensor on V , then
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(a) Rkimj + Rmikj = 0 and Rkikj + Rmimj = 0,

(b) Rmkmi = 0 and Rkmkj = 0.

In the proof of this Lemma the special algebraic properties of the Lorentzian

signature were used. Lemma 3.4 implies that an Osserman algebraic curvature tensor

in the Lorentzian signature is of constant sectional curvature, i.e. proportional to the

tensor R0 (see also [2]). Thus, under the assumptions of Theorem 3.3, (a), W = λR0.

The Weyl curvature tensor is a trace-free component in the decomposition of the

space of curvature tensors. Hence from W = λR0 follows λ = 0 and (b) implies

(c). The checking of the last implication being directly, we complete the proof of the

theorem. Q.E.D.

From the proof of the theorem also follows

Corollary 3.5. Assume that at every point p ∈ M , Tr {J 2
W(x)} is independent

on the timelike (spacelike) unit direction x. Then (M, g) is conformally flat for n ≥ 4

and the Weyl tensor W wanishes for n = 3.

From the proof of Theorem 3.1 we show the following equivalence.

Corollary 3.6. A Lorentzian manifold (M, g) is timelike conformally Osserman

if and only if it is spacelike conformally Osserman.

Remark 3.7. This justifies the notion of conformally Osserman manifold which

we use for either of the following two conditions: timelike conformally Osserman

or spacelike conformally Osserman manifolds. Generally for a pseudo-Riemannian

manifold of dimension (p, q), p, q ≥ 1 in [10] was shown: the eigenvalues of the

Jacobi operator of an algebraic curvature tensor are independent on the spacelike unit

direction x if and only if they are independent on the timelike unit direction x.

Let’s recall that the variational vector field y along a geodesic γ0 (tidal force)

satisfies the Jacobi equation

y′′ = −R(y, γ′)γ′ = −Jγ′(y).
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Thus, we may say that all directions in a given point of an Osserman manifold define

the same local dynamics (dynamically isotropic manifolds). Similarly, conformally

Osserman manifolds could be understood as conformally dynamically isotropic man-

ifolds. Then we can reformulate the know results as follows.

Corollary 3.8. A Lorentzian manifold of dimension n, n ≥ 4, is (conformally)

dynamically isotropic if and only if is (conformal to) a flat space or a rank 1 symmetric

space.

4. COMPARISON TO THE CONFORMALLY

OSSERMAN NON-LORENTZIAN GEOMETRY

Let (M, g) be an n-dimensional Riemannian manifold. If dimension n is not

divisible by 4, it was shown that a Riemannian conformally Osserman manifold (M, g)

has essentially to be locally conformal to a flat space, CP n or its noncompact dual

∗CP n ([7],[4]). In the proof, along two-step approach, was shown that an algebraic

conformally Osserman manifold is a conformal space form, i. e. it is of the form

W = λ0R0 + λ1RΦ,

where W is its Weyl curvature and Φ is an almost complex structure.

In dimension 4, a positive definite conformally Osserman manifold has Weyl tensor

of the following form

W = λ0R0 + λ1RΦ1 + λ2RΦ2 + λ3RΦ3 ,

where Φi, i = 1, 2, 3, are almost complex structures. In the case of (2, 2) signature

the Weyl curvature tensor of a conformally Osserman manifold can also be expressed

in terms of an appropriate quaternionic-like, Cliff(1,1)-structure (Φ1, Φ2, Φ3)

Φ2
1 = −Id , Φ2

2 = Id , Φ1Φ2 = −Φ2Φ1 = Φ3.

The expression is more complicated than in the positive definite 4 dimensional case

([6]).
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The known results show that the conformally Osserman manifolds Lorentzian and

Riemannian (known examples) are conformally equivalent to some Osserman metrics.

But in the Kleinnian geometry of split (2, 2) signature that is not true. Examples of

conformally Osserman metrics (M, g) which do not contain Osserman metric in the

conformal class [g] were constucted in [8].

Similarly, in the relation to the (nonconformal) Osserman conditions, the Lorentzian

signature is more rigid than the Riemannian. For example, Lorentzian Osserman man-

ifolds of arbitrary dimension are of constant sectional curvature [2] but for Rieman-

nian manifolds that doesn’t hold. There exist a big family of 4-dimensional Einstein

self-dual metrics which are of course Osserman (see [9, 16]). In (2, 2)-signature there

exist even more complicated examples ([3]). Generally, in dimension 4, the notion

of conformally Osserman manifolds of (+ + ++) and (− − ++) signature is closely

related to the the notion of self-duality [1, 5, 6, 8, 16].

Acknowledgements: The author is grateful to the referee for helpful sugges-

tions.
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