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Abstract. Geodesics have a fundamental role in geometry of curved surfaces and manifolds,
as well as in discrete geometry. We are going to expand some known facts about geodesics in
regular differential geometry to the discrete geometry. We present a discrete analogy of the
smooth surfaces parameterized by geodesics. The goal of our consideration is the definition
of discrete surfaces generated by geodesics, studying of their properties and finding the
algorithm for the generation of these surfaces.

1. INTRODUCTION

Geodesics on smooth surfaces generalize the idea of straight lines. They are the

straightest and locally shortest curves. The concept of discrete geodesics differ from

smooth one in that view. It is well–known that they cannot have both of these pre-

viously mentioned properties. Geodesics on polyhedral surfaces has been intensively

studied. The authors in [1] define geodesics on polyhedral surfaces as locally shortest

curves. Beside their important role in the study of (non–)regular differential geome-

try, shortest geodesics cannot be extended as locally shortest curves across spherical

1Research partially supported by the Ministry of Science of Serbia, project MM1646.
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polyhedral vertex and, therefore, fail to solve the initial value problem for geodesics

at the polyhedral vertices. The authors in [9] and [10] define polyhedral geodesics as

straightest geodesics and that concept we shall use in our consideration.

In Section 2, we are going to give a review of polyhedral surfaces, straightest

geodesics and discrete nets. In Section 3, we define a new class of polyhedral surfaces

which we shall name geodesic (or G–)polyhedra. Then, we give some closer picture

of them by determining theirs properties and giving several examples. In Section 4,

we define G–nets (by the same analogy with the G–polyhedra). A reason for that is

the possibility of giving some algorithm for the generation of G–nets. At the end, we

present a method for geodesation of arbitrary discrete net. This method is based on

numerical computation and theory of minimization of differentiable functions.

2. PRELIMINARIES

We recall basic definitions and statements which we use in further.

Definition 1. A polyhedral surface P is a two–dimensional manifold consist-

ing of finite or denumerable set F of topological triangles and intrinsic metric ρ such

that

1. Any point p ∈ P lies in at least one triangle f ∈ F .

2. Each point p ∈ P has a neighborhood that intersect only finitely many triangles

f ∈ F .

3. The intersection of any of two non–identical triangles f, g ∈ F is either empty,

or consists of a common vertex, or of a simple arc that is an edge of each of the

two triangles.

4. The intrinsic metric ρ is flat on each triangle, i. e. each triangle is isometric

to a triangle in R2.

Remark 1. The topological triangle f in a two–dimensional manifold M is a

simple domain f ⊂M whose boundary is split by three vertices into three edges with

no common interior points. For simplification, we restrict our attention to polyhedral
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surfaces consisting of planar triangles. A class of polyhedra, also, consists of discrete

surfaces which faces are not triangles. For example, cube is a polyhedral surface (in

sense of previous definition) because each of its faces can be divided on two triangles

by diagonal.

Each polyhedral edge, incident to exactly one face, we call boundary edge. Each

vertex, incident to boundary edge, is boundary vertex and all other vertices are

inner vertices.

Definition 2. Let α ∈ P be a polyhedral curve whose segments on each face are

rectifiable. Then, the length of α is given by

l(α) =
∑

f∈F

l(α|f ).

Definition 3. Let P be a polyhedral surface and v ∈ P a vertex. Let G be the set

of faces containing v as a vertex, and θi be the interior angle of the face fi ∈ G at

the vertex v. Then, total vertex angle θ(v) is given by

θ(v) =
∑

fi∈G

θi(v).

Interior points p of face or of an open edge have a neighborhood which is isometric to

a planar euclidean domain and, in that case, we define θ(p) = 2π.

The existence of (polyhedral) faces will limit us in further consideration. So, we

shall, also, deal with discrete nets (which consist only of vertices and edges). First of

all, we need the notion of poly–graph. Poly–graph consists of vertices and (straight)

edges which bound at most denumerable set of simple polygons (see Figure 1).

Definition 4. Let G be (connected) poly–graph. A discrete net is a map

S : G 7→ R3.
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Figure 1. Poly–graph.

Each (connected) planar graph determines the partition of plane into the set of

open regions and exactly one of them is unbounded. That region we call outer region.

All graph vertices that belong to the border of outer region are outer vertices and all

of them are mapped by S into outer vertices of discrete net. All other discrete net

vertices are inner.

Definition 5. A degree of (polyhedral or net) vertex is a number of edges incident

to that vertex.

We shall deal only with polyhedral surfaces or discrete nets whose all inner vertices

have even degree. In that case, we can naturally define opposite edges, angles and

(in case of polyhedra) faces (compare Figure 2).

Figure 2. Opposite edges, angles and faces at inner vertex of even degree.

Definition 6. Let P be a polyhedral surface and γ ⊂ P a curve. Then γ is a
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straightest geodesic on P if for each point p ∈ γ the left and right curve angles θl

and θr at point p are equal (compare Figure 3).

Figure 3. Left θl =
∑

λi and right θr =
∑

δj curve angles. If θl = θr, curve is
straightest geodesic.

Definition 7. Let γ be a curve on a polyhedral surface P. Let θ be the total

vertex angle and ϕ one of two curve angles of γ at p. Then the discrete geodesic

curvature of γ at p is given by

kg =
2π

θ

(
θ

2
− ϕ

)
.

If we choose the other curve angle, geodesic curvature kg will change the sign.

For more details about straightest geodesics one can see [9] and [10].

3. G–POLYHEDRA

We use Definition 6. to give a simple definition of polyhedra generated by geodesics.

Before that, we need notion of polyhedral edges angle.

Definition 8. Left and right angle between two edges incident to the same poly-

hedral vertex v are angles respectively equal to the left and right angle, at the vertex

v, of curve which contains those edges.
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Definition 9. Geodesic (or G–) polyhedral surface is a polyhedral surface

whose left and right angles between pairs of opposite edges are equal.

Obviously, the curve which coincides with the sequence of opposite polyhedral

edges is geodesic.

Property 1. Opposite angles of G–polyhedron are equal.

Property 2. If some inner polyhedral vertex has degree 2k, there are 2k discrete

geodesics which start at that vertex and consists only of polyhedral edges.

We can give several simple examples to illustrate previously mentioned statements.

Example 1. Trivial example ofG–polyhedron is octahedron (see Figure 4). Then,

there are two G–polyhedra. The degree of all inner vertices is four, in the first case,

while the degree of the only inner vertex is six, in the second one. The last example

represents a rotational G–polyhedron.

Figure 4. Examples of G–polyhedra.
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4. G–NETS

In the previous section we presented a several simple G-polyhedra, which we obtained

by using their basic properties. A natural question would be: is there any method

for obtaining a complicated geodesic polyhedral surfaces? On the other hand, the

existence of (polyhedral) faces includes limiting factor in trying to obtain algorithm

which would generate G–polyhedra. Therefore, in this section, we shall deal with

G–nets.

4.1. BASIC PROPERTIES AND GENERATION OF G–NETS

Definition 10. If opposite angles at each inner vertex (which has even degree) of

discrete net are equal, then we say that this net is geodesic (or G–) net.

Next property is an immediate consequence of the previous definition.

Property 3. Each conformal map of ambient space R3 preserves G–nets.

From now–on we consider to G–nets whose all inner vertices are four–degrees.

Generalization of further results on arbitrary G–nets (with even vertex degree) is

simple.

Vertices of four degree G–net we denote by pi,j, i, j = 0, 1, 2, ..., such that pi−1,j ,

pi+1,j , pi,j−1, pi,j+1 are vertices adjacent to pi,j, where the first and the second pair

are incident to opposite edges.

Figure 5. Vertices of four–degree G–net.
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Property 4. If S is four–degree G–net, then for each inner vertex pi,j we have

(
pi,jpi−1,j

| pi,jpi−1,j |
+

pi,jpi+1,j

| pi,jpi+1,j |

)
·

(
pi,jpi,j−1

| pi,jpi,j−1 |
−

pi,jpi,j+1

| pi,jpi,j+1 |

)
= 0

and (
pi,jpi−1,j

| pi,jpi−1,j |
+

pi,jpi+1,j

| pi,jpi+1,j |

)
·

(
pi,jpi,j−1

| pi,jpi,j−1 |
−

pi,jpi,j+1

| pi,jpi,j+1 |

)
= 0.

Property 5. The angles determined by the opposite edges (considered in ambient

space R3) have the same bisector.

By using Property 5. we give an algorithm for generation of G–nets.

Algorithm: For given vertices pi,j−1, pi−1,j , pi+1,j and pi,j we distinguish two

cases:

1. 6 pi−1,jpi,jpi+1,j = π. Then, new vertex pi,j+1 is, up to the length of edge pi,jpi,j+1,

determined by condition that belongs to the ray which is symmetrical to ray

pi−1,jpi,j in respect to point pi,j.

2. 6 pi−1,jpi,jpi+1,j 6= π. Then, new vertex pi,j+1 is, up to the length of edge pi,jpi,j+1,

determined by condition that belongs to the ray which is symmetrical to ray

pi−1,jpi,j in respect to bisector of angle 6 pi−1,jpi,jpi+1,j .

Example 2. Figure 6 shows the part of G–net and their extension which we have

made by using the previous algorithm.

Figure 6. (a) Part of G–net. (b) Extension of G–net.
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4.2. PROCESS OF GEODESATION

Let us consider the problem of obtaining G–net from an arbitrary discrete net.

If f : Rn 7→ R is differentiable function, consider the sequence {xk}, k = 0, 1, 2, ...,

of points xk ∈ Rn, generated by formula xk+1 = xk +hksk, k = 0, 1, 2, ..., where point

xk moves to point xk+1 with the direction that is determined by vector sk, and a

positive number hk is the stepsize of (k + 1) iteration. By different choices of vector

sk we obtain different methods for minimization of differentiable functions and all of

them satisfy condition:

∇f(xk) · sk ≤ −ρ||∇f(xk)||||sk||, ρ > 0,

which guarantees the decreasing of function f . If we choose sk = −∇f(xk), we get

the gradient method which we shall use in further.

The most important properties of methods for minimization of differentiable func-

tions are given in the following theorem (this is a preformulation of known facts that

one can find in [4], [6] and [12]).

Theorem 1. Let f ∈ C1(Rn) and let method generate sequence {xk}, k =

0, 1, 2, .... Next conditions hold:

1. Sequence f(xk), k = 0, 1, 2, ..., is decreasing.

2. For some m ∈N it is fulfilled ∇f(xm) = 0 or each accumulating point x̃ fulfills

the condition ∇f(x̃) = 0.

3. If f is a convex function, then it has minimum at each accumulating point x̃.

4. If f is a strictly convex function, sequence {xk} converges to the unique point

of minimum.

Let S be four–degree G–net. The set of inner vertices we shall denote by M0. Let

α
pi,j

1 and α
pi,j

0 , i. e. β
pi,j

1 and β
pi,j

0
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be pairs of opposite angles at vertex pi,j. We shall consider the problem of minimiza-

tion of function

E(M0) =
∑

pi,j∈M0

((α
pi,j

1 − α
pi,j

0 )2 + (β
pi,j

1 − β
pi,j

0 )2). (1)

For the application of gradient method we need the gradient of angle. Let 4pqr be

arbitrary triangle with vertices p(x, y, z), q(q1, q2, q3), r(r1, r2, r3). When we differen-

tiate function

α(x, y, z) = arccos
pq · pr

|pq||pr|
,

by variables x, y and z, we obtain

∇pα =
sinα2

4
po,

where 4 is the area of triangle 4pqr and point o is a circumcentre of the same

triangle. Geometrical interpretation of the fact that gradient of angle and po are

linearly dependent vectors runs like this: Gradient of angle determines the direction

of moving vertex p so that angle α has the fastest increasing. Let us consider a

sphere whose great circle is the circumcircle of triangle 4pqr. Choose coordinate

system such that z–axis is determined by vector po and other two axes belong to the

tangent plane at point p. Then, the gradient of angle α we can write as

∇pα = ax+ by + cz.

But the linear combination of vectors x and y determine direction in which angle α

decreases. Therefore, the fastest increasing we get for a = b = 0.

The gradient of function (1) is given by

∇M0E(M0) = ∇M0

∑
pi,j

((α
pi,j

1 − α
pi,j

0 )2 + (β
pi,j

1 − β
pi,j

0 )2)

=
∑

pi,j
2((α

pi,j

1 − α
pi,j

0 )(∇pi,j
α

pi,j

1 −∇pi,j
α

pi,j

0 )

+ (β
pi,j

1 − β
pi,j

0 )(∇pi,j
β

pi,j

1 −∇pi,j
β

pi,j

0 ))

and iterative process we write as

Mk+1 = Mk − hk∇Mk
E(Mk)
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Figure 7. The gradient of angle.

where Mk is the set of inner vertices obtained in iteration k. Theorem 1. guarantees

inequality

E(Mk+1) ≤ E(Mk).

Clearly, if for some m ∈N holds E(Mm) = 0, the obtained net is G–net. Generally,

this should not happen. Namely, condition ∇E(Mn) = 0 for some n ∈ N does not

imply E(Mn) = 0. Most often, after a number of iterations, function E becomes near

to zero. This just described iterative process we call the geodesation process of

discrete net.

Example 3. Let S be discrete net with one inner vertex p(1, 0, 1) and outer

vertices a(−1,−1, 0), b(1,−1, 0), c(1, 1, 0) and d(−1, 1, 0). When we apply the geode-

sation process with different choices of stepsize, point p converges to different points

Figure 8. The geodesation process of discrete net with one inner vertex.
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of minimum, which means that we do not have a unique resulting G–net. Namely,

function E has the minimum at each point of z–axis.

The distance between points p
(k)
i,j and p

(k+1)
i,j obtained in consecutive iterations

equals hk‖∇p
(k)
i,j

E(p
(k)
i,j )‖ and it is bounded only if the area of triangle determined by

three corresponding vertices does not converge to zero. In that case, distance can be

arbitrarily small if we use small enough stepsize.

Example 4. Figure 9 (a) shows discrete net determined by finite number of

meridians and parallels of cylinder. Obviously, that net is G–net. Figure 9 (b)

represents different net generated by other set of cylindric curves. When we apply

geodesation process on that net, we get nets presented on Figure 10.

Figure 9. (a) G–net generated by meridians and parallels of cylinder. (b) Discrete
net with the set of inner vertices M0. Holds E(M0) ≈ 96.7041.

Figure 10. (a) G–net obtained after 1000 iterations with stepsize h = 5 · 10−6.
Holds E(M1000) ≈ 10.3960. (b) G–net obtained after 5000 iterations with stepsize
h = 5 · 10−6. Holds E(M5000) ≈ 0.8277.



53

Example 5. Geodesation process can be applied on each polyhedral surface

whose faces are triangles. By using that process, we obtain a little bit complicated

(quasi) G–polyhedron than the ones in Example 1.

Figure 11. Polyhedral surface with four inner vertices. Holds E(M0) ≈ 20.0930.

Figure 12. Quasi G–polyhedron obtained from the previous one.
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