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Abstract. Using the condition of quasiperiodicity of the solution to the nonlinear differen-
tial equation of second order (1), we reduce it to the linear differential equation of second
or first order. Then we find conditions of existence quasiperiodic solutions with a constant
quasiperiod and give the form of the solutions.

Used abbreviations: differential equation (DFE), quasiperiod (QP), periodic solution (PS),
quasiperiodic solution (QPS), quasiperiodic coefficient (QPC)

1. PROBLEM FORMULATION

Let the differential equation

y'(@) + [i@)y (@) + folo)y(@) + @)y’ (@) + fa(@) =0 (fs(x) #0) (1)
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be given. We want to find a quasiperiodic solution y = y(z) for the equation (1), i.e.

to find the solution that satisfy the relation
y(z+w) = ANa)y(x), z,x+weD, (2)
where w = w(x) is a QP and A\ = A(z) is a QPC of the function y = y(x).

Theorem 1.1 If the equation (1) has a QPS y = y(x) with a QP w = w(z) and a
QPC X, then it is reduced to the linear nonhomogeneous DFE of second order to y(z)

2 fa(z)

(@) fa(z) (5
Th )y

1 4 " .
A( BON Ny + (2 + | — L+ 48 |3 — BOAI )3 )y

t !/

oA

t=z+wx), t'=1+d, t"=d"
Proof. Under the conditions of the theorem we have the following system:
y'(@) + fi(@)y' (2) + fo(a)y(@) + fs(2)y*(z) + fulz) =0
y'(t) + h@OY' (@) + LOyE) + @Y () + fat) imero =0

y(t) = Xax)y(x)
Jiym =y ()t = N(2)y(z) + A2)y'(2)

ay(t) = y' (08 +y (O = N'(@)y(2) + 2N (2)y () + A2)y"(2)

from where we are finding

yi(z) = — <f4(fv) + f(@)y(@) + filz)y (=) + y”(l’)) ()

L
f3(x)
1

y// (t) — t/2

(@ = Sxhto) + V) - ol @ 2@ @) (0

Substituting (5) and (6) in the second equation of (4), after short transformations,

we obtain (3). O

Remark 1.1 In a general case, even though the equation (3) is a linear one of y(z),
this is not easy solvable as it is a functional differential equation of w.

In this paper we consider the eq.(1) at some special cases for w and A.
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2. QUASIPERIODIC SOLUTIONS WITH CONSTANT QP AND QPC

Theorem 2.1 [f the eq.(1) has a QPS y = y(z) with a QP w = const = ¢ and QPC
A = const > 0 then it is reduced to the equation
A(f3(@)= N f5(0)y" + A(f1() f3(2) — A fs(t) fu(2))y’
HA(f2(t) f3(x) — N fal@) f3(0)y + (fa(t) fs(z) — N fa(2) f5(t)) = O
Proof. Substituting in (3): w=1¢, w' =0, t =+ ¢, t' =1, we obtain (7). O

(7)

Theorem 2.2 [f the coefficients fi(x), fo(x), f3(x), fa(x) in the eq.(1) are QPF sat-
1sfying the relations

fit) = fi(z),  folt) = fa(z),  f3(t) = ;Qf:%(I), fa(t) = Ma(@) ezt (8)

and (1) has a QPS, then every solution for (1) is a QPF with a QP w = ¢ and QPC
A

Proof. Under the conditions of the theorem we have:
Y0+ Y0 + F () + HEOWE) + 1) s
= \'(2) + Mi(2)y' (2) + Ma(2)y (@) + 35 - N fa(@)y® () + Mfalx)
=AY (@) + fi(@)y () + f2(2)y(@) + fa(2)y’ () + fa(@))
=A-0=0 0O
Example 2.1 Let

4 3

y'—cosx-y —sinz-y+e” xcosx-y3+62x(1—3Sinx—4cosx+sin2x—sin zrcosx) = 0.

All of the solutions are QPF. One particular solution is y; = e?* sinx that is a QPF
with a QP w = 27 and QPC \ = ™.

Example 2.2 Let

y' — 4y 4+ 5sing -y — 5e *y® 4+ 5e** (1 — sinx + sin®2) sinz = 0.

All of the solutions are QPF. One particular solution is 1; = e**sinx that is a QPF
with a QP w = 27 and QPC \ = ¢*".
Using the Theorem 2.1, under the determined conditions of the coefficients in the

equation (1), we have the following theorems.
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Theorem 2.3 Let the eq.(1) has a QPS with a QP w = ¢, a QPC \(A > 0) and

the coefficients fi(x), fo(x), f3(), fa(x) are QPF with the same QP w = ¢ and QPC
1

A1, Ao, A3 # 2 Ay respectively. Then the eq.(1) is reduced to the equation

At — N33

L A= AT
A1 = A2)3)

Ay — A2\
YT e,

/
Aoy + 350,

fa(x)y + fa(z) = 0. (9)
Theorem 2.4 Let y(z) be QPS to (1) with QP w = ¢, QPC XA > 0, X\ # 1) and the
coefficients fi(x), fa(x), f3(x), fa(z) be QPF with a QP w = ¢ and QPC A\, Aa, A3 =
1

2 Ay, respectively, then the eq.(1) is transformed in

AL = DA@)Y + M A2 = 1) fa(@)y + (Aa — A) fa(z) =0 (10)

Theorem 2.5 Let y(x) be QPS to (1) with QP w = ¢, QPC A(A > 0, A # 1) and
the coefficients fi(x), fo(z), f3(x), fa(x) be QPF with a QP w = ¢ and QPC )\ =

1
1,\o, A3 = VL Ay respectively. Then the eq.(1) is transformed in

AA2 = 1) fa(z)y + (A4 — A) fa(x) = 0. (11)

Theorem 2.6 Let the eq.(1) has a QPS and the coefficients fi(x), fo(x) # 0, f3(x), fa(x)
be QPF with a QP w = ¢ and QPC A\, A\a, A3, Ay respectively. Then the eq.(1) has a
QPS

_ Jal=)
(o) (12
with a QP w = c and QPC \ = i\4 iof the relation
fa(z)\" fa(@)’ fa@)\*
<f2($)> +f1(x)<f2(f€)> +f3(x)<f2($)> - (1)

is satisfied.

Proof. Using the conditions

filv +c) = Mfi(x), folr+c) = Aafoln),
fa(@+c)=Nsfs3(x), falx+c)=Afa(z)
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and the eq.(7) we have:
)\2
a) If \y = =2

vl A1 = 1, A # 1 using the Theorem 2.5 we reduce the eq.(1) to the
1
equation

A2 = D fa(2)y + (A = M) fa(z) =0

whose solution is

fa(z)
= — 14
Yy 21 fQ(SU) ( )
Ag— A : . :
where p; = 1) The solution (14) is a QPF with a QP w = ¢ and a QPC

A
A= )\—4 for which gy = 1. Thus, from (14) we obtain (12) and (13) since y is QPS for
2

eq.(1).
2
b) If A3 = ;\;, A1 # 1, Ay # 1, Ay # Ay, using the Theorem 2.4 we reduce the eq.(1)
1

to the equation

A =D i)y + XA — 1) fo(x)y + (A — ) fa(z) = 0,

ie.
)\2 -1 fg(l’) )\4 —1 f4(l‘>
"+ + =0, 15
YN 1A T A0 =) Ail) (15)
or
Y +G(x)y+ H(z) =0 (16)
where the coefficients G(z), H(z) are QPF with a QP w = ¢ and QPC i\\2, f\\4. So,
1 A1
([1], [2]), we can reduce the eq.(16) to the equation
A A2 — M)G(z)y — (A — A\)H(z) =0 (17)
whose solution is
fa()
= — 18
) H2 Fa(x) (18)

(A= AN — AN\)
ANy — M) (A2 — 1)

A
QPC \ = )\—4 from where we obtain gy = 1. Thus, from (18) we obtain (12), and since
2

fa(x) fa(x)
fa() fa()

where py = . The solution (18) is a QPF with a QP w = ¢ and

is QPS to (16) and to (1) we have ( ) =0 and f3(x) =0. So fy(x) =0

and y = 0.
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2

)\—22, using the Theorem 2.3 we reduce the eq.(1) to the equation
4

1
C) If )\3 7é ﬁ =
(9), i.e.
y' + f@)y + g(x)y + h(z) = 0 (19)
where the coefficients f(z), g(x), h(z) are QPF with a QP w = ¢ and QPC A, Ao, As4.

Now, we reduce the eq.(19) to the equation
A — D f(2)y' + A — Dgla)y + (s — Ah(z) = 0 (20)
Depending on Ay, the following two cases are possible:
1. If )\1 = 1, )\2 7& ]_, )\2 7£ )\2)\3, then

- fulx)
Y= M3f2(x)7

(21)

(A — M) — A3A3)
X2(g — A2X3) Az — 1)

A
QPC A\ = )\—4 for which p3 = 1. Thus, from (21) we obtain (12). Since is QPS for (19)
2

and (1) we have (ﬁgi;),ljtfl(az) (ﬁg;) — 0 and fi(z) (;;‘Ei;)g =0, 50 fu(z) =0

where 3 = . The solution (21) is a QPF with a QP w = ¢ and

and y = 0.
2. IE AL # 1A # A, A 7 A3, de # A3, A # 1, fi(x) # 0 then we reduce the
eq.(1) to the equation

o Qe = DA = AX5)  fo(x) (A =N = AN)  fulz)

PO Dy @Y R - D0 ) A
ie.
Y +e(x)y +¢(x) =0. (22)
The coefficients p(z), 1 (z) are QPF with a QP w = ¢ and QPC :\\j,:\\j respectively.
So ([1]), we reduce the last equation to the equation
AAg = 1)(A2 — A1) (A2 — )\2)\3)f2(x)y n (Ag = AN (Mg = A) (Mg — )\3>\3>f4($) —0,

(A1 —1)(A1 — A%X3) A2(A — 1)( A — A2)y)

from where we find

- falx)
Yy = M4f2(x)a
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(A = A = A (A — A3A3)
(g — 1(Aa — M) (A2 — A2Ag)

Since QPC for y is A = )\—4, then under the given conditions we have puy = 1, and

2
the QPS for (1) is

and py =

_ falx)
fa(x)
Using the fact that the solution (12) is also the solution to the eq.(1), we obtain

that the coefficients fo, fs, f1 have to satisfy the relation (13). Since y is QPS for
(22),(19) and (1) we have

o (H0) o, (B N (RO

fa(z) fa(z) A® = AP fa(z)
f4(:v)>3
x = 0.
f3( )<f2<.’ll')
So we obtain fy(z) =0 and y = 0.
Example 2.3 The equation
—4z

y' +sinx -y + ey — ? +—(3sinz + 4cosz + 2sin’z + sinx cos )y’ — ¥ sinx = 0

sin” x

has coefficients which are QPF with a QP w = 27 and QPC \; = 1, \y = €™, \3 =
e®™ Ny = e respectively. Thus, according to the Theorem 2.6., the QPS for the

given DFE is
fa(x) 2

Ay
=esinr (w=2m, A=
fo() (

-0

Example 2.4 The equation

1
y'+ ey + —5—y° —e"sinz =0
sin? x

1
has coefficients fi(z) = 0, fo(z) = €, f3(x) = —5— and f4(z) = €”sinz which are
sin” x
QPF with a QP w = 27 and QPC \; = 1, Xy = 2™, \3 = 1, \y = €™ respectively.
Thus, according to the Theorem 2.6, the QPS for the given DFE is

_ _fa@)
fa(x)




222

Example 2.5 The equation

y// + 6x+cosx sin - y — 6—2xy3 . e2x+cosx sinxe =0

has coefficients f1(x) = 0, fo(x) = e* T %sinx, f3(x) = —e™ 2%, fy(x) = —e** T %sing
which are QPF with the same QP w = 27 and QPC \; = 1, Ay = 2™, \3 = ¢ '7,
A\ = €™, respectively. Thus, according to the Theorem 2.6., the QPS for the given

DFE is
fal@) _ o
fo() '

3. QPS FOR SOME SPECIAL NONLINEAR DIFFERENTIAL EQUATIONS

Theorem 3.1 If the DFE

y' +ay + By + vy’ = —fa(z) (v #0), (23)

that is a DFE of nonlinear oscillations, has QPS y = y(z) with a QP w = ¢ and a
QPC \ = const then it is reduced to

ML= M) (" + ay + By) = —falz +c) + N fa() (24)

Proof. If a = fi(z), 8 = fo(x), v = f3(x), then (1) has a form (23). By the Theorem
2.1. it is reduced to the eq.(24). O

Theorem 3.2 The equation (23) has a PS with a period w = ¢, if and only if the
coefficient fi(z) is a PF with the same period w = c.

Proof. If A = 1 then, from (23), we obtain fy(x) = fi(x + ¢), i.e. the coefficient
fa(x) has to be a PF. In reverse, if fi(x) is a PF with a period w = ¢, then we have

A =1, i.e. the solution for (23) is a periodic function, since
ML= M)y + o/ + By) — (1 W) fa(e) = 0
ie

L =NAA+NE +ay' + By) — (L+ A+ X) fa(z)) =0 O
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Theorem 3.3 Let fy(x) is a QPF with a QP w = ¢ and a QPC \y = X3, X\ # 1.
Then QPS for (23) is

S 1C))
v == (25)
if
311 (x) - fa(z) — 21 (z) + 3afi(x) - fa(z) + 9B8f,°(x) =0 (26)

Proof. From (24) we have

ML= N +ay + By) = (F = A fa(x).

Since \ # 1, it follows
y'+oay' + By =0 (27)

Then from (27) and (23) we obtain

Y2+ fa(x) =0

from where

S @)
v

that is QPS for (23) if the relation (26) is satisfied. O

Remark 3.1 From (27) we have that y = €"* where r is a solution for the character-
istic equation

rP4+ar+pB=0

1.e.

—a £ a2 —40
2

T2 =

Thus, we can consider the following cases:

1. If D? = o — 43 > 0 then fi(z) = ke2D) or f,(z) = ke2-o+D) and the
QPS is y = Ce2(-o=D)7 with a QPC A = e2(-o=D)e_op y = Cesz(-otD)w with a
QPC \ = ez(-otDe,

2. If D® = o2 — 48 = 0 then fy(z) = ke 2°® and the QPS is y = Ce 2% with a
QPC \ = e 2°.
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3. If =D? = a? — 43 < 0 then fy(z) = e B0 (A cos ;)DJ? + Bsin ;Dac) and the
QPS is y = e72%(acos 3w + bsin gz) with a QPC A = e3¢,

Example 3.1 The equation

" / a2 3 3
Y+ ay +Zy+y —e 2% =0

has QPS y = e~ 27.
Example 3.2 The equation

3

y' — 4y +5y — 1y + e cosr =0

has a QPS y = e** cos .
Example 3.3 The equation
y" + 1y —y® + (1 —cos2z)v2sinz =0

has periodic solutions y = v/2sin .
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