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Abstract. In the present paper we give some propositions about conditions for compactness
and condensation of the nonlinear superposition operator (1) in lp,σ spaces.

1. INTRODUCTION

Firstly, we recall some definitions and results. Nonlinear operator F generated by

a real function f(s, u):

F (u) = f(s, u) , (u ∈ R), (1)

is called superposition operator. By lp,σ (1 ≤ p < ∞) we denote spaces of functions

x : N→ R (real sequences), for which norm

||x||p,σ =

(∑

s∈N
|x(s)|pσ(s)

) 1
p

, (1 ≤ p < ∞) ,

makes sense and it is finite. Here σ is a weight function. Note that linear space

lp,σ is not normed space if 0 < p < 1. On the other hand the functional [x]p =
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∑
s∈N |x(s)|pσ(s) defines a p-norm at lp,σ, what makes the space lp,σ a complete p-

normed space. So that results given in this paper can be extended to the case of

0 < p < 1.

We suppose here that weight function satisfies the next condition:

(∀s ∈ N) σ(s) ≥ 1

which is both necessary and sufficient condition that p < q implies lp,σ ⊂ lq,σ. By

Bp(r) = {x ∈ lp,σ : ||x||p,σ ≤ r}

we denote the ball of the radius r, which is a closed and convex set in lp,σ. PD is

multiplication operator by characteristic function of the set D, i.e.,

PDx(s) = χD(s)x(s).

The L-characteristic L(F,P) of the nonlinear superposition operator (1) is defined

as a set of all pairs (lp,σ, lq,τ ) spaces, such that F has some property P , as an operator

from lp,σ into lq,τ , see [4].

Theorem A 1 ([3]) Nonlinear superposition operator (1) maps lp,σ into lq,τ if and

only if there exist a function a ∈ lq,τ and constants b ≥ 0 and δ > 0 such that the

estimate

|f(s, u)| ≤ a(s) + bσ
1
q (s)τ−

1
q (s)|u| pq (2)

holds for all pairs (s, u) ∈ N× R, for which is σ(s)|u|p ≤ δp.

Theorem B 1 ([3]) Nonlinear superposition operator F is bounded on lp,σ if and

only if for any r > 0 there exist a function ar ∈ lq,τ and constants br ≥ 0 such that

holds

|f(s, u)| ≤ ar(s) + brσ
1
q (s)τ−

1
q (s)|u| pq , (σ(s)|u|p ≤ rp).
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2. COMPACTNESS OF SUPERPOSITION OPERATOR ON lp,σ

In [7] the property of absolute boundedness of sets in arbitrary ideal spaces has

been studied in detail. But as it is well known, those results does no cover the case

when assumption of measure continuity is missing. Clearly we are going to be held

up on general conditions of absolute boundedness of sets in spaces lp,σ and consid-

ering that, on the conditions of complete continuity (compactness) of superposition

operators (1).

Set M ⊂ lp,σ is called absolutely bounded ([1]), if

lim
n→∞

sup
x∈M

||Pnx||lp,σ = 0,

where is Pnx = χDx an operator of multiplying with characteristic function of set

D = {n + 1, n + 2, . . .}. We see that notions absolute boundedness of set and its

precompactness are equivalent in our case. Consequently, an absolutely bounded

operator, i.e. the operator which is mapping bounded sets into absolutely bounded

sets, is nothing else but a completely continuous operator. We shall take later on an

example of the bounded set in lp,σ, but no absolute bounded. The general conditions

of precompactness of sets in lp,σ spaces we will formulate as an analogous of well

known Vallee-Poussin theorem which applies to Lp([0, 1]) spaces ([1]), and it is given

in following:

Lemma 1 Let 1 ≤ p < ∞ and u0(s) arbitrary positive function from lp,σ. Set M ⊂
lp,σ is absolutely bounded if and only if there exists monotone increasing on [0,∞)

function Φ(u) for which

lim
u→∞

Φ(u)

u
= ∞ ,

and

sup
x∈M

∣∣∣∣
∣∣∣∣Φ

( |x|
u0

)
u0

∣∣∣∣
∣∣∣∣
p,σ

< ∞ . (3)

Proof. Let set M ⊂ lp,σ is an absolutely bounded one. If we put

ψ(n) = sup
x∈M

(∑
s>n

|x(s)|pσ(s)

) 1
p

,



176

then limn→∞ ψ(n) = 0. Let (nk) is a subsequence of natural numbers 0 < n0 < n1 <

. . . nk < . . ., such that series
∑∞

k=0 ψ(nk) is convergent. Denote by (δk) a monotone

increasing to infinity sequence of numbers which satisfies the condition

∞∑

k=1

δkψ(nk−1) < ∞ ,

and let φ be a monotone increasing function for which φ(nk) = δk (k = 1, 2, . . .). It

is clear that the function Φ(u) = uφ(u) (0 < u < ∞) satisfies Lemma‘s conditions.

Further let

Sk = {s ∈ N : nk−1u0(s) < |x(s)| ≤ nku0(s), u0(s) > 0} , k = 1, 2, . . .

For x ∈ M , we have

( ∞∑
s=1

∣∣∣∣Φ
( |x(s)|

u0(s)

)
u0(s)

∣∣∣∣
p

σ(s)

) 1
p

≤
∞∑

k=1

(∑
s∈Sk

∣∣∣∣Φ
( |x(s)|

u0(s)

)
u0(s)

∣∣∣∣
p

σ(s)

) 1
p

≤
∞∑

k=1

(∑
s∈Sk

|φ(nk)|p|x(s)|pσ(s)

) 1
p

≤
∞∑

k=1

δk

(∑
s∈Sk

|x(s)|pσ(s)

) 1
p

=
∞∑

k=1

δkψ(nk−1) < ∞ .

In other words, we have shown (3), or that Lemma‘s condition is necessary.

The condition is sufficient: let ε > 0. For u ≥ λ (0 < λ < ∞) is u ≤ εΦ(u) and if

u0 ∈ lp,σ (u0(s) > 0), we have:

(∑
s>n

|x(s)|pσ(s)

) 1
p

≤




∑
s>n

|x(s)|>λu0(s)

|x(s)|p
u0(s)

σ(s)




1
p

+




∑
s>n

|x(s)|≤λu0(s)

|x(s)|pσ(s)




1
p

≤
(

λp
∑
s>n

|u0(s)|pσ(s)

) 1
p

+

(
εp

∑
s>n

∣∣∣∣Φ
(

x(s)

u0(s)

)
u0(s)

∣∣∣∣
p

σ(s)

) 1
p
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≤ λ

(∑
s>n

|u0(s)|pσ(s)

) 1
p

+ εm ≤ ε(λ + m) ,

where is with m denoted the left side in (3). From the last sequence of inequations,

it is easy to conclude that

lim
n→∞

sup
x∈M

(∑
s>n

|x(s)|pσ(s)

) 1
p

= 0 ,

or that set M is absolutely bounded, by which the Lemma is completely proved. 2

As a direct consequence of previous Lemma, we have:

Lemma 2 Let F is a superposition operator generated by function f(s, u), observed

as an operator between lp,σ and lq,τ , bounded on set A ⊂ lp,σ. For set FA ⊂ lq,τ

to be absolutely bounded, it is necessary and sufficient that operator F̃ generated by

function

f̃(s, u(s)) = u0(s)Φ

( |f(s, u(s))|
u0(s)

)

is bounded on A, where u0(s) is an arbitrary function from lq,τ and Φ increasing on

[0, +∞) function which satisfies the condition limu→+∞
Φ(u)

u
= ∞.

From Lemma 1 and Theorem A 1, follows:

Theorem 1 Let 1 ≤ p, q < ∞ and the operator (1) generated by function f(s, u) is

mapping lp,σ into lq,τ . Then this operator is completely continuous (compact) if and

only if for any r > 0 there exists a monotone increasing on [0,∞) function Φr(u), for

which is

lim
u→∞

Φr(u)

u
= ∞ ,

and

Φr

( |f(s, u)|
u0(s)

)
u0(s) ≤ ar(s) + brσ

1
q (s)τ−

1
q (s)|u| pq , (σ(s)

1
p |u| ≤ r) , (4)

where ar(s) ∈ lq,τ , br ≥ 0.
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Proof. The condition is sufficient. Let there for every r > 0 exists the function

Φr(u), with previously pointed properties and (4) is valid. Assume also that x belongs

to the set M ⊂ B(r) = {x : ||x|| ≤ r}; then |x(s)| ≤ r (s ∈ N) and from (4), easily

follows ([3])
∣∣∣∣
∣∣∣∣Φr

( |f(s, x(s))|
u0(s)

)
u0(s)

∣∣∣∣
∣∣∣∣
q,τ

≤ ||ar||q,τ + brσ
1
q (s)τ−

1
q (s)r

p
q , (u0(s) > 0) ,

i.e., the condition (3) of Lemma 1, where naturally instead of M stands F (M), and

supremum is taken over all Fx ∈ F (M), and F is a superposition operator (1). If we

recall ourselves to the Lemma 1, we will get that F (M) is a compact set (because lq,τ

is a Banach space), so that operator F is a compact one.

The condition is necessary. If operator F is a compact operator, then from Lemma 1,

the existence of function Φr(u) follows, with all listed properties and the condition:

sup
Fx∈F (M)

∣∣∣∣
∣∣∣∣Φr

( |f(s, x(s))|
u0(s)

)
u0(s)

∣∣∣∣
∣∣∣∣
q,τ

< ∞ ,

where from we are concluding that the operator Φr generated by the function

Φr

(
|f(s,u)|
u0(s)

)
u0(s) is bounded. Now the inequality (4) follows from Lemma 2, what

proves the theorem. 2

Results obtained in [4], allow us to consider L(F, compact.) now as a part of the

L(F, act.), namely we have:

Theorem 2 Let F be a superposition operator generated by function f(s, u) and com-

pact operator from lp0,σ to lq0,τ and at the same time from lp1,σ to lq1,τ . Then the

operator F is compact operator from lp,σ to lq,τ where are

1

p
=

α

p0

+
1− α

p1

,
1

q
=

α

q0

+
1− α

q1

, (α ∈ [0, 1]) .

Proof. We will consider the case when p0 ≤ p1 , q0 ≤ q1 i p0

q0
≤ p1

q1
. Let p0 ≤ p ≤ p1

and q0 ≤ q ≤ q1. Because of p ≤ p1 it is lp,σ ⊂ lp1,σ so for arbitrary bounded set

M ⊂ lp,σ, M ⊂ lp1,σ and M is bounded in lp1,σ. As F is a compact operator, based

on characterization of precompactness of set in Banach space lp1,σ follows

(∃ρs)(∀x ∈ M) |f(s, x(s))| ≤ ρs , (s ∈ N) . (5)
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On the other side, as q ≥ q0 it follows that lq0,τ ⊂ lq,τ i.e., for arbitrary y is ||y||q,τ ≤
||y||q0,τ , so that, for arbitrary x ∈ M is

∑

s∈N
|Fx(s)|qτ(s) =

∑

s∈N
|f(s, x(s))|qτ(s) = ||Fx||qq,τ

≤ ||Fx||qq0,τ =

(∑

s∈N
|f(s, x(s))|q0τ(s)

)q

< ∞ .
(6)

Therefore the series
∑

s∈N |Fx(s)|q is uniformly convergent on the set M . From (5)

and (6), from characterization of precompactness of set in lp,σ, we are concluding that

FM is a precompact set in lq,τ , e.g. F is the compact operator from lp,σ into lq,τ 2

As one can see Theorem 2. says that L(F, compact.) is a convex subset in

the convex set L(F,acts). Moreover, we have that L(F, compact.) is subset of the

L(F, bound.).

3. CONDENSING OF SUPERPOSITION OPERATOR ON lp,σ

In continuation we will consider some facts in correlation with condensation of

superposition operator (1), so firstly we ought to say that we will for the measure of

noncompactness in spaces lp,σ (and lq,τ ) take Hausdorff measure of noncompactness.

Hausdorff measure of noncompactness α(M) which value on bounded set M is defined

as an infimum of positive numbers ε, for which set M has a finite ε-net, as it is known

([2]) in spaces lp,σ is defined by formula:

α(M) = lim
n→∞

sup
x∈M

||Pnx|| . (7)

Let us take now bounded set

Bp(1) = {x ∈ lp,σ : ||x||p,σ ≤ 1}.

It is not hard to see that Bp(1) is not absolutely bounded set. Indeed, give (en)n∈N ⊂
lp,σ, (en = (0, 0, ..., 1, 0, ...)). While

||en − em||lp,σ = (σ(n) + σ(m))
1
p ,
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this sequence isn’t Cauchy sequence, and we can’t give subsequence that is convergent,

e.g. Bp(1) is not precompact (in complete spaces absolute boundedness of set and

precompactness are equal).

Remind ourselves that for the operator F , which acts from space lp,σ into space lq,τ ,

we say it is (k, α)-bounded or α-condensing , if for any set M ⊂ B(x0, r) ⊂ lp,σ

matters:

α(FM) ≤ kα(M) . (8)

Lemma 3 Let the operators F i G, which are generated by functions f(s, u) and

g(s, u) successively, act from lp,σ to lq,τ (1 ≤ p, q < ∞). Then, if for every x ∈ lp,σ it

matters that

|f(s, x(s))| ≤ |g(s, x(s))| , (9)

it follows that

α(FM) ≤ α(GM) . (10)

Proof. From (9) and the definition of norm on lq,τ it follows that for every x ∈ lp,σ

and every n ∈ N
||PnFx||q,τ ≤ ||PnGx||q,τ ,

where from, considering (7), we easily get (10) 2

Theorem 3 Let 1 ≤ p, q < ∞ and let operator superposition F , which is generated by

function f(s, u), acts from space lp,σ into space lq,τ . Then operator F is α-condensable,

i.e. holds estimate

α(FM) ≤ k(r)α(M) , (M ⊂ B(x0, r) ⊂ lp,σ) , (11)

where x0 is an arbitrary point from lp,σ, and

r
q−p

q k(r) = inf{bε : |f(s, u)| ≤ aε(s) + bεσ
1
q (s)τ−

1
q (s)|u| pq , σ

1
p (s)|u| ≤ r, s > n} .

Proof. First of all, the value k(r) is correctly introduced because the operator F

acts from lp,σ in lq,τ , so therefor the function f(s, u), which generates this operator
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satisfies the conditions of Theorem A i.e. , the inequality (2). Let it now f1(s, u) =

aε + bεσ
1
q (s)τ−

1
q |u| pq and F1 operator generated by this function. It is clear that in

calculation of the value α(F1), the function aε(s) doesn’t have an important role, so

for x ∈ M ⊂ B(x0, r) ⊂ lp,σ, (x ∈ lp,σ ⇒ x
p
q ∈ lq,σ):

α(F1(M)) = lim
n→∞

sup
x∈M

bε

(∑
s>n

|x(s)|pσ(s)

) 1
q

≤ bεr
p−q

q α(M) .

Since the last relation is valid for every bε, from Lemma 3, estimate (11) follows

directly, and by that the Theorem 3, is proved. 2

Considering that in practical application of the property of the condensation op-

erator the basic role has a condensity coefficient k(r), it is a motivation more for

dealing with it a little bit more. Put

H(r, δ) = sup
M⊂B(0,r),α(M)≤δ

α(F (M)) , (12)

where r is a radius of ball B, α-Hausdorff measure of noncompactness. The func-

tion H(r, δ), defined by (12), is called the function of condensation of superposition

operator F and its precisely calculation, as we can see, isn’t easy at all. In the case

which we are researching, it is possible for this function to give simple majorisations

which are in the case of linear operators obviously becoming simplified and turning

into equations.

Theorem 4 Let 1 ≤ p, q < ∞ and the superposition operator F , which is generated

by the function f(s, u), acts from lp,σ in lq,σ. Then following inequality is valid

H(r; δ) ≤ δ
p
q inf W (f ; r, δ) , (13)

where W (f ; r, δ) is set of constants b, for which at suitable a(s) ∈ lq,σ, c ≥ 0 and

n ∈ N the following inequality is valid

|f(s, u)− f(s, v)| ≤ a(s) + b|u| pq + c|v| pq , (|u|, |v| ≤ r, |u− v| ≤ δ) .

Proof. Let M is arbitrary set from the ball B(0, r), δ > α(M) and b ∈ W (f ; r, δ).

Denote by {xj(s) : j = 1, 2, . . . , m} finite δ-net of the set M . Let be now x ∈ M and
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||x− xj||p,σ < δ. Then for big k we have:

||PkFx||q,σ ≤ ||PkFxj||q,σ + ||Pk(Fx− Fxj)||q,σ

≤ ||PkFxj||q,σ + ||Pka||q,σ + b||Pkx||
p
q
p,σ + c||Pkxj||

p
q
p,σ

≤ max
j

(
||PkFxj||q,σ + ||Pka||q,σ + c||Pkxj||

p
q
p,σ

)
+ bδ

p
q ,

where from we easily get (13). The theorem is proved. 2

Using (12), the coefficient of condensation of superposition operator (1) is defined

by

k(r) = sup
0<δ≤r

H(r, δ)

δ
,

and from Theorem 4, follow estimate

k(r) ≤ sup
0<δ≤r

inf δ
p−q

q W (f ; r, δ) ,

which ultimately in the case of linear operator turns into equality.
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