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Osc*M ADMITTING f-STRUCTURE

Jovanka Nikié and Irena Comié

Faculty of Technical Sciences, Trg Dositeja Obradovica 6,
21000 Nowvi Sad, Serbia and Montenegro
(e-mail: nikic@Quns.ns.ac.yu)

Abstract. The theory of Osc* M was introduced by R. Miron and Gh. Atanasiu in [4], [5].
R. Miron in [6], [7] gave the comprehend theory of higher order geometry and its application.
In [1] and [2] the special adapted basis of Miron’s Oscf M was constructed. Using the above
results here different structures of OscFM will be examined.

1. SPECIAL ADAPTED BASIS IN T(Osc*M) AND T*(Osc* M)

Here Osc®*M will be defined as a C* manifold in which the transformations of
form (1.1) are allowed. It is formed as a tangent space of higher order of the base
manifold M.

Let E = Osc*M be a (k + 1)n dimensional C*° manifold. In some local chart
(U, ¢) some point u € E has coordinates

(xa’yla’yZa’ o 7yka) — (yO(z?yla,yQa, o 7yka> — <yAa)7
where 2% = ¢y and
a,bc,dye,...=1,2,....n, ABCD,...=0,1,2,...,k.
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The following abbreviations:

Opg = ——, A=12,... k, 0,=00=—-—=
Ac T PyAa 0 T

will be used.

If in some other chart (U’,¢) the point u € E has coordinates (z%,y'*, 4%, ..., y")

Y

then in U N U’ the allowable coordinate transformations are given by:

¥ = a%(zh 22, .. an),

v = (0ar)y" = (Goay™ )y 1)
v = (Ooay" )y + Oray Iy,

y* = (Boay* V)Y + (O1ay V)Y + -+ (D nyay By

The natural basis B of T(FE) is
B = {0a; 014; - - - » Ora}- (1.2)
The natural basis B* of T*(E) is
B* = {dy", dy'*, ... dy"}. (1.3)

We shall use the notations

r dyOa 5y0a
dyla (Syla
[dy(a)] = : ) [5y(a)] — : , [a(a)] = [80a31a . aka],
L dyka 5yka
[5(0 ] - [50a51a s (5ka] (O)Ba = 80ay
80zzy0a, 0 0
a’ aoayla 81ay 0
Bl =]
i 80ayka’ alayk:a’ . a]myka/

Definition 1.1. The special adapted basis B* of T*(E) is defined by

[0y ] = (M) 1dy ™), (1.4)



where

0)ag 0 0

Eé Mg g})és 0
@ = | )M G)M (3)os

()ar ()™ E (o
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(1.5)

Theorem 1.1. The necessary and sufficient conditions that dy**(A = 0,1,...,k)

are transformed as d-tensors are:
(a) a (@)1 p®)
(M )V BY = [M)1[By]

Definition 1.2. The special adapted basis B of T(E) is given by

(6] = [0 [N )],

where
()t 0 0 ]
—(o)Nee  (3)a 0
NI =| -(5)NE —()NE (B)ot
N —(NE (B

Theorem 1.2. The necessary and sufficient conditions for d4,(A = 0,1, ...

by (1.7) to be d-tensors is the following matriz equation:

c b c a’
[B( )][N( )] _ [N((alg](O)Ba )

(1.6)

(1.7)

(1.8)

k) given

(1.9)

Theorem 1.3. The special adapted basis B* is dual to special adapted basis B if and

only if
[MONING) = obT.

The proof of Theorems 1.1-1.3 can be found in [2].

(1.10)
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2. THE J STRUCTURE

Definition 2.1. The k-tangent structure J is a F(E)-linear mapping
J i x(E) = x(E)

defined by

JaOi :alia Jalz :2821'7 cey

2.1
JOni = (0 +1)0at1yis -+ JOp—1yi = kOri, JOwi = 0. (2.1)

The k-structure J determined by Definition 2.1 is the same as J used in [6], [7],
but there it is represented in different basis of the tangent space.

For the k-tangent structure J the relation
JE =0 (2.2)

is valid. In the natural bases B and B* of T(E) and T*(E) it can be written in the

form
[0 0 0 0 0] [ dy]
100 0 0 dy'®
J = [0ouOra... 0] | 0 2 0 00 || dy™
00 3 0 0 : (2.3)
_' : k0] _dyk“_

= 81(1 & dyoa + 282a ® dyla + 303a ® dy2“ + -+ k@ka X dy(k—l)(l

Theorem 2.1. The k-tangent structure J defined by Definition (2.1) the elements of
basis B = {00a; 01as - - -, Oka } determined by (1.7) transform in the following way

J(SOG, - 51(17 J(Sla, - 262&7 J(;Aa - (A + 1)5(A+1)a7 e

(2.4)
J(S(k:—l)a = kakm Jéka = 0.

Theorem 2.2. The k-tangent structure J given by (2.1) satisfies the relations

dy®J = 0,dy*J = dy®, dy®®J = 2dy"®, ..., dy**J = kdy*FV°. (2.5)
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Theorem 2.3. For the k-tangent structure J given by (2.1) we have
Sy®J = 0,0y = 6y, 6y T = 20y, ..., oyFtT = kyDP (2.6)

where {dy%, 6y*, ..., Sy**} is the special adapted basis B* of T(E) determined by

(1.4)

Theorem 2.4. The structure J in the adapted basis B = {0oq, 014, - - -, 0ka} and
B* = {0y%, dy'e, ... 6y*e} is given by

J = 610 @ 6y + 2095 ® 0y 4 303, @ 6y** + . .. + kg @ SytFH, (2.7)

The proof of Theorems 2.1-2.4 can be found in [2].

3. f(2t+1,—1)-STRUCTURE IN OsckM

In the special adapted basis B = {0¢4, 014, - - - , Oka } of T'(E), the vectors {do, } span
the n-dimensional space T (E), and the vectors {d14, 624, - - ., Oka } the k-n-dimensional
Ty (F) and

T(E)=Ty(F)aTyv(E).

With respect to the metric tensor G:
G = goa Obayoa & 5y0b + JAa Bb(;yAa & 5bea A= ]-) 27 ceey k

Ty (E) is orthogonal to Ty (E).

Definition 3.1. Let E = Osc*M be a m = (k + 1)n-dimensional differentiable man-
ifold of class C*°, and let there be given a tensor field f # 0 of the type (1,1) and of
class C'*° such that

f2t+1 T — f2i+1 —f#0 for 1 <i<t, (3.1)

where t is a fized integer greater than 1. Let rank f = r be constant. We call such
a structure an f(2t + 1, —1)-structure or an f-structure of the rank r and of degree

2t + 1.
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Theorem 3.1. For a tensor field f, f # 0 satisfying (2.1), the operators
m=1/]—f* 1= f% (3.2)

are the complementary projection operators where I denotes the identily operator

applied to the tangent space at a point of the manifold.

Proof. We have

l+m=7,1P=1m?’=m, ml=Ilm=0

by virtue of (3.1), which proves the theorem.
Let L and M be the complementary distributions corresponding to the operators

1 and m, respectively. If rank f = r is constant and dim L = r, then dim M = m —r.

Proposition 3.1. Let an f-structure of the rank r and degree 2t + 1 be given on E,
then f?1 =1 and f'm = 0, i.e. f acts on L as an almost product structure operator

and on M as a null operator.

We shall assume that E is a Osc®* M space of dimension m = (k + 1)n, and that
rank f =r=%k-n. ThendimL =k -n,dimM =n and M =Ty (FE),L =Ty (F).

If we denote by h the projection morphism of T'(F) to Ty (F), we can construct
the mapping a which is defined in [10] by

a(X,Y) = ;[h(lX, 1Y)] + A(mX,mY)], VX,Y € T(E),

where h = Gh, is a pseudo-Riemannian structure on T(F), such that a(X,Y) =
0,vX e MY € L.

If we put g(X,Y) = o [a(X,Y) +a(fX, fY)+---+a(f21X, f71Y)], it is casy
to see that ¢g(X,Y)=0,VX € M,Y € L.

Also, using (3.2) we get g(f X, [Y) = 5 [a(f X, fY)+a(f2X, f2Y )+ - +a(X,Y)] =
g(X,Y). Thus f is an isometry with respect to g.

We assume that fi (the restriction from f* on L, (i < 2t)) is not identity operator
of L. Then f; is a linear transformation of L with the minimal polynomial 2% —1 = 0.

(We know that f* =1 on L.) The polynomial (z! — 1)(z* + 1) = 0 has simple roots:

9mi 4T otmt Wi 3mi
t

_qymi
e“t,ett ..., e7t et e t,...,e(% R
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The eigenvectors which correspond to these eigenvalues are es, ey, ..., eo,
ey,es,...,ey_1, respectively. Let us denote by L; the vector space generated by the
vectors es,ey4,...,69 and by Lo the vector space generated by the vectors
€1,€3,...,6_1. Then

ff=1on Ly, f'=-1 on L.
For X € Ly and Y € Lo, we have

Hence, Ly and Ly are orthogonal with respect to the metric g.

We assume that f7 —1#0on Ly,j <tand f/+1%#0on Ly,j <t. Then, fisa

linear transformation of L, with the minimal polynomial ! + 1 = 0, with the
eigenvalue v/—1, to which correspond the eigenvectors e},e5,...,e; and

Ly =LY® L2® ... ® LY where L§ is the subspace of Ly generated by the vector
e,s=1,...,t.

It is also an f linear transformation on L; with the minimal polynomial 2t —1 = 0,
with the eigenvalue v/1, to which the eigenvectors ¢/ 415 €49, - - -5 €5 correspond. Now
Li=L"oLlMa. . @ L where L{t* is the subspace of L; generated by the vector
ey 5 =1,...,1t

L™ and LT, (p,7 < t), are orthogonal with respect to g if t = 2% k € N, which

is then shown by induction, see [10]. In the sequel t = 2 k € N.
0 £,

In [3] the following theorem is proved: If f* = [ 20
T

1, then ¢t < p and p is
divisible by ¢, (p = s - t).

An analogous situation is on the space Lo(dim Ly = 2p,p = s - 2871).

If we assume that E is a Osc®M space of dimension m = (K + 1)n, and that
rank f =r=k-n=2-p-k,then dimL = k-n dimM =n and M = Tyx(FE),
L=Ty(E).

Let wuy,...,ug be an orthogonal basis of Ly and ugpi1, Ugpye, ..., Ur—2y be an

orthogonal basis of L, both with respect to g, then uy, ..., ugp, Ugpi1,. .., Ur—9p is an

orthogonal basis of L such that
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Ly: fuwi) = ui+;—£v f(uj+2p7§—£> = —uj,
i:1,2,...,2p—2p/2k, j:1,2,...,2p/2k.
f(u2p+i) - u2p+i+2351 5 f<u4p+j—2lffl) = —U2p+j
i:1,2,...,2p—2p/2k’1, j:1,2,...,2p/2k’1
fluapyi) = Uap it 225> f (U6p+j—2,§—f2> = T Udpyj
i:1,2,...,2p—2p/2k_2, ]':1,2,...,2]9/2’“_2

L1 . :
fuap-1yi+i) = top-1yeritps [ (Uaph—j) = —Un(p—1)k+
1=1,2,...,p, i=12...,p
f (UQkp-i-i) = U2pk+i, / (UZ(kJrl)pfi) = —U2p(k+1)—i
1=1,2,...,p.

Next, we choose in M = Ty (FE) an orthogonal basis w41, . .. s U(k+1)n with respect

to g, dimOsc*M = m = n+r = (k+ 1)n. Then, with respect to the orthogonal

frame wuy, ..., u,, the tensors g and f have components as in [9]:
S E2p7§—£ -
—FE2 0
ok
0 EQP,%
/= —Ep 0 (3.3)
0 E,
-E, 0
E, 0
0 —-E,
L Omfr i
Es,
g —=
E,,
Emfr

We call such a frame an adapted frame of f(2-2% + 1, —1) structure.
Let @, ..., w,, be another adapted frame with respect to which the metric tensor
g and the tensor f have the same components as (3.3). We put u; = ’yguj, then we

find that + has the form
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(22)
Sz
V= See) (3.4)
A, By
_Bp Ap
02y
L Om—T J
where S(@),i = 2,4,...,2% is a matrix of format 2p = n and has the form
Ay Ay Az Ay ... A ]
—A,L Al A2 Ag R Ai,1
_Ai—l _Az A1 A2 . Ai_g
—As Ay —As As
—Ay, —Az —Ay A
where each matrix 4;,0 = 1,...,4 has a format (%) x (22), i.e. s x s.

Let §( 2) be the tangent group defined by S( 22). Then we can say that the group

of the tangent bundle of the manifold can be reduced to

Sz X 5(2’351) X oo XS 2py X Up X O2p X Oy

SIS

Theorem 3.2. A necessary and sufficient condition for a space E of dimension (k+
Dn to admit a tensor field f # 0 of type (1,1) and of rank k-n, such that f2*+ —f =
0, is that

i) r=k-2p=k-n,
i) p=s5-28=s5-t, s€ N, t=2F
ii1) the group of the tangent bundle of the manifold be reduced to the group

F(z%)xg( 2 )x...xg(%p)xprOprOm,r.

2 2k—1
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