Osc^kM ADMITTING *f*-STRUCTURE

Jovanka Nikić and Irena Čomić

Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia and Montenegro (e-mail: nikic@uns.ns.ac.yu)

Abstract. The theory of $Osc^k M$ was introduced by R. Miron and Gh. Atanasiu in [4], [5]. R. Miron in [6], [7] gave the comprehend theory of higher order geometry and its application. In [1] and [2] the special adapted basis of Miron's $Osc^k M$ was constructed. Using the above results here different structures of $Osc^k M$ will be examined.¹

1. SPECIAL ADAPTED BASIS IN $T(Osc^kM)$ AND $T^*(Osc^kM)$

Here $Osc^k M$ will be defined as a C^{∞} manifold in which the transformations of form (1.1) are allowed. It is formed as a tangent space of higher order of the base manifold M.

Let $E = Osc^k M$ be a (k+1)n dimensional C^{∞} manifold. In some local chart (U, φ) some point $u \in E$ has coordinates

$$(x^{a}, y^{1a}, y^{2a}, \dots, y^{ka}) = (y^{0a}, y^{1a}, y^{2a}, \dots, y^{ka}) = (y^{Aa}),$$

where $x^a = y^{0a}$ and

 $a, b, c, d, e, \ldots = 1, 2, \ldots, n, \quad A, B, C, D, \ldots = 0, 1, 2, \ldots, k.$

¹This research was partly supported by Science Fund of Serbia, grant number 1262.

The following abbreviations:

$$\partial_{Aa} = \frac{\partial}{\partial y^{Aa}}, \quad A = 1, 2, \dots, k, \quad \partial_a = \partial_{0a} = \frac{\partial}{\partial x^a} = \frac{\partial}{\partial y^{0a}}$$

will be used.

If in some other chart (U', φ') the point $u \in E$ has coordinates $(x^{a'}, y^{1a'}, y^{2a'}, \dots, y^{ka'})$, then in $U \cap U'$ the allowable coordinate transformations are given by:

$$\begin{aligned}
x^{a'} &= x^{a'}(x^{1}, x^{2}, \dots, x^{n}), \\
y^{1a'} &= (\partial_{a} x^{a'}) y^{1a} = (\partial_{0a} y^{0a'}) y^{1a}, \\
y^{2a'} &= (\partial_{0a} y^{1a'}) y^{1a} + (\partial_{1a} y^{1a'}) y^{2a}, \dots, \\
y^{ka'} &= (\partial_{0a} y^{(k-1)a}) y^{1a} + (\partial_{1a} y^{(k-1)a}) y^{2a} + \dots + (\partial_{(k-1)a} y^{(k-1)a}) y^{ka}.
\end{aligned}$$
(1.1)

The natural basis \overline{B} of T(E) is

$$\bar{B} = \{\partial_{0a}, \partial_{1a}, \dots, \partial_{ka}\}.$$
(1.2)

The natural basis \bar{B}^* of $T^*(E)$ is

$$\bar{B}^* = \{ dy^{0a}, dy^{1a}, \dots, dy^{ka} \}.$$
(1.3)

We shall use the notations

$$\begin{bmatrix} dy^{(a)} \end{bmatrix} = \begin{bmatrix} dy^{0a} \\ dy^{1a} \\ \vdots \\ dy^{ka} \end{bmatrix}, \quad \begin{bmatrix} \delta y^{(a)} \end{bmatrix} = \begin{bmatrix} \delta y^{0a} \\ \delta y^{1a} \\ \vdots \\ \delta y^{ka} \end{bmatrix}, \quad \begin{bmatrix} \partial_{(a)} \end{bmatrix} = \begin{bmatrix} \partial_{0a} \partial_{1a} \dots \partial_{ka} \end{bmatrix},$$
$$\begin{bmatrix} \delta_{(a)} \end{bmatrix} = \begin{bmatrix} \delta_{0a} \delta_{1a} \dots \delta_{ka} \end{bmatrix}, \quad \begin{bmatrix} 0 \end{bmatrix} B_a^{a'} = \partial_{0a} y^{0a'},$$
$$\begin{bmatrix} B_{(a)}^{(a')} \end{bmatrix} = \begin{bmatrix} \partial_{0a} y^{0a'} & 0 & \cdots & 0 \\ \partial_{0a} y^{1a'} & \partial_{1a} y^{1a'} & \cdots & 0 \\ \vdots \\ \partial_{0a} y^{ka'} & \partial_{1a} y^{ka'} & \cdots & \partial_{ka} y^{ka'} \end{bmatrix}.$$

Definition 1.1. The special adapted basis B^* of $T^*(E)$ is defined by

$$[\delta y^{(a)}] = [M^{(a)}_{(b)}][dy^{(b)}], \qquad (1.4)$$

146

where

$$[M_{(b)}^{(a)}] = \begin{bmatrix} \begin{pmatrix} 0\\0\\0 \end{pmatrix} \delta_b^a & 0 & 0 & 0\\ \begin{pmatrix} 1\\0\\0 \end{pmatrix} M_{0b}^{1a} & \begin{pmatrix} 1\\1\\0 \end{pmatrix} \delta_b^a & 0 & 0\\ \begin{pmatrix} 2\\0\\0 \end{pmatrix} M_{0b}^{2a} & \begin{pmatrix} 2\\1\\0 \end{pmatrix} M_{0b}^{1a} & \begin{pmatrix} 2\\2\\0 \end{pmatrix} \delta_b^a & 0\\ \vdots & & & \\ \begin{pmatrix} k\\0 \end{pmatrix} M_{0b}^{ka} & \begin{pmatrix} k\\1\\0 \end{pmatrix} M_{0b}^{(k-1)a} & \vdots & \begin{pmatrix} k\\k\\0 \end{pmatrix} \delta_b^a \end{bmatrix}.$$
(1.5)

Theorem 1.1. The necessary and sufficient conditions that $\delta y^{Aa}(A = 0, 1, ..., k)$ are transformed as d-tensors are:

$$[M_{(b)}^{(a)}]^{(0)}B_a^{a'} = [M_{(b')}^{(a')}][B_{(a)}^{(b')}].$$
(1.6)

Definition 1.2. The special adapted basis B of T(E) is given by

$$[\delta_{(a)}] = [\partial_{(b)}][N_{(a)}^{(b)}], \qquad (1.7)$$

where

$$[N_{(a)}^{(b)}] = \begin{bmatrix} \binom{0}{0} \delta_a^b & 0 & 0 & \dots & 0\\ -\binom{1}{0} N_{0a}^{1b} & \binom{1}{1} \delta_a^b & 0 & \dots & 0\\ -\binom{2}{0} N_{0a}^{2b} & -\binom{2}{1} N_{0a}^{1b} & \binom{2}{2} \delta_a^b & \dots & 0\\ \vdots & & & \vdots\\ -\binom{k}{0} N_{0a}^{kb} & -\binom{k}{1} N_{0a}^{(k-1)b} & \dots & \dots & \binom{k}{k} \delta_a^b \end{bmatrix}.$$
 (1.8)

Theorem 1.2. The necessary and sufficient conditions for $\delta_{Aa}(A = 0, 1, ..., k)$ given by (1.7) to be d-tensors is the following matrix equation:

$$[B_{(b)}^{(c')}][N_{(a)}^{(b)}] = [N_{(a')}^{(c')}]^{(0)}B_a^{a'}.$$
(1.9)

Theorem 1.3. The special adapted basis B^* is dual to special adapted basis B if and only if

$$[M_{(c)}^{(b)}][N_{(a)}^{(c)}] = \delta_a^b I.$$
(1.10)

The proof of Theorems 1.1-1.3 can be found in [2].

2. THE J STRUCTURE

Definition 2.1. The k-tangent structure J is a $\mathcal{F}(E)$ -linear mapping

$$J:\chi(E)\to\chi(E)$$

defined by

$$J\partial_{0i} = \partial_{1i}, \quad J\partial_{1i} = 2\partial_{2i}, \quad \dots,$$

$$J\partial_{\alpha i} = (\alpha + 1)\partial_{(\alpha + 1)i}, \quad \dots, \quad J\partial_{(k - 1)i} = k\partial_{ki}, \quad J\partial_{ki} = 0.$$
 (2.1)

The k-structure J determined by Definition 2.1 is the same as J used in [6], [7], but there it is represented in different basis of the tangent space.

For the k-tangent structure J the relation

$$J^{k+1} = 0 (2.2)$$

is valid. In the natural bases \overline{B} and \overline{B}^* of T(E) and $T^*(E)$ it can be written in the form

$$J = \begin{bmatrix} \partial_{0a} \partial_{1a} \dots \partial_{ka} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & & 0 & 0 \\ 0 & 2 & 0 & & 0 & 0 \\ 0 & 0 & 3 & & 0 & 0 \\ \vdots & \vdots & & k & 0 \end{bmatrix} \otimes \begin{bmatrix} dy^{0a} \\ dy^{1a} \\ dy^{2a} \\ \vdots \\ dy^{ka} \end{bmatrix}$$
(2.3)

 $= \partial_{1a} \otimes dy^{0a} + 2\partial_{2a} \otimes dy^{1a} + 3\partial_{3a} \otimes dy^{2a} + \dots + k\partial_{ka} \otimes dy^{(k-1)a}$

Theorem 2.1. The k-tangent structure J defined by Definition (2.1) the elements of basis $B = \{\delta_{0a}, \delta_{1a}, \dots, \delta_{ka}\}$ determined by (1.7) transform in the following way

$$J\delta_{0a} = \delta_{1a}, \quad J\delta_{1a} = 2\delta_{2a}, \quad J\delta_{Aa} = (A+1)\delta_{(A+1)a}, \dots$$

$$J\delta_{(k-1)a} = k\partial_{ka}, \quad J\delta_{ka} = 0.$$

(2.4)

Theorem 2.2. The k-tangent structure J given by (2.1) satisfies the relations

$$dy^{0b}J = 0, dy^{1b}J = dy^{0b}, dy^{2b}J = 2dy^{1b}, \dots, dy^{kb}J = kdy^{(k-1)b}.$$
 (2.5)

Theorem 2.3. For the k-tangent structure J given by (2.1) we have

$$\delta y^{0b}J = 0, \, \delta y^{1b}J = \delta y^{0b}, \, \delta y^{2b}J = 2\delta y^{1b}, \dots, \, \delta y^{kb}J = k\delta y^{(k-1)b}$$
(2.6)

where $\{\delta y^{0b}, \delta y^{1b}, \dots, \delta y^{kb}\}$ is the special adapted basis B^* of T(E) determined by (1.4).

Theorem 2.4. The structure J in the adapted basis $B = \{\delta_{0a}, \delta_{1a}, \ldots, \delta_{ka}\}$ and $B^* = \{\delta y^{0a}, \delta y^{1a}, \ldots, \delta y^{ka}\}$ is given by

$$J = \delta_{1a} \otimes \delta y^{0a} + 2\delta_{2a} \otimes \delta y^{1a} + 3\delta_{3a} \otimes \delta y^{2a} + \ldots + k\delta_{ka} \otimes \delta y^{(k-1)a}.$$
(2.7)

The proof of Theorems 2.1-2.4 can be found in [2].

3. f(2t+1,-1)-STRUCTURE IN Osc^kM

In the special adapted basis $B = \{\delta_{0a}, \delta_{1a}, \dots, \delta_{ka}\}$ of T(E), the vectors $\{\delta_{0a}\}$ span the *n*-dimensional space $T_H(E)$, and the vectors $\{\delta_{1a}, \delta_{2a}, \dots, \delta_{ka}\}$ the *k*·*n*-dimensional $T_V(E)$ and

$$T(E) = T_H(E) \oplus T_V(E).$$

With respect to the metric tensor G:

$$G = g_{0a\ 0b} \delta y^{0a} \otimes \delta y^{0b} + g_{Aa\ Bb} \delta y^{Aa} \otimes \delta y^{Bb}, \ A = 1, 2, \dots, k$$

 $T_H(E)$ is orthogonal to $T_V(E)$.

Definition 3.1. Let $E = Osc^k M$ be a m = (k+1)n-dimensional differentiable manifold of class C^{∞} , and let there be given a tensor field $f \neq 0$ of the type (1,1) and of class C^{∞} such that

$$f^{2t+1} - f = 0, \quad f^{2i+1} - f \neq 0 \quad \text{for } 1 \le i < t,$$
(3.1)

where t is a fixed integer greater than 1. Let rank f = r be constant. We call such a structure an f(2t + 1, -1)-structure or an f-structure of the rank r and of degree 2t + 1. **Theorem 3.1.** For a tensor field $f, f \neq 0$ satisfying (2.1), the operators

$$\mathbf{m} = I - f^{2t}, \ \mathbf{l} = f^{2t} \tag{3.2}$$

are the complementary projection operators where I denotes the identity operator applied to the tangent space at a point of the manifold.

Proof. We have

$$\mathbf{l} + \mathbf{m} = I, \ \mathbf{l}^2 = \mathbf{l}, \ \mathbf{m}^2 = \mathbf{m}, \ \mathbf{m} \mathbf{l} = \mathbf{l} \mathbf{m} = 0$$

by virtue of (3.1), which proves the theorem.

Let L and M be the complementary distributions corresponding to the operators **l** and **m**, respectively. If rank f = r is constant and dim L = r, then dim M = m - r.

Proposition 3.1. Let an *f*-structure of the rank *r* and degree 2t + 1 be given on *E*, then $f^{2t}\mathbf{l} = \mathbf{l}$ and $f^{2t}\mathbf{m} = 0$, i.e. f^t acts on *L* as an almost product structure operator and on *M* as a null operator.

We shall assume that E is a $Osc^k M$ space of dimension m = (k+1)n, and that rank $f = r = k \cdot n$. Then dim $L = k \cdot n$, dim M = n and $M = T_H(E)$, $L = T_V(E)$.

If we denote by h the projection morphism of T(E) to $T_H(E)$, we can construct the mapping α which is defined in [10] by

$$\alpha(X,Y) = \frac{1}{2} [\overline{h}(\mathbf{l}X,\mathbf{l}Y)] + \overline{h}(\mathbf{m}X,\mathbf{m}Y)], \quad \forall X,Y \in T(E),$$

where $\overline{h} = Gh$, is a pseudo-Riemannian structure on T(E), such that $\alpha(X, Y) = 0, \forall X \in M, Y \in L$.

If we put $g(X,Y) = \frac{1}{2t} [\alpha(X,Y) + \alpha(fX,fY) + \dots + \alpha(f^{2t-1}X,f^{2t-1}Y)]$, it is easy to see that $g(X,Y) = 0, \forall X \in M, Y \in L$.

Also, using (3.2) we get $g(fX, fY) = \frac{1}{2t} [\alpha(fX, fY) + \alpha(f^2X, f^2Y) + \dots + \alpha(X, Y)] = g(X, Y)$. Thus f is an isometry with respect to g.

We assume that f_L^i (the restriction from f^i on L, (i < 2t)) is not identity operator of L. Then f_L is a linear transformation of L with the minimal polynomial $x^{2t} - 1 = 0$. (We know that $f^{2t} = 1$ on L.) The polynomial $(x^t - 1)(x^t + 1) = 0$ has simple roots:

$$e^{2\frac{\pi i}{t}}, e^{4\frac{\pi i}{t}}, \dots, e^{2t\frac{\pi i}{t}}, e^{\frac{\pi i}{t}}, e^{3\frac{\pi i}{t}}, \dots, e^{(2t-1)\frac{\pi i}{t}}.$$

150

The eigenvectors which correspond to these eigenvalues are e_2, e_4, \ldots, e_{2t} , $e_1, e_3, \ldots, e_{2t-1}$, respectively. Let us denote by L_1 the vector space generated by the vectors e_2, e_4, \ldots, e_{2t} and by L_2 the vector space generated by the vectors $e_1, e_3, \ldots, e_{2t-1}$. Then

$$f^t = 1$$
 on $L_1, f^t = -1$ on L_2 .

For $X \in L_1$ and $Y \in L_2$, we have

$$g(X,Y) = g(fX, fY) = g(f^{t}X, f^{t}Y) = g(X, -Y) = -g(X, Y).$$

Hence, L_1 and L_2 are orthogonal with respect to the metric g.

We assume that $f^j - 1 \neq 0$ on $L_1, j < t$ and $f^j + 1 \neq 0$ on $L_2, j < t$. Then, f is a linear transformation of L_2 with the minimal polynomial $x^t + 1 = 0$, with the eigenvalue $\sqrt[t]{-1}$, to which correspond the eigenvectors e'_1, e'_2, \ldots, e'_t and $L_2 = L_2^1 \oplus L_2^2 \oplus \ldots \oplus L_2^t$ where L_2^s is the subspace of L_2 generated by the vector $e'_s, s = 1, \ldots, t$.

It is also an f linear transformation on L_1 with the minimal polynomial $x^t - 1 = 0$, with the eigenvalue $\sqrt[t]{1}$, to which the eigenvectors $e'_{t+1}, e'_{t+2}, \ldots, e'_{2t}$ correspond. Now $L_1 = L_1^{t+1} \oplus L_1^{t+2} \oplus \ldots \oplus L_1^{2t}$, where L_1^{t+s} is the subspace of L_1 generated by the vector $e'_{t+s}, s = 1, \ldots, t$.

 L_1^{t+p} and L_1^{t+r} , (p, r < t), are orthogonal with respect to g if $t = 2^k$, $k \in N$, which is then shown by induction, see [10]. In the sequel $t = 2^k$, $k \in N$.

In [3] the following theorem is proved: If $f^t = \begin{bmatrix} 0 & E_p \\ -E_p & 0 \end{bmatrix}$, then $t \le p$ and p is divisible by $t, (p = s \cdot t)$.

An analogous situation is on the space $L_2(\dim L_2 = 2p, p = s \cdot 2^{k-1})$.

If we assume that E is a $Osc^k M$ space of dimension m = (K + 1)n, and that rank $f = r = k \cdot n = 2 \cdot p \cdot k$, then dim $L = k \cdot n$ dim M = n and $M = T_H(E)$, $L = T_V(E)$.

Let u_1, \ldots, u_{2p} be an orthogonal basis of L_2 and $u_{2p+1}, u_{2p+2}, \ldots, u_{r-2p}$ be an orthogonal basis of L_1 , both with respect to g, then $u_1, \ldots, u_{2p}, u_{2p+1}, \ldots, u_{r-2p}$ is an orthogonal basis of L such that

$$L_{2}: \begin{cases} f(u_{i}) = u_{i+\frac{2p}{2^{k}}}, & f(u_{j+2p-\frac{2p}{2^{k}}}) = -u_{j}, \\ i = 1, 2, \dots, 2p - 2p/2^{k}, & j = 1, 2, \dots, 2p/2^{k}. \end{cases}$$

$$L_{1}: \begin{cases} f(u_{2p+i}) = u_{2p+i+\frac{2p}{2^{k-1}}}, & f(u_{4p+j-\frac{2p}{2^{k-1}}}) = -u_{2p+j} \\ i = 1, 2, \dots, 2p - 2p/2^{k-1}, & j = 1, 2, \dots, 2p/2^{k-1} \\ f(u_{4p+i}) = u_{4p+i+\frac{2p}{2^{k-2}}}, & f(u_{6p+j-\frac{2p}{2^{k-2}}}) = -u_{4p+j} \\ i = 1, 2, \dots, 2p - 2p/2^{k-2}, & j = 1, 2, \dots, 2p/2^{k-2} \\ \vdots \\ f(u_{2(p-1)k+i}) = u_{2(p-1)k+i+p}, & f(u_{2pk-j}) = -u_{2(p-1)k+j} \\ i = 1, 2, \dots, p, & j = 1, 2, \dots, p \\ f(u_{2kp+i}) = u_{2pk+i}, & f(u_{2(k+1)p-i}) = -u_{2p(k+1)-i} \\ i = 1, 2, \dots, p. \end{cases}$$

Next, we choose in $M = T_H(E)$ an orthogonal basis $u_{r+1}, \ldots, u_{(k+1)n}$ with respect to g, dim $Osc^k M = m = n + r = (k+1)n$. Then, with respect to the orthogonal frame u_1, \ldots, u_m , the tensors g and f have components as in [9]:

$$f = \begin{bmatrix} 0 & E_{2p-\frac{2p}{2^{k}}} & & & \\ -E_{\frac{2p}{2^{k}}} & 0 & & & \\ & & \ddots & & & \\ & & 0 & E_{2p-\frac{p}{2}} & & \\ & & -E_{\frac{p}{2}} & 0 & & \\ & & & 0 & E_{p} & \\ & & & -E_{p} & 0 & \\ & & & & E_{p} & 0 & \\ & & & & & 0 & -E_{p} & \\ & & & & & 0_{m-r} \end{bmatrix}$$
(3.3)

$$g = \begin{bmatrix} E_{2p} & & \\ & \ddots & \\ & & E_{2p} \\ & & & E_{m-r} \end{bmatrix}$$

We call such a frame an adapted frame of $f(2 \cdot 2^k + 1, -1)$ structure.

Let $\overline{u}_1, \ldots, \overline{u}_m$ be another adapted frame with respect to which the metric tensor g and the tensor f have the same components as (3.3). We put $\overline{u}_i = \gamma_i^j u_j$, then we find that γ has the form

152

$$\gamma = \begin{bmatrix} S_{(\frac{2p}{2^k})} & & & \\ & S_{(\frac{2p}{2^{k-1}})} & & & \\ & & \ddots & & & \\ & & S_{(\frac{p}{2})} & & & \\ & & & A_p & B_p & \\ & & & & -B_p & A_p & \\ & & & & & 0_{2p} & \\ & & & & & 0_{m-r} \end{bmatrix}$$
(3.4)

where $S_{(\frac{2p}{i})}, i = 2, 4, \ldots, 2^k$ is a matrix of format 2p = n and has the form

$$S_{\left(\frac{2p}{i}\right)} = \begin{bmatrix} A_{1} & A_{2} & A_{3} & A_{4} & \dots & A_{i} \\ -A_{i} & A_{1} & A_{2} & A_{3} & \dots & A_{i-1} \\ -A_{i-1} & -A_{i} & A_{1} & A_{2} & \dots & A_{i-2} \\ \vdots & & & & \\ -A_{3} & -A_{4} & -A_{5} & & A_{2} \\ -A_{2} & -A_{3} & -A_{4} & \dots & A_{1} \end{bmatrix}$$
(3.5)

where each matrix $A_l, l = 1, ..., i$ has a format $\left(\frac{2p}{i}\right) \times \left(\frac{2p}{i}\right)$, i.e. $s \times s$.

Let $\overline{S}_{(\frac{2p}{i})}$ be the tangent group defined by $S_{(\frac{2p}{i})}$. Then we can say that the group of the tangent bundle of the manifold can be reduced to

$$\overline{S}_{(\frac{2p}{2^k})} \times \overline{S}_{(\frac{2p}{2^{k-1}})} \times \ldots \times \overline{S}_{(\frac{2p}{4})} \times U_p \times 0_{2p} \times 0_{m-r}.$$

Theorem 3.2. A necessary and sufficient condition for a space E of dimension (k + 1)n to admit a tensor field $f \neq 0$ of type (1,1) and of rank $k \cdot n$, such that $f^{2 \cdot 2^k + 1} - f = 0$, is that

i)
$$r = k \cdot 2p = k \cdot n$$
,

$$ii) 2p = s \cdot 2^k = s \cdot t, \ s \in N, \ t = 2^k,$$

iii) the group of the tangent bundle of the manifold be reduced to the group

$$\overline{S}_{\left(\frac{2p}{2^k}\right)} \times \overline{S}_{\left(\frac{2p}{2^{k-1}}\right)} \times \ldots \times \overline{S}_{\left(\frac{2p}{4}\right)} \times U_p \times O_{2p} \times O_{m-r}$$

References

- Čomić I., Stojanov J., Grujić G., The spray theory in subspaces of Osc^kM (to appear).
- [2] Comić I., Liouville vector fields and k-sprays expressed in special adapted basis of Miron's Osc^kM, Presented on the Sixth International Workshop on Differential Geometry and its Applications Clui-Napoca, Romania, September (2003)
- [3] Kim J. B., Notes on f-manifolds, Tensor N. S. 29 (1975), 299–302.
- [4] Miron R., Atanasiu Gh., Differential Geometry of the k-Osculator Bundle, Rev. Roum. Math. Pures et Appl. Tom XLI, No. 3-4 (1996), 205–236.
- [5] Miron R., Atanasiu Gh., *Higher Order Lagrange Spaces*, Rev. Roum. Math. Pures et Appl. Tom XLI, No. 3-4 (1996), 251-263.
- [6] Miron R., The geometry of higher order Lagrange spaces, Applications to mechanics and physics, Kluwer Acad. Publ. (1996).
- [7] Miron R., The Geometry of Hamilton and Lagrange Spaces, Kluwer Acad. Publ. (2000).
- [8] Munteanu Gh., Metric almost tangent structure of second order, Bull. Math. Soc.
 Sci. Mat. Roumanie 34 (1) (1990), 49–54.
- [9] Nikić J., Čomić I., f(2·2^k+1, −1)-structure in (k+1)-Lagrangian Space, Review of Research Faculty of Science, Mathematics Series 24, 2 (1994), 165–173.
- [10] Nikić J., On a structure defined by a tensor field f of the type (1,1) satisfying f^{2·2k+1} f = 0, Review of Research Faculty of Science University of Novi Sad Volume 12 (1982), 369–377.