
145

Kragujevac J. Math. 28 (2005) 145–154.

OsckM ADMITTING f-STRUCTURE

Jovanka Nikić and Irena Čomić
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Abstract. The theory of OsckM was introduced by R. Miron and Gh. Atanasiu in [4], [5].
R. Miron in [6], [7] gave the comprehend theory of higher order geometry and its application.
In [1] and [2] the special adapted basis of Miron’s OsckM was constructed. Using the above
results here different structures of OsckM will be examined.1

1. SPECIAL ADAPTED BASIS IN T (OsckM) AND T ∗(OsckM)

Here OsckM will be defined as a C∞ manifold in which the transformations of

form (1.1) are allowed. It is formed as a tangent space of higher order of the base

manifold M .

Let E = OsckM be a (k + 1)n dimensional C∞ manifold. In some local chart

(U,ϕ) some point u ∈ E has coordinates

(xa, y1a, y2a, . . . , yka) = (y0a, y1a, y2a, . . . , yka) = (yAa),

where xa = y0a and

a, b, c, d, e, . . . = 1, 2, . . . , n, A, B, C,D, . . . = 0, 1, 2, . . . , k.

1This research was partly supported by Science Fund of Serbia, grant number 1262.



146

The following abbreviations:

∂Aa =
∂

∂yAa
, A = 1, 2, . . . , k, ∂a = ∂0a =

∂

∂xa
=

∂

∂y0a

will be used.

If in some other chart (U ′, ϕ′) the point u ∈ E has coordinates (xa′ , y1a′ , y2a′ , . . . , yka′) ,

then in U ∩ U ′ the allowable coordinate transformations are given by:

xa′ = xa′(x1, x2, . . . , xn),

y1a′ = (∂ax
a′)y1a = (∂0ay

0a′)y1a,

y2a′ = (∂0ay
1a′)y1a + (∂1ay

1a′)y2a, . . . ,

yka′ = (∂0ay
(k−1)a)y1a + (∂1ay

(k−1)a)y2a + · · ·+ (∂(k−1)ay
(k−1)a)yka.

(1.1)

The natural basis B̄ of T (E) is

B̄ = {∂0a, ∂1a, . . . , ∂ka}. (1.2)

The natural basis B̄∗ of T ∗(E) is

B̄∗ = {dy0a, dy1a, . . . , dyka}. (1.3)

We shall use the notations

[dy(a)] =




dy0a

dy1a

...
dyka




, [δy(a)] =




δy0a

δy1a

...
δyka




, [∂(a)] = [∂0a∂1a . . . ∂ka],

[δ(a)] = [δ0aδ1a . . . δka],
(0)Ba′

a = ∂0ay
0a′ ,

[B
(a′)
(a) ] =




∂0ay
0a′ 0 · · · 0

∂0ay
1a′ ∂1ay

1a′ · · · 0
...

∂0ay
ka′ ∂1ay

ka′ · · · ∂kay
ka′




.

Definition 1.1. The special adapted basis B∗ of T ∗(E) is defined by

[δy(a)] = [M
(a)
(b) ][dy(b)], (1.4)
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where

[M
(a)
(b) ] =




(
0
0

)
δa
b 0 0 0(

1
0

)
M1a

0b

(
1
1

)
δa
b 0 0(

2
0

)
M2a

0b

(
2
1

)
M1a

0b

(
2
2

)
δa
b 0

...(
k
0

)
Mka

0b

(
k
1

)
M

(k−1)a
0b

...
(

k
k

)
δa
b




. (1.5)

Theorem 1.1. The necessary and sufficient conditions that δyAa(A = 0, 1, . . . , k)

are transformed as d-tensors are:

[M
(a)
(b) ](0)Ba′

a = [M
(a′)
(b′) ][B

(b′)
(a) ]. (1.6)

Definition 1.2. The special adapted basis B of T (E) is given by

[δ(a)] = [∂(b)][N
(b)
(a)], (1.7)

where

[N
(b)
(a)] =




(
0
0

)
δb
a 0 0 . . . 0

−
(

1
0

)
N1b

0a

(
1
1

)
δb
a 0 . . . 0

−
(

2
0

)
N2b

0a −
(

2
1

)
N1b

0a

(
2
2

)
δb
a . . . 0

...
...

−
(

k
0

)
Nkb

0a −
(

k
1

)
N

(k−1)b
0a . . . . . .

(
k
k

)
δb
a




. (1.8)

Theorem 1.2. The necessary and sufficient conditions for δAa(A = 0, 1, . . . , k) given

by (1.7) to be d-tensors is the following matrix equation:

[B
(c′)
(b) ][N

(b)
(a)] = [N

(c′)
(a′)]

(0)Ba′
a . (1.9)

Theorem 1.3. The special adapted basis B∗ is dual to special adapted basis B if and

only if

[M
(b)
(c) ][N

(c)
(a)] = δb

aI. (1.10)

The proof of Theorems 1.1-1.3 can be found in [2].
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2. THE J STRUCTURE

Definition 2.1. The k-tangent structure J is a F(E)-linear mapping

J : χ(E) → χ(E)

defined by

J∂0i = ∂1i, J∂1i = 2∂2i, . . . ,

J∂αi = (α + 1)∂(α+1)i, . . . , J∂(k−1)i = k∂ki, J∂ki = 0.
(2.1)

The k-structure J determined by Definition 2.1 is the same as J used in [6], [7],

but there it is represented in different basis of the tangent space.

For the k-tangent structure J the relation

Jk+1 = 0 (2.2)

is valid. In the natural bases B̄ and B̄∗ of T (E) and T ∗(E) it can be written in the

form

J = [∂0a∂1a . . . ∂ka]




0 0 0 . . . 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
...

... k 0



⊗




dy0a

dy1a

dy2a

...
dyka




= ∂1a ⊗ dy0a + 2∂2a ⊗ dy1a + 3∂3a ⊗ dy2a + · · ·+ k∂ka ⊗ dy(k−1)a

(2.3)

Theorem 2.1. The k-tangent structure J defined by Definition (2.1) the elements of

basis B = {δ0a, δ1a, . . . , δka} determined by (1.7) transform in the following way

Jδ0a = δ1a, Jδ1a = 2δ2a, JδAa = (A + 1)δ(A+1)a, . . .

Jδ(k−1)a = k∂ka, Jδka = 0.
(2.4)

Theorem 2.2. The k-tangent structure J given by (2.1) satisfies the relations

dy0bJ = 0, dy1bJ = dy0b, dy2bJ = 2dy1b, . . . , dykbJ = kdy(k−1)b. (2.5)
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Theorem 2.3. For the k-tangent structure J given by (2.1) we have

δy0bJ = 0, δy1bJ = δy0b, δy2bJ = 2δy1b, . . . , δykbJ = kδy(k−1)b (2.6)

where {δy0b, δy1b, . . . , δykb} is the special adapted basis B∗ of T (E) determined by

(1.4).

Theorem 2.4. The structure J in the adapted basis B = {δ0a, δ1a, . . . , δka} and

B∗ = {δy0a, δy1a, . . . , δyka} is given by

J = δ1a ⊗ δy0a + 2δ2a ⊗ δy1a + 3δ3a ⊗ δy2a + . . . + kδka ⊗ δy(k−1)a. (2.7)

The proof of Theorems 2.1-2.4 can be found in [2].

3. f(2t + 1,−1)-STRUCTURE IN OsckM

In the special adapted basis B = {δ0a, δ1a, . . . , δka} of T (E), the vectors {δ0a} span

the n-dimensional space TH(E), and the vectors {δ1a, δ2a, . . . , δka} the k·n-dimensional

TV (E) and

T (E) = TH(E)⊕ TV (E).

With respect to the metric tensor G:

G = g0a 0bδy
0a ⊗ δy0b + gAa Bbδy

Aa ⊗ δyBb, A = 1, 2, . . . , k

TH(E) is orthogonal to TV (E).

Definition 3.1. Let E = OsckM be a m = (k +1)n-dimensional differentiable man-

ifold of class C∞, and let there be given a tensor field f 6= 0 of the type (1,1) and of

class C∞ such that

f 2t+1 − f = 0, f 2i+1 − f 6= 0 for 1 ≤ i < t, (3.1)

where t is a fixed integer greater than 1. Let rank f = r be constant. We call such

a structure an f(2t + 1,−1)-structure or an f -structure of the rank r and of degree

2t + 1.
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Theorem 3.1. For a tensor field f, f 6= 0 satisfying (2.1), the operators

m = I − f 2t, l = f 2t (3.2)

are the complementary projection operators where I denotes the identity operator

applied to the tangent space at a point of the manifold.

Proof. We have

l + m = I, l2 = l, m2 = m, ml = lm = 0

by virtue of (3.1), which proves the theorem.

Let L and M be the complementary distributions corresponding to the operators

l and m, respectively. If rank f = r is constant and dim L = r, then dim M = m− r.

Proposition 3.1. Let an f -structure of the rank r and degree 2t + 1 be given on E,

then f 2tl = l and f 2tm = 0, i.e. f t acts on L as an almost product structure operator

and on M as a null operator.

We shall assume that E is a OsckM space of dimension m = (k + 1)n, and that

rank f = r = k · n. Then dim L = k · n, dim M = n and M = TH(E), L = TV (E).

If we denote by h the projection morphism of T (E) to TH(E), we can construct

the mapping α which is defined in [10] by

α(X, Y ) =
1

2
[h(lX, lY )] + h(mX,mY )], ∀X,Y ∈ T (E),

where h = Gh, is a pseudo-Riemannian structure on T (E), such that α(X,Y ) =

0,∀X ∈ M, Y ∈ L.

If we put g(X, Y ) = 1
2t

[α(X, Y )+α(fX, fY )+ · · ·+α(f 2t−1X, f 2t−1Y )], it is easy

to see that g(X, Y ) = 0,∀X ∈ M, Y ∈ L.

Also, using (3.2) we get g(fX, fY ) = 1
2t

[α(fX, fY )+α(f 2X, f 2Y )+· · ·+α(X,Y )] =

g(X,Y ). Thus f is an isometry with respect to g.

We assume that f i
L (the restriction from f i on L, (i < 2t)) is not identity operator

of L. Then fL is a linear transformation of L with the minimal polynomial x2t−1 = 0.

(We know that f 2t = 1 on L.) The polynomial (xt − 1)(xt + 1) = 0 has simple roots:

e2πi
t , e4πi

t , . . . , e2t πi
t , e

πi
t , e3πi

t , . . . , e(2t−1)πi
t .
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The eigenvectors which correspond to these eigenvalues are e2, e4, . . . , e2t,

e1, e3, . . . , e2t−1, respectively. Let us denote by L1 the vector space generated by the

vectors e2, e4, . . . , e2t and by L2 the vector space generated by the vectors

e1, e3, . . . , e2t−1. Then

f t = 1 on L1, f t = −1 on L2.

For X ∈ L1 and Y ∈ L2, we have

g(X, Y ) = g(fX, fY ) = g(f tX, f tY ) = g(X,−Y ) = −g(X, Y ).

Hence, L1 and L2 are orthogonal with respect to the metric g.

We assume that f j − 1 6= 0 on L1, j < t and f j + 1 6= 0 on L2, j < t. Then, f is a

linear transformation of L2 with the minimal polynomial xt + 1 = 0, with the

eigenvalue t
√−1, to which correspond the eigenvectors e′1, e

′
2, . . . , e

′
t and

L2 = L1
2 ⊕ L2

2 ⊕ . . . ⊕ Lt
2 where Ls

2 is the subspace of L2 generated by the vector

e′s, s = 1, . . . , t.

It is also an f linear transformation on L1 with the minimal polynomial xt−1 = 0,

with the eigenvalue t
√

1, to which the eigenvectors e′t+1, e
′
t+2, . . . , e

′
2t correspond. Now

L1 = Lt+1
1 ⊕Lt+2

1 ⊕ . . .⊕L2t
1 , where Lt+s

1 is the subspace of L1 generated by the vector

e′t+s, s = 1, . . . , t.

Lt+p
1 and Lt+r

1 , (p, r < t), are orthogonal with respect to g if t = 2k, k ∈ N , which

is then shown by induction, see [10]. In the sequel t = 2k, k ∈ N .

In [3] the following theorem is proved: If f t =

[
0 Ep

−Ep 0

]
, then t ≤ p and p is

divisible by t, (p = s · t).
An analogous situation is on the space L2(dim L2 = 2p, p = s · 2k−1).

If we assume that E is a OsckM space of dimension m = (K + 1)n, and that

rank f = r = k · n = 2 · p · k, then dim L = k · n dim M = n and M = TH(E),

L = TV (E).

Let u1, . . . , u2p be an orthogonal basis of L2 and u2p+1, u2p+2, . . . , ur−2p be an

orthogonal basis of L1, both with respect to g, then u1, . . . , u2p, u2p+1, . . . , ur−2p is an

orthogonal basis of L such that



152

L2 :

{
f(ui) = ui+ 2p

2k
, f(uj+2p− 2p

2k
) = −uj,

i = 1, 2, . . . , 2p− 2p/2k, j = 1, 2, . . . , 2p/2k.

L1 :





f(u2p+i) = u2p+i+ 2p

2k−1
, f(u4p+j− 2p

2k−1
) = −u2p+j

i = 1, 2, . . . , 2p− 2p/2k−1, j = 1, 2, . . . , 2p/2k−1

f(u4p+i) = u4p+i+ 2p

2k−2
, f(u6p+j− 2p

2k−2
) = −u4p+j

i = 1, 2, . . . , 2p− 2p/2k−2, j = 1, 2, . . . , 2p/2k−2

...
f(u2(p−1)k+i) = u2(p−1)k+i+p, f(u2pk−j) = −u2(p−1)k+j

i = 1, 2, . . . , p, j = 1, 2, . . . , p
f(u2kp+i) = u2pk+i, f(u2(k+1)p−i) = −u2p(k+1)−i

i = 1, 2, . . . , p.

Next, we choose in M = TH(E) an orthogonal basis ur+1, . . . , u(k+1)n with respect

to g, dim OsckM = m = n + r = (k + 1)n. Then, with respect to the orthogonal

frame u1, . . . , um, the tensors g and f have components as in [9]:

f =




0 E2p− 2p

2k

−E 2p

2k
0

. . .

0 E2p− p
2−E p

2
0

0 Ep

−Ep 0
Ep 0
0 −Ep

0m−r




(3.3)

g =




E2p

. . .

E2p

Em−r




We call such a frame an adapted frame of f(2 · 2k + 1,−1) structure.

Let u1, . . . , um be another adapted frame with respect to which the metric tensor

g and the tensor f have the same components as (3.3). We put ui = γj
i uj, then we

find that γ has the form
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γ =




S( 2p

2k )

S( 2p

2k−1 )

. . .

S( p
2
)

Ap Bp

−Bp Ap

02p

0m−r




(3.4)

where S( 2p
i

), i = 2, 4, . . . , 2k is a matrix of format 2p = n and has the form

S( 2p
i

) =




A1 A2 A3 A4 . . . Ai

−Ai A1 A2 A3 . . . Ai−1

−Ai−1 −Ai A1 A2 . . . Ai−2
...

−A3 −A4 −A5 A2

−A2 −A3 −A4 . . . A1




(3.5)

where each matrix Al, l = 1, . . . , i has a format (2p
i
)× (2p

i
), i.e. s× s.

Let S( 2p
i

) be the tangent group defined by S( 2p
i

). Then we can say that the group

of the tangent bundle of the manifold can be reduced to

S( 2p

2k ) × S( 2p

2k−1 ) × . . .× S( 2p
4

) × Up × 02p × 0m−r.

Theorem 3.2. A necessary and sufficient condition for a space E of dimension (k +

1)n to admit a tensor field f 6= 0 of type (1,1) and of rank k ·n, such that f 2·2k+1−f =

0, is that

i) r = k · 2p = k · n,

ii) 2p = s · 2k = s · t, s ∈ N , t = 2k,

iii) the group of the tangent bundle of the manifold be reduced to the group

S( 2p

2k ) × S( 2p

2k−1 ) × . . .× S( 2p
4

) × Up ×O2p ×Om−r.
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