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Abstract. Recent results concerning reverses of the generalised triangle inequality in inner
product spaces and applications are surveyed.

1. INTRODUCTION

The following reverse of the generalised triangle inequality

cos θ
n∑

k=1

|zk| ≤
∣∣∣∣∣

n∑

k=1

zk

∣∣∣∣∣ ,

provided the complex numbers zk, k ∈ {1, . . . , n} satisfy the assumption

a− θ ≤ arg (zk) ≤ a + θ, for any k ∈ {1, . . . , n} ,

where a ∈ R and θ ∈ (
0, π

2

)
was first discovered by M. Petrovich in 1917, [11] (see [10, p.

492]) and subsequently was rediscovered by other authors, including J. Karamata [6, p. 300

– 301], H.S. Wilf [12], and in an equivalent form by M. Marden [8].
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In 1966, J.B. Diaz and F.T. Metcalf [1] proved the following reverse of the triangle

inequality:

Theorem 1 Let a be a unit vector in the inner product space (H; 〈·, ·〉) over the real or

complex number field K. Suppose that the vectors xi ∈ H\ {0} , i ∈ {1, . . . , n} satisfy

0 ≤ r ≤ Re 〈xi, a〉
‖xi‖ , i ∈ {1, . . . , n} . (1)

Then

r
n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ , (2)

where equality holds if and only if

n∑

i=1

xi = r

(
n∑

i=1

‖xi‖
)

a. (3)

A generalisation of this result for orthonormal families is incorporated in the following

result [1].

Theorem 2 Let a1, . . . , an be orthonormal vectors in H. Suppose the vectors x1, . . . , xn ∈
H\ {0} satisfy

0 ≤ rk ≤ Re 〈xi, ak〉
‖xi‖ , i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} . (4)

Then (
m∑

k=1

r2
k

) 1
2 n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ , (5)

where equality holds if and only if

n∑

i=1

xi =

(
n∑

i=1

‖xi‖
)

m∑

k=1

rkak. (6)

Similar results valid for semi-inner products may be found in [7] and [9].

For other classical inequalities related to the triangle inequality, see Chapter XVII of

the book [10] and the references therein.
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2. SOME INEQUALITIES OF DIAZ-METCALF TYPE

2.1. THE CASE OF ONE VECTOR

The following result with a natural geometrical meaning holds [3]:

Theorem 3 Let a be a unit vector in the inner product space (H; 〈·, ·〉) and ρ ∈ (0, 1) . If

xi ∈ H, i ∈ {1, . . . , n} are such that

‖xi − a‖ ≤ ρ for each i ∈ {1, . . . , n} , (7)

then we have the inequality

√
1− ρ2

n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ , (8)

with equality if and only if

n∑

i=1

xi =
√

1− ρ2

(
n∑

i=1

‖xi‖
)

a. (9)

Proof. From (7) we have

‖xi‖2 − 2Re 〈xi, a〉+ 1 ≤ ρ2,

giving

‖xi‖2 + 1− ρ2 ≤ 2Re 〈xi, a〉 , (10)

for each i ∈ {1, . . . , n} .

Dividing by
√

1− ρ2 > 0, we deduce

‖xi‖2

√
1− ρ2

+
√

1− ρ2 ≤ 2Re 〈xi, a〉√
1− ρ2

, (11)

for each i ∈ {1, . . . , n} .

On the other hand, by the elementary inequality

p

α
+ qα ≥ 2

√
pq, p, q ≥ 0, α > 0 (12)

we have

2 ‖xi‖ ≤ ‖xi‖2

√
1− ρ2

+
√

1− ρ2 (13)
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and thus, by (11) and (13), we deduce

Re 〈xi, a〉
‖xi‖ ≥

√
1− ρ2,

for each i ∈ {1, . . . , n} . Applying Theorem 1 for r =
√

1− ρ2, we deduce the desired

inequality (8).

The following results may be stated as well.

Theorem 4 Let a be a unit vector in the inner product space (H; 〈·, ·〉) and M ≥ m > 0.

If xi ∈ H, i ∈ {1, . . . , n} are such that either

Re 〈Ma− xi, xi −ma〉 ≥ 0 (14)

or, equivalently, ∥∥∥∥xi − M + m

2
· a

∥∥∥∥ ≤
1
2

(M −m) (15)

holds for each i ∈ {1, . . . , n} , then we have the inequality

2
√

mM

m + M

n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ , (16)

or, equivalently,

(0 ≤)
n∑

i=1

‖xi‖ −
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ ≤
(√

M −√m
)2

2
√

mM

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ . (17)

The equality holds in (16) (or in (17)) if and only if

n∑

i=1

xi =
2
√

mM

m + M

(
n∑

i=1

‖xi‖
)

a. (18)

Proof. Firstly, we remark that if x, z, Z ∈ H, then the following statements are equivalent:

(i) Re 〈Z − x, x− z〉 ≥ 0;

(ii)
∥∥∥x− Z+z

2

∥∥∥ ≤ 1
2 ‖Z − z‖ .

Using this fact, one may simply realize that (14) and (15) are equivalent.

Now, from (14), we get

‖xi‖2 + mM ≤ (M + m)Re 〈xi, a〉 ,
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for any i ∈ {1, . . . , n} . Dividing this inequality by
√

mM > 0, we deduce the following

inequality that will be used in the sequel

‖xi‖2

√
mM

+
√

mM ≤ M + m√
mM

Re 〈xi, a〉 , (19)

for each i ∈ {1, . . . , n} .

Using the inequality (12) from Theorem 3, we also have

2 ‖xi‖ ≤ ‖xi‖2

√
mM

+
√

mM, (20)

for each i ∈ {1, . . . , n} .

Utilizing (19) and (20), we may conclude with the following inequality

‖xi‖ ≤ M + m√
mM

Re 〈xi, a〉 ,

which is equivalent to
2
√

mM

m + M
≤ Re 〈xi, a〉

‖xi‖ (21)

for any i ∈ {1, . . . , n} .

Finally, on applying the Diaz-Metcalf result in Theorem 1 for r = 2
√

mM
m+M , we deduce

the desired conclusion.

The equivalence between (16) and (17) follows by simple calculation and we omit the

details.

2.2. THE CASE OF m VECTORS

In a similar manner to the one used in the proof of Theorem 3 and by the use of the

Diaz-Metcalf inequality incorporated in Theorem 2, we can also prove the following result

[3] :

Theorem 5 Let a1, . . . , an be orthonormal vectors in H. Suppose the vectors x1, . . . , xn ∈
H\ {0} satisfy

‖xi − ak‖ ≤ ρk for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , (22)
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where ρk ∈ (0, 1) , k ∈ {1, . . . ,m} . Then we have the following reverse of the triangle in-

equality (
m−

m∑

k=1

ρ2
k

)1/2 n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ . (23)

The equality holds in (23) if and only if

n∑

i=1

xi =

(
n∑

i=1

‖xi‖
)

m∑

k=1

(
1− ρ2

k

)1/2
ak. (24)

Finally, by the use of Theorem 2 and a similar technique to that employed in the proof

of Theorem 4, we may state the following result [3]:

Theorem 6 Let a1, . . . , an be orthonormal vectors in H. Suppose the vectors x1, . . . , xn ∈
H\ {0} satisfy

Re 〈Mkak − xi, xi − µkak〉 ≥ 0, (25)

or, equivalently, ∥∥∥∥xi − Mk + µk

2
ak

∥∥∥∥ ≤
1
2

(Mk − µk) , (26)

for any i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , where Mk ≥ µk > 0 for each k ∈ {1, . . . ,m} .

Then we have the inequality

2

(
m∑

k=1

µkMk

(µk + Mk)
2

) 1
2 n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ . (27)

The equality holds in (27) iff

n∑

i=1

xi = 2

(
n∑

i=1

‖xi‖
)

m∑

k=1

√
µkMk

µk + Mk
ak. (28)

3. ADDITIVE REVERSES FOR THE TRIANGLE INEQUALITY

3.1. THE CASE OF ONE VECTOR

In this section we establish some additive reverses of the generalised triangle inequality

in real or complex inner product spaces.

The following result holds [3]:
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Theorem 7 Let (H; 〈·, ·〉) be an inner product space over the real or complex number field

K and e, xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If ki ≥ 0, i ∈ {1, . . . , n} , are such that

‖xi‖ − Re 〈e, xi〉 ≤ ki for each i ∈ {1, . . . , n} , (29)

then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki. (30)

The equality holds in (30) if and only if

n∑

i=1

‖xi‖ ≥
n∑

i=1

ki (31)

and
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
n∑

i=1

ki

)
e. (32)

Proof. If we sum in (29) over i from 1 to n, then we get

n∑

i=1

‖xi‖ ≤ Re

〈
e,

n∑

i=1

xi

〉
+

n∑

i=1

ki. (33)

By Schwarz’s inequality for e and
∑n

i=1 xi, we have

Re

〈
e,

n∑

i=1

xi

〉
≤

∣∣∣∣∣Re

〈
e,

n∑

i=1

xi

〉∣∣∣∣∣ (34)

≤
∣∣∣∣∣

〈
e,

n∑

i=1

xi

〉∣∣∣∣∣ ≤ ‖e‖
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

Making use of (33) and (34), we deduce the desired inequality (29).

If (31) and (32) hold, then
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ =

∣∣∣∣∣
n∑

i=1

‖xi‖ −
n∑

i=1

ki

∣∣∣∣∣ ‖e‖ =
n∑

i=1

‖xi‖ −
n∑

i=1

ki,

and the equality in the second part of (30) holds true.

Conversely, if the equality holds in (30), then, obviously (31) is valid and we need only

to prove (32).

Now, if the equality holds in (30) then it must hold in (29) for each i ∈ {1, . . . , n} and

also must hold in any of the inequalities in (34).



108

It is well known that in Schwarz’s inequality |〈u, v〉| ≤ ‖u‖ ‖v‖ (u, v ∈ H) the case of

equality holds iff there exists a λ ∈ K such that u = λv. We note that in the weaker

inequality Re 〈u, v〉 ≤ ‖u‖ ‖v‖ the case of equality holds iff λ ≥ 0 and u = λv.

Consequently, the equality holds in all inequalities (34) simultaneously iff there exists a

µ ≥ 0 with

µe =
n∑

i=1

xi. (35)

If we sum the equalities in (29) over i from 1 to n, then we deduce

n∑

i=1

‖xi‖ − Re

〈
e,

n∑

i=1

xi

〉
=

n∑

i=1

ki. (36)

Replacing
∑n

i=1 ‖xi‖ from (35) into (36), we deduce
n∑

i=1

‖xi‖ − µ ‖e‖2 =
n∑

i=1

ki,

from where we get µ =
∑n

i=1 ‖xi‖ −
∑n

i=1 ki. Using (35), we deduce (32) and the theorem

is proved.

3.2. THE CASE OF m VECTORS

If we turn our attention to the case of orthogonal families, then we may state the

following result as well [3].

Theorem 8 Let (H; 〈·, ·〉) be an inner product space over the real or complex number field

K, {ek}k∈{1,...,m} a family of orthonormal vectors in H, xi ∈ H, Mi,k ≥ 0 for i ∈ {1, . . . , n}
and k ∈ {1, . . . , m} such that

‖xi‖ − Re 〈ek, xi〉 ≤ Mik (37)

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} . Then we have the inequality

n∑

i=1

‖xi‖ ≤ 1√
m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ +
1
m

n∑

i=1

m∑

k=1

Mik. (38)

The equality holds true in (38) if and only if
n∑

i=1

‖xi‖ ≥ 1
m

n∑

i=1

m∑

k=1

Mik (39)
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and
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ − 1
m

n∑

i=1

m∑

k=1

Mik

)
m∑

k=1

ek. (40)

Proof. If we sum over i from 1 to n in (37), then we obtain

n∑

i=1

‖xi‖ ≤ Re

〈
e,

n∑

i=1

xi

〉
+

n∑

i=1

Mik,

for each k ∈ {1, . . . , m} . Summing these inequalities over k from 1 to m, we deduce

n∑

i=1

‖xi‖ ≤ 1
m

Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉
+

1
m

n∑

i=1

m∑

k=1

Mik. (41)

By Schwarz’s inequality for
∑m

k=1 ek and
∑n

i=1 xi we have

Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉
≤

∣∣∣∣∣Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉∣∣∣∣∣ (42)

≤
∣∣∣∣∣

〈
m∑

k=1

ek,
n∑

i=1

xi

〉∣∣∣∣∣

≤
∥∥∥∥∥

m∑

k=1

ek

∥∥∥∥∥

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥

=
√

m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,

since, obviously, ∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥ =

√√√√
∥∥∥∥∥

m∑

k=1

ek

∥∥∥∥∥
2

=

√√√√
m∑

k=1

‖ek‖2 =
√

m.

Making use of (41) and (42), we deduce the desired inequality (38).

If (39) and (40) hold, then

1√
m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =

∣∣∣∣∣
n∑

i=1

‖xi‖ − 1
m

n∑

i=1

m∑

k=1

Mik

∣∣∣∣∣

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥

=
√

m√
m

(
n∑

i=1

‖xi‖ − 1
m

n∑

i=1

m∑

k=1

Mik

)

=
n∑

i=1

‖xi‖ − 1
m

n∑

i=1

m∑

k=1

Mik,

and the equality in (38) holds true.

Conversely, if the equality holds in (38), then, obviously (39) is valid.
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Now if the equality holds in (38), then it must hold in (37) for each i ∈ {1, . . . , n} and

k ∈ {1, . . . , m} and also must hold in any of the inequalities in (42).

It is well known that in Schwarz’s inequality Re 〈u, v〉 ≤ ‖u‖ ‖v‖ , the equality occurs iff

u = λv with λ ≥ 0, consequently, the equality holds in all inequalities (42) simultaneously

iff there exists a µ ≥ 0 with

µ
m∑

k=1

ek =
n∑

i=1

xi. (43)

If we sum the equality in (37) over i from 1 to n and k from 1 to m, then we deduce

m
n∑

i=1

‖xi‖ − Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉
=

n∑

i=1

m∑

k=1

Mik. (44)

Replacing
∑n

i=1 xi from (43) into (44), we deduce

m
n∑

i=1

‖xi‖ − µ
m∑

k=1

‖ek‖2 =
n∑

i=1

m∑

k=1

Mik

giving

µ =
n∑

i=1

‖xi‖ − 1
m

n∑

i=1

m∑

k=1

Mik.

Using (43), we deduce (40) and the theorem is proved.

4. FURTHER ADDITIVE REVERSES

4.1. THE CASE OF SMALL BALLS

In this section we point out different additive reverses of the generalised triangle in-

equality under simpler conditions for the vectors involved.

The following result holds [3]:

Theorem 9 Let (H; 〈·, ·〉) be an inner product space over the real or complex number field

K and e, xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If ρ ∈ (0, 1) and xi, i ∈ {1, . . . , n} are such

that

‖xi − e‖ ≤ ρ for each i ∈ {1, . . . , n} , (45)



111

then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ (46)

≤ ρ2

√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉


≤ ρ2

√
1− ρ2

(
1 +

√
1− ρ2

)
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥


 .

The equality holds in (46) if and only if

n∑

i=1

‖xi‖ ≥ ρ2

√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉
(47)

and
n∑

i=1

xi =




n∑

i=1

‖xi‖ − ρ2

√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉
 e. (48)

Proof. We know, from the proof of Theorem 7, that, if (45) is fulfilled, then we have the

inequality

‖xi‖ ≤ 1√
1− ρ2

Re 〈xi, e〉

for each i ∈ {1, . . . , n} , implying

‖xi‖ − Re 〈xi, e〉 ≤
(

1√
1− ρ2

− 1

)
Re 〈xi, e〉 (49)

=
ρ2

√
1− ρ2

(
1 +

√
1− ρ2

) Re 〈xi, e〉

for each i ∈ {1, . . . , n} .

Now, making use of Theorem 3, for

ki :=
ρ2

√
1− ρ2

(
1 +

√
1− ρ2

) Re 〈xi, e〉 , i ∈ {1, . . . , n} ,

we easily deduce the conclusion of the theorem.

We omit the details.

We may state the following result as well [3]:
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Theorem 10 Let (H; 〈·, ·〉) be an inner product space and e ∈ H, M ≥ m > 0. If xi ∈ H,

i ∈ {1, . . . , n} are such that either

Re 〈Me− xi, xi −me〉 ≥ 0, (50)

or, equivalently, ∥∥∥∥xi − M + m

2
e

∥∥∥∥ ≤
1
2

(M −m) (51)

holds for each i ∈ {1, . . . , n} , then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ ≤
(√

M −√m
)2

2
√

mM
Re

〈
n∑

i=1

xi, e

〉
(52)


≤

(√
M −√m

)2

2
√

mM

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥


 .

The equality holds in (52) if and only if

n∑

i=1

‖xi‖ ≥
(√

M −√m
)2

2
√

mM
Re

〈
n∑

i=1

xi, e

〉
(53)

and
n∑

i=1

xi =




n∑

i=1

‖xi‖ −
(√

M −√m
)2

2
√

mM
Re

〈
n∑

i=1

xi, e

〉
 e. (54)

Proof. We know, from the proof of Theorem 4, that if (50) is fulfilled, then we have the

inequality

‖xi‖ ≤ M + m

2
√

mM
Re 〈xi, e〉

for each i ∈ {1, . . . , n} . This is equivalent to

‖xi‖ − Re 〈xi, e〉 ≤
(√

M −√m
)2

2
√

mM
Re 〈xi, e〉

for each i ∈ {1, . . . , n} .

Now, making use of Theorem 7, we deduce the conclusion of the theorem. We omit the

details.

Remark 1 If one uses Theorem 8 instead of Theorem 7 above, then one can state the

corresponding generalisation for families of orthonormal vectors of the inequalities (46) and

(52) respectively. We do not provide them here.
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4.2. THE CASE OF ARBITRARY BALLS

Now, on utilising a slightly different approach, we may point out the following result

[3]:

Theorem 11 Let (H; 〈·, ·〉) be an inner product space over K and e, xi ∈ H, i ∈ {1, . . . , n}
with ‖e‖ = 1. If ri > 0, i ∈ {1, . . . , n} are such that

‖xi − e‖ ≤ ri for each i ∈ {1, . . . , n} , (55)

then we have the inequality

0 ≤
n∑

i=1

‖xi‖ −
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ ≤
1
2

n∑

i=1

r2
i . (56)

The equality holds in (56) if and only if

n∑

i=1

‖xi‖ ≥ 1
2

n∑

i=1

r2
i (57)

and
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ − 1
2

n∑

i=1

r2
i

)
e. (58)

Proof. The condition (55) is clearly equivalent to

‖xi‖2 + 1 ≤ Re 〈xi, e〉+ r2
i (59)

for each i ∈ {1, . . . , n} .

Using the elementary inequality

2 ‖xi‖ ≤ ‖xi‖2 + 1, (60)

for each i ∈ {1, . . . , n} , then, by (59) and (60), we deduce

2 ‖xi‖ ≤ 2Re 〈xi, e〉+ r2
i ,

giving

‖xi‖ − Re 〈xi, e〉 ≤ 1
2
r2
i (61)
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for each i ∈ {1, . . . , n} .

Now, utilising Theorem 7 for ki = 1
2r2

i , i ∈ {1, . . . , n} , we deduce the desired result. We

omit the details.

Finally, we may state and prove the following result as well [3].

Theorem 12 Let (H; 〈·, ·〉) be an inner product space over K and e, xi ∈ H, i ∈ {1, . . . , n}
with ‖e‖ = 1. If Mi ≥ mi > 0, i ∈ {1, . . . , n} , are such that

∥∥∥∥xi − Mi + mi

2
e

∥∥∥∥ ≤
1
2

(Mi −mi) , (62)

or, equivalently,

Re 〈Mie− x, x−mie〉 ≥ 0 (63)

for each i ∈ {1, . . . , n} , then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ ≤
1
4

n∑

i=1

(Mi −mi)
2

Mi + mi
. (64)

The equality holds in (64) if and only if

n∑

i=1

‖xi‖ ≥ 1
4

n∑

i=1

(Mi −mi)
2

Mi + mi
(65)

and
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ − 1
4

n∑

i=1

(Mi −mi)
2

Mi + mi

)
e. (66)

Proof. The condition (62) is equivalent to:

‖xi‖2 +
(

Mi + mi

2

)2

≤ 2Re
〈

xi,
Mi + mi

2
e

〉
+

1
4

(Mi −mi)
2

and since

2
(

Mi + mi

2

)
‖xi‖ ≤ ‖xi‖2 +

(
Mi + mi

2

)2

,

then we get

2
(

Mi + mi

2

)
‖xi‖ ≤ 2 · Mi + mi

2
Re 〈xi, e〉+

1
4

(Mi −mi)
2 ,

or, equivalently,

‖xi‖ − Re 〈xi, e〉 ≤ 1
4
· (Mi −mi)

2

Mi + mi
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for each i ∈ {1, . . . , n} .

Now, making use of Theorem 7 for ki := 1
4 · (Mi−mi)

2

Mi+mi
, i ∈ {1, . . . , n} , we deduce the

desired result.

Remark 2 If one uses Theorem 8 instead of Theorem 7 above, then one can state the

corresponding generalisation for families of orthonormal vectors of the inequalities in (56)

and (64) respectively. We omit the details.

5. REVERSES OF THE SCHWARZ INEQUALITY

In this section we outline a procedure showing how some of the above results for triangle

inequality may be employed to obtain reverses for the celebrated Schwarz inequality.

For a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) define the closed ball

D (a, r) := {x ∈ H, ‖x− a‖ ≤ r} .

The following reverse of the Schwarz inequality holds [3]:

Proposition 1 If x, y ∈ D (a, r) with a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) , then we have the

inequality

(0 ≤)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ 1
2
r2. (67)

The constant 1
2 in (67) is best possible in the sense that it cannot be replaced by a smaller

quantity.

Proof. Using Theorem 3 for x1 = x, x2 = y, ρ = r, we have

√
1− r2 (‖x‖+ ‖y‖) ≤ ‖x + y‖ . (68)

Taking the square in (68) we deduce

(
1− r2

) (
‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

)
≤ ‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2

which is clearly equivalent to (67).
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Now, assume that (67) holds with a constant C > 0 instead of 1
2 , i.e.,

‖x‖ ‖y‖ − Re 〈x, y〉
(‖x‖+ ‖y‖)2 ≤ Cr2 (69)

provided x, y ∈ D (a, r) with a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) .

Let e ∈ H with ‖e‖ = 1 and e ⊥ a. Define x = a + re, y = a− re. Then

‖x‖ =
√

1 + r2 = ‖y‖ , Re 〈x, y〉 = 1− r2

and thus, from (69), we have

1 + r2 − (
1− r2

)
(
2
√

1 + r2
)2 ≤ Cr2

giving
1
2
≤

(
1 + r2

)
C

for any r ∈ (0, 1) . If in this inequality we let r → 0+, then we get C ≥ 1
2 and the proposition

is proved.

In a similar way, by the use of Theorem 4, we may prove the following reverse of the

Schwarz inequality as well [3]:

Proposition 2 If a ∈ H, ‖a‖ = 1, M ≥ m > 0 and x, y ∈ H are so that either

Re 〈Ma− x, x−ma〉 ,Re 〈Ma− y, y −ma〉 ≥ 0

or, equivalently, ∥∥∥∥x− m + M

2
a

∥∥∥∥ ,

∥∥∥∥y − m + M

2
a

∥∥∥∥ ≤
1
2

(M −m)

hold, then

(0 ≤)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ 1
2

(
M −m

M + m

)2

.

The constant 1
2 cannot be replaced by a smaller quantity.

Remark 3 On utilising Theorem 5 and Theorem 6, we may deduce some similar reverses of

Schwarz inequality provided x, y ∈ ∩m
k=1D (ak, ρk) , assumed not to be empty, where a1, ..., an

are orthonormal vectors in H and ρk ∈ (0, 1) for k ∈ {1, ..., m} . We omit the details.



117

Remark 4 For various different reverses of Schwarz inequality in inner product spaces, see

the recent survey [2].

6. QUADRATIC REVERSES OF THE TRIANGLE INEQUALITY

6.1. THE GENERAL CASE

The following lemma holds [4]:

Lemma 1 Let (H; 〈·, ·〉) be an inner product space over the real or complex number field

K, xi ∈ H, i ∈ {1, . . . , n} and kij > 0 for 1 ≤ i < j ≤ n such that

0 ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤ kij (70)

for 1 ≤ i < j ≤ n. Then we have the following quadratic reverse of the triangle inequality
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+ 2
∑

1≤i<j≤n

kij . (71)

The case of equality holds in (71) if and only if it holds in (70) for each i, j with 1 ≤ i <

j ≤ n.

Proof. We observe that the following identity holds:
(

n∑

i=1

‖xi‖
)2

−
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

=
n∑

i,j=1

‖xi‖ ‖xj‖ −
〈

n∑

i=1

xi,
n∑

j=1

xj

〉
(72)

=
n∑

i,j=1

‖xi‖ ‖xj‖ −
n∑

i,j=1

Re 〈xi, xj〉

=
n∑

i,j=1

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

=
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

+
∑

1≤j<i≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

= 2
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉] .
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Using the condition (70), we deduce that

∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉] ≤
∑

1≤i<j≤n

kij ,

and by (72), we get the desired inequality (71).

The case of equality is obvious by the identity (72) and we omit the details.

Remark 5 From (71) one may deduce the coarser inequality that might be useful in some

applications:

0 ≤
n∑

i=1

‖xi‖ −
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥

≤
√

2


 ∑

1≤i<j≤n

kij




1
2


≤

√
2

∑

1≤i<j≤n

√
kij


 .

Remark 6 If the condition (70) is replaced with the following refinement of Schwarz’s

inequality:

(0 ≤) δij ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 for 1 ≤ i < j ≤ n, (73)

then the following refinement of the quadratic generalised triangle inequality is valid:
(

n∑

i=1

‖xi‖
)2

≥
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+ 2
∑

1≤i<j≤n

δij


≥

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

 . (74)

The equality holds in the first part of (74) iff the case of equality holds in (73) for each

1 ≤ i < j ≤ n.

The following result holds [4].

Proposition 3 Let (H; 〈·, ·〉) be as above, xi ∈ H, i ∈ {1, . . . , n} and r > 0 such that

‖xi − xj‖ ≤ r (75)

for 1 ≤ i < j ≤ n. Then
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+
n (n− 1)

2
r2. (76)

The case of equality holds in (76) if and only if

‖xi‖ ‖xj‖ − Re 〈xi, xj〉 =
1
2
r2 (77)

for each i, j with 1 ≤ i < j ≤ n.
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Proof. The inequality (75) is obviously equivalent to

‖xi‖2 + ‖xj‖2 ≤ 2Re 〈xi, xj〉+ r2

for 1 ≤ i < j ≤ n. Since

2 ‖xi‖ ‖xj‖ ≤ ‖xi‖2 + ‖xj‖2 , 1 ≤ i < j ≤ n;

hence

‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤ 1
2
r2 (78)

for any i, j with 1 ≤ i < j ≤ n.

Applying Lemma 1 for kij := 1
2r2 and taking into account that

∑

1≤i<j≤n

kij =
n (n− 1)

4
r2,

we deduce the desired inequality (76). The case of equality is also obvious by the above

lemma and we omit the details.

6.2. INEQUALITIES IN TERMS OF THE FORWARD DIFFERENCE

In the same spirit, and if some information about the forward difference

∆xk := xk+1 − xk (1 ≤ k ≤ n− 1) are available, then the following simple quadratic re-

verse of the generalised triangle inequality may be stated [4].

Corollary 1 Let (H; 〈·, ·〉) be an inner product space and xi ∈ H, i ∈ {1, . . . , n} . Then we

have the inequality
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+
n (n− 1)

2

n−1∑

k=1

‖∆xk‖ . (79)

The constant 1
2 is best possible in the sense that it cannot be replaced in general by a smaller

quantity.

Proof. Let 1 ≤ i < j ≤ n. Then, obviously,

‖xj − xi‖ =

∥∥∥∥∥∥

j−1∑

k=i

∆xk

∥∥∥∥∥∥
≤

j−1∑

k=i

‖∆xk‖ ≤
n−1∑

k=1

‖∆xk‖ .
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Applying Proposition 3 for r :=
∑n−1

k=1 ‖∆xk‖ , we deduce the desired result (79).

To prove the sharpness of the constant 1
2 , assume that the inequality (79) holds with a

constant c > 0, i.e.,
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+ cn (n− 1)
n−1∑

k=1

‖∆xk‖ (80)

for n ≥ 2, xi ∈ H, i ∈ {1, . . . , n} .

If we choose in (80), n = 2, x1 = −1
2e, x2 = 1

2e, e ∈ H, ‖e‖ = 1, then we get 1 ≤ 2c,

giving c ≥ 1
2 .

The following result providing a reverse of the quadratic generalised triangle inequality

in terms of the sup-norm of the forward differences also holds [4].

Proposition 4 Let (H; 〈·, ·〉) be an inner product space and xi ∈ H, i ∈ {1, . . . , n} . Then

we have the inequality
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+
n2

(
n2 − 1

)

12
max

1≤k≤n−1
‖∆xk‖2 . (81)

The constant 1
12 is best possible in (81).

Proof. As above, we have that

‖xj − xi‖ ≤
j−1∑

k=i

‖∆xk‖ ≤ (j − i) max
1≤k≤n−1

‖∆xk‖ ,

for 1 ≤ i < j ≤ n.

Squaring the above inequality, we get

‖xj‖2 + ‖xi‖2 ≤ 2Re 〈xi, xj〉+ (j − i)2 max
1≤k≤n−1

‖∆xk‖2

for any i, j with 1 ≤ i < j ≤ n, and since

2 ‖xi‖ ‖xj‖ ≤ ‖xj‖2 + ‖xi‖2 ,

hence

0 ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤ 1
2

(j − i)2 max
1≤k≤n−1

‖∆xk‖2 (82)

for any i, j with 1 ≤ i < j ≤ n.
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Applying Lemma 1 for kij := 1
2 (j − i)2 max

1≤k≤n−1
‖∆xk‖2 , we can state that

(
n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)2 max
1≤k≤n−1

‖∆xk‖2 .

However,

∑

1≤i<j≤n

(j − i)2 =
1
2

n∑

i,j=1

(j − i)2 = n
n∑

k=1

k2 −
(

n∑

k=1

k

)2

=
n2

(
n2 − 1

)

12

giving the desired inequality.

To prove the sharpness of the constant, assume that (81) holds with a constant D > 0,

i.e., (
n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+ Dn2
(
n2 − 1

)
max

1≤k≤n−1
‖∆xk‖2 (83)

for n ≥ 2, xi ∈ H, i ∈ {1, . . . , n} .

If in (83) we choose n = 2, x1 = −1
2e, x2 = 1

2e, e ∈ H, ‖e‖ = 1, then we get 1 ≤ 12D

giving D ≥ 1
12 .

The following result may be stated as well [4].

Proposition 5 Let (H; 〈·, ·〉) be an inner product space and xi ∈ H, i ∈ {1, . . . , n} . Then

we have the inequality:

(
n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)
2
q

(
n−1∑

k=1

‖∆xk‖p

) 2
p

, (84)

where p > 1, 1
p + 1

q = 1.

The constant E = 1 in front of the double sum cannot generally be replaced by a smaller

constant.

Proof. Using Hölder’s inequality, we have

‖xj − xi‖ ≤
j−1∑

k=i

‖∆xk‖ ≤ (j − i)
1
q




j−1∑

k=i

‖∆xk‖p




1
p

≤ (j − i)
1
q

(
n−1∑

k=1

‖∆xk‖p

) 1
p

,
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for 1 ≤ i < j ≤ n.

Squaring the previous inequality, we get

‖xj‖2 + ‖xi‖2 ≤ 2Re 〈xi, xj〉+ (j − i)
2
q

(
n−1∑

k=1

‖∆xk‖p

) 2
p

,

for 1 ≤ i < j ≤ n.

Utilising the same argument from the proof of Proposition 4, we deduce the desired

inequality (84).

Now assume that (84) holds with a constant E > 0, i.e.,
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+ E
∑

1≤i<j≤n

(j − i)
2
q

(
n−1∑

k=1

‖∆xk‖p

) 2
p

,

for n ≥ 2 and xi ∈ H, i ∈ {1, . . . , n} , p > 1, 1
p + 1

q = 1.

For n = 2, x1 = −1
2e, x2 = 1

2e, ‖e‖ = 1, we get 1 ≤ E, showing the fact that the

inequality (84) is sharp.

The particular case p = q = 2 is of interest [4].

Corollary 2 Let (H; 〈·, ·〉) be an inner product space and xi ∈ H, i ∈ {1, . . . , n} . Then we

have the inequality:
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+
(
n2 − 1

)
n

6

n−1∑

k=1

‖∆xk‖2 . (85)

The constant 1
6 is best possible in (85).

Proof. For p = q = 2, Proposition 5 provides the inequality
(

n∑

i=1

‖xi‖
)2

≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)
n−1∑

k=1

‖∆xk‖2 ,

and since

∑

1≤i<j≤n

(j − i) = 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + · · ·+ n− 1)

=
n−1∑

k=1

(1 + 2 + · · ·+ k) =
n−1∑

k=1

k (k + 1)
2

=
1
2

[
(n− 1)n (2n− 1)

6
+

n (n− 1)
2

]

=
n

(
n2 − 1

)

6
,
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hence the inequality (84) is proved. The best constant may be shown in the same way as

above but we omit the details.

6.3. A DIFFERENT QUADRATIC INEQUALITY

Finally, we may state and prove the following different result [4].

Theorem 13 Let (H; 〈·, ·〉) be an inner product space, yi ∈ H, i ∈ {1, . . . , n} and M ≥
m > 0 are such that either

Re 〈Myj − yi, yi −myj〉 ≥ 0 for 1 ≤ i < j ≤ n, (86)

or, equivalently,
∥∥∥∥yi − M + m

2
yj

∥∥∥∥ ≤
1
2

(M −m) ‖yj‖ for 1 ≤ i < j ≤ n. (87)

Then we have the inequality
(

n∑

i=1

‖yi‖
)2

≤
∥∥∥∥∥

n∑

i=1

yi

∥∥∥∥∥
2

+
1
2
· (M −m)2

M + m

n−1∑

k=1

k ‖yk+1‖2 . (88)

The case of equality holds in (88) if and only if

‖yi‖ ‖yj‖ − Re 〈yi, yj〉 =
1
4
· (M −m)2

M + m
‖yj‖2 (89)

for each i, j with 1 ≤ i < j ≤ n.

Proof. Taking the square in (87), we get

‖yi‖2 +
(M −m)2

M + m
‖yj‖2 ≤ 2Re

〈
yi,

M + m

2
yj

〉
+

1
n

(M −m)2 ‖yj‖2

for 1 ≤ i < j ≤ n, and since, obviously,

2
(

M + m

2

)
‖yi‖ ‖yj‖ ≤ ‖yi‖2 +

(M −m)2

M + m
‖yj‖2 ,

hence

2
(

M + m

2

)
‖yi‖ ‖yj‖ ≤ 2Re

〈
yi,

M + m

2
yj

〉
+

1
n

(M −m)2 ‖yj‖2 ,
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giving the much simpler inequality

‖yi‖ ‖yj‖ − Re 〈yi, yj〉 ≤ 1
4
· (M −m)2

M + m
‖yj‖2 , (90)

for 1 ≤ i < j ≤ n.

Applying Lemma 1 for kij := 1
4 · (M−m)2

M+m ‖yj‖2 , we deduce

(
n∑

i=1

‖yi‖
)2

≤
∥∥∥∥∥

n∑

i=1

yi

∥∥∥∥∥
2

+
1
2

(M −m)2

M + m

∑

1≤i<j≤n

‖yj‖2 (91)

with equality if and only if (90) holds for each i, j with 1 ≤ i < j ≤ n.

Since

∑

1≤i<j≤n

‖yj‖2 =
∑

1<j≤n

‖yj‖2 +
∑

2<j≤n

‖yj‖2 + · · ·+
∑

n−1<j≤n

‖yj‖2

=
n∑

j=2

‖yj‖2 +
n∑

j=3

‖yj‖2 + · · ·+
n∑

j=n−1

‖yj‖2 + ‖yn‖2

=
n∑

j=2

(j − 1) ‖yj‖2 =
n−1∑

k=1

k ‖yk+1‖2 ,

hence the inequality (88) is obtained.

7. FURTHER QUADRATIC REFINEMENTS

7.1. THE GENERAL CASE

The following lemma is of interest in itself as well [4].

Lemma 2 Let (H; 〈·, ·〉) be an inner product space over the real or complex number field

K, xi ∈ H, i ∈ {1, . . . , n} and k ≥ 1 with the property that:

‖xi‖ ‖xj‖ ≤ k Re 〈xi, xj〉 , (92)

for each i, j with 1 ≤ i < j ≤ n. Then
(

n∑

i=1

‖xi‖
)2

+ (k − 1)
n∑

i=1

‖xi‖2 ≤ k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

. (93)

The equality holds in (93) if and only if it holds in (92) for each i, j with 1 ≤ i < j ≤ n.
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Proof. Firstly, let us observe that the following identity holds true:
(

n∑

i=1

‖xi‖
)2

− k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

(94)

=
n∑

i,j=1

‖xi‖ ‖xj‖ − k

〈
n∑

i=1

xi,
n∑

j=1

xj

〉

=
n∑

i,j=1

[‖xi‖ ‖xj‖ − k Re 〈xi, xj〉]

= 2
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − k Re 〈xi, xj〉] + (1− k)
n∑

i=1

‖xi‖2 ,

since, obviously, Re 〈xi, xj〉 = Re 〈xj , xi〉 for any i, j ∈ {1, . . . , n} .

Using the assumption (92), we obtain

∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − k Re 〈xi, xj〉] ≤ 0

and thus, from (94), we deduce the desired inequality (93).

The case of equality is obvious by the identity (94) and we omit the details.

Remark 7 The inequality (93) provides the following reverse of the quadratic generalised

triangle inequality:

0 ≤
(

n∑

i=1

‖xi‖
)2

−
n∑

i=1

‖xi‖2 ≤ k




∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

−
n∑

i=1

‖xi‖2


 . (95)

Remark 8 Since k ≥ 1 and
∑n

i=1 ‖xi‖2 ≥ 0, hence by (93) one may deduce the following

reverse of the triangle inequality

n∑

i=1

‖xi‖ ≤
√

k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ , (96)

provided (92) holds true for 1 ≤ i < j ≤ n.

The following corollary providing a better bound for
∑n

i=1 ‖xi‖ , holds [4].

Corollary 3 With the assumptions in Lemma 2, one has the inequality:

n∑

i=1

‖xi‖ ≤
√

nk

n + k − 1

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ . (97)
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Proof. Using the Cauchy-Bunyakovsky-Schwarz inequality

n
n∑

i=1

‖xi‖2 ≥
(

n∑

i=1

‖xi‖
)2

we get

(k − 1)
n∑

i=1

‖xi‖2 +

(
n∑

i=1

‖xi‖
)2

≥
(

k − 1
n

+ 1
) (

n∑

i=1

‖xi‖
)2

. (98)

Consequently, by (98) and (93) we deduce

k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

≥ n + k − 1
n

(
n∑

i=1

‖xi‖
)2

giving the desired inequality (97).

7.2. ASSYMETRIC ASSUMPTIONS

The following result may be stated as well [4].

Theorem 14 Let (H; 〈·, ·〉) be an inner product space and xi ∈ H\ {0} , i ∈ {1, . . . , n} ,

ρ ∈ (0, 1) , such that ∥∥∥∥∥xi − xj

‖xj‖

∥∥∥∥∥ ≤ ρ for 1 ≤ i < j ≤ n. (99)

Then we have the inequality

√
1− ρ2

(
n∑

i=1

‖xi‖
)2

+
(

1−
√

1− ρ2

) n∑

i=1

‖xi‖2 ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

. (100)

The case of equality holds in (100) iff

‖xi‖ ‖xj‖ =
1√

1− ρ2
Re 〈xi, xj〉 (101)

for any 1 ≤ i < j ≤ n.

Proof. The condition (92) is obviously equivalent to

‖xi‖2 + 1− ρ2 ≤ 2Re

〈
xi,

xj

‖xj‖

〉

for each 1 ≤ i < j ≤ n.



127

Dividing by
√

1− ρ2 > 0, we deduce

‖xi‖2

√
1− ρ2

+
√

1− ρ2 ≤ 2√
1− ρ2

Re

〈
xi,

xj

‖xj‖

〉
, (102)

for 1 ≤ i < j ≤ n.

On the other hand, by the elementary inequality

p

α
+ qα ≥ 2

√
pq, p, q ≥ 0, α > 0 (103)

we have

2 ‖xi‖ ≤ ‖xi‖2

√
1− ρ2

+
√

1− ρ2. (104)

Making use of (102) and (104), we deduce that

‖xi‖ ‖xj‖ ≤ 1√
1− ρ2

Re 〈xi, xj〉

for 1 ≤ i < j ≤ n.

Now, applying Lemma 1 for k = 1√
1−ρ2

, we deduce the desired result.

Remark 9 If we assume that ‖xi‖ = 1, i ∈ {1, . . . , n} , satisfying the simpler condition

‖xj − xi‖ ≤ ρ for 1 ≤ i < j ≤ n, (105)

then, from (100), we deduce the following lower bound for ‖∑n
i=1 xi‖ , namely

[
n + n (n− 1)

√
1− ρ2

] 1
2 ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ . (106)

The equality holds in (106) iff
√

1− ρ2 = Re 〈xi, xj〉 for 1 ≤ i < j ≤ n.

Remark 10 Under the hypothesis of Proposition 5, we have the coarser but simpler reverse

of the triangle inequality
4

√
1− ρ2

n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ . (107)

Also, applying Corollary 3 for k = 1√
1−ρ2

, we can state that

n∑

i=1

‖xi‖ ≤
√

n

n
√

1− ρ2 + 1−√
1− ρ2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ , (108)

provided xi ∈ H satisfy (99) for 1 ≤ i < j ≤ n.
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In the same manner, we can state and prove the following reverse of the quadratic

generalised triangle inequality [4].

Theorem 15 Let (H; 〈·, ·〉) be an inner product space over the real or complex number field

K, xi ∈ H, i ∈ {1, . . . , n} and M ≥ m > 0 such that either

Re 〈Mxj − xi, xi −mxj〉 ≥ 0 for 1 ≤ i < j ≤ n, (109)

or, equivalently,
∥∥∥∥xi − M + m

2
xj

∥∥∥∥ ≤
1
2

(M −m) ‖xj‖ for 1 ≤ i < j ≤ n (110)

hold. Then

2
√

mM

M + m

(
n∑

i=1

‖xi‖
)2

+

(√
M −√m

)2

M + m

n∑

i=1

‖xi‖2 ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥
2

. (111)

The case of equality holds in (111) if and only if

‖xi‖ ‖xj‖ =
M + m

2
√

mM
Re 〈xi, xj〉 for 1 ≤ i < j ≤ n. (112)

Proof. From (109), observe that

‖xi‖2 + Mm ‖xj‖2 ≤ (M + m)Re 〈xi, xj〉 , (113)

for 1 ≤ i < j ≤ n. Dividing (113) by
√

mM > 0, we deduce

‖xi‖2

√
mM

+
√

mM ‖xj‖2 ≤ M + m√
mM

Re 〈xi, xj〉 ,

and since, obviously

2 ‖xi‖ ‖xj‖ ≤ ‖xi‖2

√
mM

+
√

mM ‖xj‖2

hence

‖xi‖ ‖xj‖ ≤ M + m

2
√

mM
Re 〈xi, xj〉 , for 1 ≤ i < j ≤ n.

Applying Lemma 2 for k = M+m
2
√

mM
≥ 1, we deduce the desired result.
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Remark 11 We also must note that a simpler but coarser inequality that can be obtained

from (111) is (
2
√

mM

M + m

) 1
2 n∑

i=1

‖xi‖ ≤
∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥ ,

provided (109) holds true.

Finally, a different result related to the generalised triangle inequality is incorporated

in the following theorem [4].

Theorem 16 Let (H; 〈·, ·〉) be an inner product space over K, η > 0 and xi ∈ H,

i ∈ {1, . . . , n} with the property that

‖xj − xi‖ ≤ η < ‖xj‖ for each i, j ∈ {1, . . . , n} . (114)

Then we have the following reverse of the triangle inequality

∑n
i=1

√
‖xi‖2 − η2

‖∑n
i=1 xi‖ ≤ ‖∑n

i=1 xi‖∑n
i=1 ‖xi‖ . (115)

The equality holds in (115) iff

‖xi‖
√
‖xj‖2 − η2 = Re 〈xi, xj〉 for each i, j ∈ {1, . . . , n} . (116)

Proof. From (114), we have

‖xi‖2 + ‖xj‖2 − η2 ≤ 2Re 〈xi, xj〉 , i, j ∈ {1, . . . , n} .

On the other hand,

2 ‖xi‖
√
‖xj‖2 − η2 ≤ ‖xi‖2 + ‖xj‖2 − η2, i, j ∈ {1, . . . , n}

and thus

‖xi‖
√
‖xj‖2 − η2 ≤ Re 〈xi, xj〉 , i, j ∈ {1, . . . , n} .

Summing over i, j ∈ {1, . . . , n} , we deduce the desired inequality (115).

The case of equality is also obvious from the above, and we omit the details.
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8. REVERSES FOR COMPLEX SPACES

8.1. THE CASE OF ONE VECTOR

The following result holds [5].

Theorem 17 Let (H; 〈·, ·〉) be a complex inner product space. Suppose that the vectors

xk ∈ H, k ∈ {1, . . . , n} satisfy the condition

0 ≤ r1 ‖xk‖ ≤ Re 〈xk, e〉 , 0 ≤ r2 ‖xk‖ ≤ Im 〈xk, e〉 (117)

for each k ∈ {1, . . . , n} , where e ∈ H is such that ‖e‖ = 1 and r1, r2 ≥ 0. Then we have the

inequality √
r2
1 + r2

2

n∑

k=1

‖xk‖ ≤
∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥ , (118)

where equality holds if and only if

n∑

k=1

xk = (r1 + ir2)

(
n∑

k=1

‖xk‖
)

e. (119)

Proof. In view of the Schwarz inequality in the complex inner product space (H; 〈·, ·〉) ,

we have
∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

‖e‖2 ≥
∣∣∣∣∣

〈
n∑

k=1

xk, e

〉∣∣∣∣∣
2

(120)

=

∣∣∣∣∣

〈
n∑

k=1

xk, e

〉∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

k=1

Re 〈xk, e〉+ i

(
n∑

k=1

Im 〈xk, e〉
)∣∣∣∣∣

2

=

(
n∑

k=1

Re 〈xk, e〉
)2

+

(
n∑

k=1

Im 〈xk, e〉
)2

.

Now, by hypothesis (117)
(

n∑

k=1

Re 〈xk, e〉
)2

≥ r2
1

(
n∑

k=1

‖xk‖
)2

(121)

and (
n∑

k=1

Im 〈xk, e〉
)2

≥ r2
2

(
n∑

k=1

‖xk‖
)2

. (122)
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If we add (121) and (122) and use (120), then we deduce the desired inequality (118).

Now, if (119) holds, then
∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥ = |r1 + ir2|
(

n∑

k=1

‖xk‖
)
‖e‖ =

√
r2
1 + r2

2

n∑

k=1

‖xk‖

and the case of equality is valid in (118).

Before we prove the reverse implication, let us observe that for x ∈ H and e ∈ H,

‖e‖ = 1, the following identity is true

‖x− 〈x, e〉 e‖2 = ‖x‖2 − |〈x, e〉|2 ,

therefore ‖x‖ = |〈x, e〉| if and only if x = 〈x, e〉 e.
If we assume that equality holds in (118), then the case of equality must hold in all the

inequalities required in the argument used to prove the inequality (118), and we may state

that ∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ =

∣∣∣∣∣

〈
n∑

k=1

xk, e

〉∣∣∣∣∣ , (123)

and

r1 ‖xk‖ = Re 〈xk, e〉 , r2 ‖xk‖ = Im 〈xk, e〉 (124)

for each k ∈ {1, . . . , n} .

From (123) we deduce
n∑

k=1

xk =

〈
n∑

k=1

xk, e

〉
e (125)

and from (124), by multiplying the second equation with i and summing both equations

over k from 1 to n, we deduce

(r1 + ir2)
n∑

k=1

‖xk‖ =

〈
n∑

k=1

xk, e

〉
. (126)

Finally, by (126) and (125), we get the desired equality (119).

The following corollary is of interest [5].

Corollary 4 Let e a unit vector in the complex inner product space (H; 〈·, ·〉) and ρ1, ρ2 ∈
(0, 1) . If xk ∈ H, k ∈ {1, . . . , n} are such that

‖xk − e‖ ≤ ρ1, ‖xk − ie‖ ≤ ρ2 for each k ∈ {1, . . . , n} , (127)
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then we have the inequality
√

2− ρ2
1 − ρ2

2

n∑

k=1

‖xk‖ ≤
∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥ , (128)

with equality if and only if
n∑

k=1

xk =
(√

1− ρ2
1 + i

√
1− ρ2

2

) (
n∑

k=1

‖xk‖
)

e. (129)

Proof. From the first inequality in (127) we deduce

0 ≤
√

1− ρ2
1 ‖xk‖ ≤ Re 〈xk, e〉 (130)

for each k ∈ {1, . . . , n} .

From the second inequality in (127) we deduce

0 ≤
√

1− ρ2
2 ‖xk‖ ≤ Re 〈xk, ie〉

for each k ∈ {1, . . . , n} . Since

Re 〈xk, ie〉 = Im 〈xk, e〉 ,

hence

0 ≤
√

1− ρ2
2 ‖xk‖ ≤ Im 〈xk, e〉 (131)

for each k ∈ {1, . . . , n} .

Now, observe from (130) and (131), that the condition (117) of Theorem 17 is satisfied

for r1 =
√

1− ρ2
1, r2 =

√
1− ρ2

2 ∈ (0, 1) , and thus the corollary is proved.

The following corollary may be stated as well [5].

Corollary 5 Let e be a unit vector in the complex inner product space (H; 〈·, ·〉) and M1 ≥
m1 > 0, M2 ≥ m2 > 0. If xk ∈ H, k ∈ {1, . . . , n} are such that either

Re 〈M1e− xk, xk −m1e〉 ≥ 0, (132)

Re 〈M2ie− xk, xk −m2ie〉 ≥ 0

or, equivalently,
∥∥∥∥xk − M1 + m1

2
e

∥∥∥∥ ≤ 1
2

(M1 −m1) , (133)
∥∥∥∥xk − M2 + m2

2
ie

∥∥∥∥ ≤ 1
2

(M2 −m2) ,
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for each k ∈ {1, . . . , n} , then we have the inequality

2

[
m1M1

(M1 + m1)
2 +

m2M2

(M2 + m2)
2

]1/2 n∑

k=1

‖xk‖ ≤
∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥ . (134)

The equality holds in (134) if and only if

n∑

k=1

xk = 2

( √
m1M1

M1 + m1
+ i

√
m2M2

M2 + m2

) (
n∑

k=1

‖xk‖
)

e. (135)

Proof. From the first inequality in (132)

0 ≤ 2
√

m1M1

M1 + m1
‖xk‖ ≤ Re 〈xk, e〉 (136)

for each k ∈ {1, . . . , n} .

Now, the proof follows the same path as the one of Corollary 4 and we omit the details.

8.2. THE CASE OF m ORTHONORMAL VECTORS

In [1], the authors have proved the following reverse of the generalised triangle inequality

in terms of orthonormal vectors [5].

Theorem 18 Let e1, . . . , em be orthonormal vectors in (H; 〈·, ·〉), i.e., we recall that 〈ei, ej〉 =

0 if i 6= j and ‖ei‖ = 1, i, j ∈ {1, . . . ,m} . Suppose that the vectors x1, . . . , xn ∈ H satisfy

0 ≤ rk ‖xj‖ ≤ Re 〈xj , ek〉 , (137)

j ∈ {1, . . . , n} , k ∈ {1, . . . , m} . Then

(
m∑

k=1

r2
k

) 1
2 n∑

j=1

‖xj‖ ≤
∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥
, (138)

where equality holds if and only if

n∑

j=1

xj =




n∑

j=1

‖xj‖



m∑

k=1

rkek. (139)
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If the space (H; 〈·, ·〉) is complex and more information is available for the imaginary

part, then the following result may be stated as well [5].

Theorem 19 Let e1, . . . , em ∈ H be an orthonormal family of vectors in the complex inner

product space H. If the vectors x1, . . . , xn ∈ H satisfy the conditions

0 ≤ rk ‖xj‖ ≤ Re 〈xj , ek〉 , 0 ≤ ρk ‖xj‖ ≤ Im 〈xj , ek〉 (140)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m} , then we have the following reverse of the

generalised triangle inequality;
[

m∑

k=1

(
r2
k + ρ2

k

)] 1
2 n∑

j=1

‖xj‖ ≤
∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥
. (141)

The equality holds in (141) if and only if

n∑

j=1

xj =




n∑

j=1

‖xj‖



m∑

k=1

(rk + iρk) ek. (142)

Proof. Before we prove the theorem, let us recall that, if x ∈ H and e1, . . . , em are

orthogonal vectors, then the following identity holds true:
∥∥∥∥∥x−

m∑

k=1

〈x, ek〉 ek

∥∥∥∥∥
2

= ‖x‖2 −
n∑

k=1

|〈x, ek〉|2 . (143)

As a consequence of this identity, we note the Bessel inequality
m∑

k=1

|〈x, ek〉|2 ≤ ‖x‖2 , x ∈ H. (144)

The case of equality holds in (144) if and only if (see (143))

x =
m∑

k=1

〈x, ek〉 ek. (145)

Applying Bessel’s inequality for x =
∑n

j=1 xj , we have
∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥

2

≥
m∑

k=1

∣∣∣∣∣∣

〈
n∑

j=1

xj , ek

〉∣∣∣∣∣∣

2

=
m∑

k=1

∣∣∣∣∣∣

n∑

j=1

〈xj , ek〉
∣∣∣∣∣∣

2

(146)

=
m∑

k=1

∣∣∣∣∣∣




n∑

j=1

Re 〈xj , ek〉

 + i




n∑

j=1

Im 〈xj , ek〉



∣∣∣∣∣∣

2

=
m∑

k=1







n∑

j=1

Re 〈xj , ek〉



2

+




n∑

j=1

Im 〈xj , ek〉



2

 .
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Now, by the hypothesis (140) we have




n∑

j=1

Re 〈xj , ek〉



2

≥ r2
k




n∑

j=1

‖xj‖



2

(147)

and 


n∑

j=1

Im 〈xj , ek〉



2

≥ ρ2
k




n∑

j=1

‖xj‖



2

. (148)

Further, on making use of (146) – (148), we deduce

∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥

2

≥
m∑

k=1


r2

k




n∑

j=1

‖xj‖



2

+ ρ2
k




n∑

j=1

‖xj‖



2



=




n∑

j=1

‖xj‖



2
m∑

k=1

(
r2
k + ρ2

k

)
,

which is clearly equivalent to (141).

Now, if (142) holds, then

∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥

2

=




n∑

j=1

‖xj‖



2 ∥∥∥∥∥
m∑

k=1

(rk + iρk) ek

∥∥∥∥∥
2

=




n∑

j=1

‖xj‖



2
m∑

k=1

|rk + iρk|2

=




n∑

j=1

‖xj‖



2
m∑

k=1

(
r2
k + ρ2

k

)
,

and the case of equality holds in (141).

Conversely, if the equality holds in (141), then it must hold in all the inequalities used

to prove (141) and therefore we must have

∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥

2

=
m∑

k=1

∣∣∣∣∣∣

n∑

j=1

〈xj , ek〉
∣∣∣∣∣∣

2

(149)

and

rk ‖xj‖ = Re 〈xj , ek〉 , ρk ‖xj‖ = Im 〈xj , ek〉 (150)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m} .
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Using the identity (143), we deduce from (149) that
n∑

j=1

xj =
m∑

k=1

〈
n∑

j=1

xj , ek

〉
ek. (151)

Multiplying the second equality in (150) with the imaginary unit i and summing the equality

over j from 1 to n, we deduce

(rk + iρk)
n∑

j=1

‖xj‖ =

〈
n∑

j=1

xj , ek

〉
(152)

for each k ∈ {1, . . . , n} .

Finally, utilising (151) and (152), we deduce (142) and the theorem is proved.

The following corollaries are of interest [5].

Corollary 6 Let e1, . . . , em be orthonormal vectors in the complex inner product space

(H; 〈·, ·〉) and ρk, ηk ∈ (0, 1) , k ∈ {1, . . . , n} . If x1, . . . , xn ∈ H are such that

‖xj − ek‖ ≤ ρk, ‖xj − iek‖ ≤ ηk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the inequality
[

m∑

k=1

(
2− ρ2

k − η2
k

)] 1
2 n∑

j=1

‖xj‖ ≤
∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥
. (153)

The case of equality holds in (153) if and only if

n∑

j=1

xj =




n∑

j=1

‖xj‖



m∑

k=1

(√
1− ρ2

k + i
√

1− η2
k

)
ek. (154)

The proof employs Theorem 19 and is similar to the one from Corollary 4. We omit the

details.

Corollary 7 Let e1, . . . , em be as in Corollary 6 and Mk ≥ mk > 0, Nk ≥ nk > 0,

k ∈ {1, . . . , m} . If x1, . . . , xn ∈ H are such that either

Re 〈Mkek − xj , xj −mkek〉 ≥ 0, Re 〈Nkiek − xj , xj − nkiek〉 ≥ 0

or, equivalently,
∥∥∥∥xj − Mk + mk

2
ek

∥∥∥∥ ≤ 1
2

(Mk −mk) ,
∥∥∥∥xj − Nk + nk

2
iek

∥∥∥∥ ≤ 1
2

(Nk − nk)
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for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the inequality

2

{
m∑

k=1

[
mkMk

(Mk + mk)
2 +

nkNk

(Nk + nk)
2

]} 1
2 n∑

j=1

‖xj‖ ≤
∥∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥∥
. (155)

The case of equality holds in (155) if and only if

n∑

j=1

xj = 2




n∑

j=1

‖xj‖



m∑

k=1

( √
mkMk

Mk + mk
+ i

√
nkNk

Nk + nk

)
ek. (156)

The proof employs Theorem 19 and is similar to the one in Corollary 5. We omit the

details.

9. APPLICATIONS FOR VECTOR-VALUED INTEGRAL INEQUALITIES

Let (H; 〈·, ·〉) be a Hilbert space over the real or complex number field, [a, b] a compact

interval in R and η : [a, b] → [0,∞) a Lebesgue integrable function on [a, b] with the

property that
∫ b
a η (t) dt = 1. If, by Lη ([a, b] ; H) we denote the Hilbert space of all Bochner

measurable functions f : [a, b] → H with the property that
∫ b
a η (t) ‖f (t)‖2 dt < ∞, then

the norm ‖·‖η of this space is generated by the inner product 〈·, ·〉η : H ×H → K defined

by

〈f, g〉η :=
∫ b

a
η (t) 〈f (t) , g (t)〉 dt.

The following proposition providing a reverse of the integral generalised triangle inequality

may be stated [3].

Proposition 6 Let (H; 〈·, ·〉) be a Hilbert space and η : [a, b] → [0,∞) as above. If g ∈
Lη ([a, b] ; H) is so that

∫ b
a η (t) ‖g (t)‖2 dt = 1 and fi ∈ Lη ([a, b] ; H) , i ∈ {1, . . . , n} , ρ ∈

(0, 1) are so that

‖fi (t)− g (t)‖ ≤ ρ (157)

for a.e. t ∈ [a, b] and each i ∈ {1, . . . , n} , then we have the inequality

√
1− ρ2

n∑

i=1

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2

≤



∫ b

a
η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt




1/2

. (158)
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The case of equality holds in (158) if and only if

n∑

i=1

fi (t) =
√

1− ρ2
n∑

i=1

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2

· g (t)

for a.e. t ∈ [a, b] .

Proof. Observe, by (158), that

‖fi − g‖η =

(∫ b

a
η (t) ‖fi (t)− g (t)‖2 dt

)1/2

≤
(∫ b

a
η (t) ρ2dt

)1/2

= ρ

for each i ∈ {1, . . . , n} . Applying Theorem 3 for the Hilbert space Lη ([a, b] ; H) , we deduce

the desired result.

The following result may be stated as well [3].

Proposition 7 Let H, η, g be as in Proposition 6. If fi ∈ Lη ([a, b] ; H) , i ∈ {1, . . . , n} and

M ≥ m > 0 are so that either

Re 〈Mg (t)− fi (t) , fi (t)−mg (t)〉 ≥ 0

or, equivalently, ∥∥∥∥fi (t)− m + M

2
g (t)

∥∥∥∥ ≤
1
2

(M −m)

for a.e. t ∈ [a, b] and each i ∈ {1, . . . , n} , then we have the inequality

2
√

mM

m + M

n∑

i=1

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2

≤



∫ b

a
η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt




1/2

. (159)

The equality holds in (159) if and only if

n∑

i=1

fi (t) =
2
√

mM

m + M

n∑

i=1

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2

· g (t) ,

for a.e. t ∈ [a, b] .

The following proposition providing a reverse of the integral generalised triangle in-

equality may be stated [4].



139

Proposition 8 Let (H; 〈·, ·〉) be a Hilbert space and η : [a, b] → [0,∞) as above. If g ∈
Lη ([a, b] ; H) is so that

∫ b
a η (t) ‖g (t)‖2 dt = 1 and fi ∈ Lη ([a, b] ; H) , i ∈ {1, . . . , n} , and

M ≥ m > 0 are so that either

Re 〈Mfj (t)− fi (t) , fi (t)−mfj (t)〉 ≥ 0 (160)

or, equivalently, ∥∥∥∥fi (t)− m + M

2
fj (t)

∥∥∥∥ ≤
1
2

(M −m) ‖fj (t)‖

for a.e. t ∈ [a, b] and 1 ≤ i < j ≤ n, then we have the inequality




n∑

i=1

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2



2

(161)

≤
∫ b

a
η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt +
1
2
· (M −m)2

m + M

∫ b

a
η (t)

(
n−1∑

k=1

k ‖fk+1 (t)‖2

)
dt.

The case of equality holds in (161) if and only if

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2 (∫ b

a
η (t) ‖fj (t)‖2 dt

)1/2

−
∫ b

a
η (t)Re 〈fi (t) , fj (t)〉 dt

=
1
4
· (M −m)2

m + M

∫ b

a
η (t) ‖fj (t)‖2 dt

for each i, j with 1 ≤ i < j ≤ n.

Proof. We observe that

Re 〈Mfj − fi, fi −mfj〉η
=

∫ b

a
η (t) Re 〈Mfj (t)− fi (t) , fi (t)−mfj (t)〉 dt ≥ 0

for any i, j with 1 ≤ i < j ≤ n.

Applying Theorem 13 for the Hilbert space Lη ([a, b] ; H) and for yi = fi, i ∈ {1, . . . , n} ,

we deduce the desired result.

Another integral inequality incorporated in the following proposition holds [4]:
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Proposition 9 With the assumptions of Proposition 8, we have

2
√

mM

m + M




n∑

i=1

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2



2

(162)

+

(√
M −√m

)2

m + M

n∑

i=1

∫ b

a
η (t) ‖fi (t)‖2 dt ≤

∫ b

a
η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt.

The case of equality holds in (162) if and only if

(∫ b

a
η (t) ‖fi (t)‖2 dt

)1/2 (∫ b

a
η (t) ‖fj (t)‖2 dt

)1/2

=
M + m

2
√

mM

∫ b

a
η (t)Re 〈fi (t) , fj (t)〉 dt

for any i, j with 1 ≤ i < j ≤ n.

The proof is obvious by Theorem 15 and we omit the details.

10. APPLICATIONS FOR COMPLEX NUMBERS

The following reverse of the generalised triangle inequality with a clear geometric mean-

ing may be stated [5].

Proposition 10 Let z1, . . . , zn be complex numbers with the property that

0 ≤ ϕ1 ≤ arg (zk) ≤ ϕ2 <
π

2
(163)

for each k ∈ {1, . . . , n} . Then we have the inequality

√
sin2 ϕ1 + cos2 ϕ2

n∑

k=1

|zk| ≤
∣∣∣∣∣

n∑

k=1

zk

∣∣∣∣∣ . (164)

The equality holds in (164) if and only if

n∑

k=1

zk = (cosϕ2 + i sinϕ1)
n∑

k=1

|zk| . (165)
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Proof. Let zk = ak + ibk. We may assume that bk ≥ 0, ak > 0, k ∈ {1, . . . , n} , since, by

(163), bk
ak

= tan [arg (zk)] ∈
[
0, π

2

)
, k ∈ {1, . . . , n} . By (163), we obviously have

0 ≤ tan2 ϕ1 ≤ b2
k

a2
k

≤ tan2 ϕ2, k ∈ {1, . . . , n}

from where we get

b2
k + a2

k

a2
k

≤ 1
cos2 ϕ2

, k ∈ {1, . . . , n} , ϕ2 ∈
(

0,
π

2

)

and
a2

k + b2
k

a2
k

≤ 1 + tan2 ϕ1

tan2 ϕ1
=

1
sin2 ϕ1

, k ∈ {1, . . . , n} , ϕ1 ∈
(

0,
π

2

)

giving the inequalities

|zk| cosϕ2 ≤ Re (zk) , |zk| sinϕ1 ≤ Im (zk)

for each k ∈ {1, . . . , n} .

Now, applying Theorem 17 for the complex inner product C endowed with the inner

product 〈z, w〉 = z · w̄ for xk = zk, r1 = cosϕ2, r2 = sin ϕ1 and e = 1, we deduce the desired

inequality (164). The case of equality is also obvious by Theorem 17 and the proposition is

proven.

Another result that has an obvious geometrical interpretation is the following one.

Proposition 11 Let e ∈ C with |z| = 1 and ρ1, ρ2 ∈ (0, 1) . If zk ∈ C, k ∈ {1, . . . , n} are

such that

|zk − e| ≤ ρ1, |zk − ie| ≤ ρ2 for each k ∈ {1, . . . , n} , (166)

then we have the inequality

√
2− ρ2

1 − ρ2
2

n∑

k=1

|zk| ≤
∣∣∣∣∣

n∑

k=1

zk

∣∣∣∣∣ , (167)

with equality if and only if

n∑

k=1

zk =
(√

1− ρ2
1 + i

√
1− ρ2

2

) (
n∑

k=1

|zk|
)

e. (168)

The proof is obvious by Corollary 4 applied for H = C.
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Remark 12 If we choose e = 1, and for ρ1, ρ2 ∈ (0, 1) we define D̄ (1, ρ1) := {z ∈ C| |z − 1| ≤ ρ1} ,

D̄ (i, ρ2) := {z ∈ C| |z − i| ≤ ρ2} , then obviously the intersection

Sρ1,ρ2 := D̄ (1, ρ1) ∩ D̄ (i, ρ2)

is nonempty if and only if ρ1 + ρ2 >
√

2.

If zk ∈ Sρ1,ρ2 for k ∈ {1, . . . , n} , then (167) holds true. The equality holds in (167) if

and only if
n∑

k=1

zk =
(√

1− ρ2
1 + i

√
1− ρ2

2

) n∑

k=1

|zk| .
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[9] P. M. Miličić, On a complementary inequality of the triangle inequality (French), Mat.

Vesnik, 41 (1989), No. 2, 83–88.
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