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Abstract. Adeagbo-Sheikh [1] gave the detail about the notions of the ’distance func-
tion (g(t))′ and the ’working functions (y∗i (t), i = 1, 2, ..., n)′. The working functions are
the functions which describe the behaviours of the subsystems during self-organization pro-
cess. The procedure for obtaining these working functions for a system of three particles
which is self-organizing to keep the particles in a straight line was discussed in Olatinwo
and Adeagbo-Sheikh[4].

In this paper, we employ some concepts of the probability theory, elementary properties
of curve as well as the distance function to determine the degree of progress to goal at any
stage during self-organization process. We consider the probability of reaching the goal at
any stage of the self-organization process as its degree of process to goal during this process.

The results obtained are in agreement with the axiomatic properties of probability.

1. INTRODUCTION

In his model for self-organizing systems, Adeagbo-Sheikh [1] gave the detail

about the views of some notable thinkers such as Ashby [2], Beer [5] and Von Foerster

[8] by employing the notions of a ’distance function (g(t))′ and that of a ’controlled-

disturbance function (h(g(t)))′, where t is the time variable. The working functions
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for a system of three particles which is self-organizing to keep the particles in a

straight line were determined in Olatinwo and Adeagbo-Sheikh [4] by reducing the

distance-from-goal expression to the distance function.

The objective of this paper is to determine the level or degree of progress to goal

at any stage during self-organization process. The results obtained are in agreement

with the axiomatic properties of probability. We employ some concept of the proba-

bility theory as well as the elementary idea of the curve theory in our study. The study

becomes relevant for its applications in diverse areas, espcially in learning/adaptive

control and pattern recognition systems. Theories of learning are available in litera-

ture and invariably use statistical techniques. See Fu and Mendel [6].

We will take our self-organizing system to be in the sense of Ramon-Margalef (see

Beer [5]) in the next section.

2. MAIN RESULTS

In this section, we shall discuss about the determination of the level of progress

to goal in self-organization process. However, we recall in this section the following

definition:

Definition 2A.The distance function, (g(t)), is the distance from the goal at any

time satisfying the following properties:

(i) g(t) > 0, t0 ≤ t < tn < ∞

(ii) g, (t) < 0, t0 < t < tn < ∞

(iii) g(tn) = 0, t0 < tn < ∞

(iv) |g, (t)| < ∞, t0 < t < tn < ∞

See Adeagbo-Sheikh [1] for this definition.
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The graph of the function, g(t), is shown in the figure 2.1 below:

This graph is also contained in Olationwo and Adeagbo-Sheikh [1]. The property

(ii) of g(t) above shows that g(t) is a monotone decreasing function. The progress

of the system to self-organization stage from time t0 is obvious from the graph. The

system begins to self-organize towards some desired state of affairs at time t0 and the

self-organization process gets to completion at time tn (i.e. g(tn) = 0), property (iii).

Let the successive points P0, P1, ..., Pj , ..., Pn on the curve be the successive stages

reached during self-organization process at times t0, t1, ..., tj , ..., tn respectively. Let

`(t) denote the length of the curve at any time, t. Thus, the length of the curve (see

Bruce and Giblin [3]) is given by

`(t) =

∫ t

t0

||g′(u)||du (2.1)

We assume that the gragh defined by g(t) is regular.

From eqn(2.1), `(t0) = 0

`(tn) =

∫ tn

t0

||g′(u)||du > 0, since tn > 0

Definition 2B. Let Xk be the event that a self-organizing system attains a stage

Pkat time tk during self-organization process. Then, the probability of this event is

given by

Prob{Xk} =
`(tk)

`(tn)
(2.2)

where k = 0, 1, 2, . . . , n.
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The theorem below gives the probability that the self-organizing system attains a

stage Pk at time tk for each k ∈ N during self - organization process:

Theorem 2A. Suppose that [t0, tk] and [t0, tn] are two given time intervals such

that [t0, tk] ⊆ [t0, tn]. Let Xk be the event that the self-organizing system attains a

stage Pk at time tk during self-organization process. Then,

Prob{Xk} =

∫ tk

t0
||g′(u)||du

∫ tn

t0
||g′(u)||du

(2.3)

where k ≤ n, k, n ∈ N .

Proof. Xk is the event that the self-organizing system attains a stage Pk at time

tk , k = 0, 1, . . . , n.

We have from equation (2.1) that

`(tk) =

∫ tk

t0

||g′(u)||du.

Substituting for `(tk) and `(tn) in equation (2.2), then

Prob{Xk} =

∫ tk

t0
||g′(u)||du

∫ tn

t0
||g′(u)||du

This completes the proof of the theorem.

Corollary 2.A. Let the hypotheses of theorem (2A) hold. Then,

Prob{Xk} =

∑k

j=1

∫ tj

tj−1

||g′(u)||du
∑n

j=1

∫ tj

tj−1

||g′(u)||du
(2.4)

where n, k ∈ N, k ≤ n.

Proof. By considering finite union of intervals (see Kai Lai Chung [7]) which can

be split up into disjoint ones,

i.e. [t0, tk] = ∪k
j=1

[tj−1, tj] and [t0, tn] = ∪n
j=1

[tj−1, tj]
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then equation (2.3) becomes

Prob{Xk} =

∫ tk

t0
||g′(u)||du

∫ tn

t0
||g′(u)||du

=

∫ t1

t0
||g′(u)||du +

∫ t2

t1
||g′(u)||du + ... +

∫ tk

tk−1

||g′(u)||du
∫ t1

t0
||g′(u)||du +

∫ t2

t1
||g′(u)||du + ... +

∫ tn

tn−1

||g′(u)||du

=

∑k

j=1

∫ tj

tj−1

||g′(u)||du
∑n

j=1

∫ tj

tj−1

||g′(u)||du

This completes the proof of the corollary.

According to Adeagbo-Sheikh [1], S = {S1, S2, . . . , Sm} is the set of the subsys-

tems or elements of self-organizing systems. The set A = {A1, A2, . . . , Am} is the

corresponding set of activities, and y(t) = (y1(t), y2(t), . . . , ym(t)) is the vector whose

components measure the level or aggregate effects of respective activities from time

t0 ≥ 0 to time t.

In this paper, we are interested in finding the level of contribution or efficiency of

each subsystem Sj from time t0 to time tn during self-organization process. We then

use it to find the probability for the overall level of the self-organization process. This

idea is summarized in the results below.

Theorem 2B. Let Xk be the event that the subsystems Sk have aggregate effects

yk(t), k = 1, 2, . . . ,m in the time interval [t0, tn] during self-organization process. If

Ak, k = 1, 2, . . . ,m are the corresponding activities over the same time interval, then

Prob{Xk} =

∑n

j=1

∫ tj

tj−1

||y′

k(u)||du
∑n

j=1

∫ tj

tj−1

||g′(u)||du
(2.5)

where k = 1, 2, ...,m.

Proof. Using equations (2.1) and (2.2), we have that

Prob{Xk} =

∫ tn

t0
||y′

k(u)||du
∫ tn

t0
||g′(u)||du

Applying corollary (2A) gives

Prob{Xk} =

∑n

j=1

∫ tj

tj−1

||y′

k(u)||du
∑n

j=1

∫ tj

tj−1

||g′(u)||du
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This complete the proof.

Theorem 2C. Suppose that the subsystems Sk, k = 1, 2, . . . ,m are independent

with corresponding activities Ak, k = 1, 2, . . . ,m and let yk(t), k = 1, 2, . . . ,m be the

corresponding aggregate effects in the time interval [t0, tn] during self-organization.

Let Xk be the event that the subsystems Sk have the aggregate effects yk(t) over the

time interval [t0, tn] during self-organization process. Then,

Prob{∩m
k=1

Xk} =
Πm

k=1

∑n

j=1

∫ tj

tj−1

||y′

k(u)||du
(

∑n

j=1

∫ tj

tj−1

||g′(u)||du

)m (2.6)

Proof. By theorem (2B), we have that

Prob{X1} =

∫ tn

t0
||y′

1
(u)||du

∫ tn

t0
||g′(u)||du

,

Prob{X2} =

∫ tn

t0
||y′

2
(u)||du

∫ tn

t0
||g′(u)||du

, . . . , P rob{Xm} =

∫ tn

t0
||y′

m(u)||du
∫ tn

t0
||g′(u)||du

Since the subsystems are independent, then X1, X2, ..., Xm are independent events.

Hence

Prob{∩m
k=1

Xk} = Prob{X1} · Prob{X2} · · ·Prob{Xm} = Prob{X1∩X2∩...∩Xm},

so that, we have

Prob{∩m
k=1

Xk} =

(

∫ tn

t0
||y′

1
(u)||du

∫ tn

t0
||g′(u)||du

)(

∫ tn

t0
||y′

2
(u)||du

∫ tn

t0
||g′(u)||du

)

· · ·

(

∫ tn

t0
||y′

m(u)||du
∫ tn

t0
||g′(u)||du

)

=

Πm
k=1

(

∫ tn

t0
||y′

k(u)||du

)

(

∫ tn

t0
||g′(u)||du

)m

By corollary (2A), we have that

Prob{∩m
k=1

Xk} =

Πm
k=1

(

∑n

j=1

∫ tj

tj−1

||y′

k(u)||du

)

(

∑n

j=1

∫ tj

tj−1

||g′(u)||du

)m
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This completes the proof of the theorem.

It is important to characterize two stages during the self-organization process.

The stages are P0 and Pn which are obvious from the figure (2.1).

This characterization will be done by the aid of the indicator or characteristic

function as follows:

In theorem (2A), when k = 0 in eqn (2.3), then X0 is the event that the self-

organizing system attains the stage P0 at time t0. Hence,

Prob{X0} =

∫ t0

t0
||g′(u)||du

∫ tn

t0
||g′(u)||du

= 0,

i.e. this stage corresponds to the start of the self-organization process. Similarly,

when k = n in eqn (2.3), then Xn is the event that the self-organizing system attains

the stage Pn at time tn.

Hence,

Prob{Xn} =

∫ tn

t0
||g′(u)||du

∫ tn

t0
||g′(u)||du

= 1

i.e. this stage corresponds to the end of the self-organization process (or the

self-organization stage is reached at time, tn). In terms of the indicator function,

the two probabilities are expressed in the form:

Prob{A} = IA(w) =

{

1, if ω ∈ A
0, if ω /∈ A

where A denotes the set of members that reach the target at time tn and A′ is the

set of those at the point P0 at time t0, ω ∈ A.

Theorem 2D. Suppose that the subsystems Sk, k = 1, 2, . . . ,m have correspond-

ing activities Ak, k = 1, 2, . . . ,m and let y∗

k(t), k = 1, 2, . . . ,m, be the working

functions in the interval [t0, tn] during self-organization stage. Suppose further that

Xk, k = 1, 2, . . . ,m is event that the subsystem Sk, k = 1, 2, . . . ,m when the self-

organization stage is reached during the interval [t0, tn] and that X is the event that

the system S = {Sk}
m
k=1

attains the self-organization stage over the same time inter-

val. Then

Prob{X} = 1. (2.8)
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Proof. By theorem (2B), we have that

Prob{X1} =

∫ tn

t0
||y1

∗′(u)||du
∫ tn

t0
||g′(u)||du

,

Prob{X2} =

∫ tn

t0
||y2

∗′(u)||du
∫ tn

t0
||g′(u)||du

, . . . , P rob{Xm} =

∫ tn

t0
||ym

∗′(u)||du
∫ tn

t0
||g′(u)||du

The subsystems S1, S2, . . . , Sm are not independent when the self-organization

stage is reached. Rather, the subsystems bias one another and this situation becomes

mutually exclusive. Hence,

X = ∪m
k=1

Xk = X1 ∪ X2 ∪ . . . ∪ Xm, X1 ∩ X2 ∩ . . . ∩ Xm = φ,

Prob{X} = Prob{∪m
k=1

Xk} = Prob{X1} + Prob{X2} + ... + Prob{Xm}

Prob{X1} =

(

∫ tn

t0
||y1

∗′(u)||du
∫ tn

t0
||g′(u)||du

)

+

(

∫ tn

t0
||y2

∗′(u)||du
∫ tn

t0
||g′(u)||du

)

+ ...

(

∫ tn

t0
||ym

∗′(u)||du
∫ tn

t0
||g′(u)||du

)

=

∫ tn

t0
||y1

∗′(u)||du +
∫ tn

t0
||y2

∗′(u)||du + ... +
∫ tn

t0
||ym

∗′(u)||du
∫ tn

t0
||g′(u)||du

=

∫ tn

t0
||g′(u)||du

∫ tn

t0
||g′(u)||du

= 1,

since
∫ tn

t0

||g′(u)||du =

∫ tn

t0

||y1
∗′(u)||du + ... +

∫ tn

t0

||ym
∗′(u)||du,

that is, the working functions are determined by the distance function.

3. CONCLUSION

The degree or level of progress to goal at any time and stage of the self-organization

process was determined. The results obtained were in agreement with the axiomatic

properties of probability.

It was observed from eqn(2.6) of theorem (2C) that the system could not attain

self-organization stage when the subsystems were independent, whereas from eqn (2.8)

of theorem (2D) it was clear that the subsystems biased one another for
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self-organization stage to be attained. So the subsystems must be mutually exclusive

if the system must reach self-organization stage.

It is our hope that the results obtained in this paper will be generalized in a future

paper.
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