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Abstract. We present a reliable algorithm for solving one-dimensional system of nonlinear
partial differential equations. We investigate the numerical solution of this problem by
using Adomian decomposition method (ADM). The solution is calculated in the form of a
series with easily computable components. We prove the convergence of the ADM applied
to nonlinear heat equation. Numerical experiments are presented for a set of nonlinear
problems from the literature.

1. INTRODUCTION

Over the last twenty years, the Adomian decomposition approach has been ap-

plied to obtain formal solutions to a wide class of both deterministic and stochastic

PDEs. In recent years, the decomposition method has emerged as an alternative

method for solving a wide range of problems whose mathematical models involve

algebraic, differential, integral, integro-differential, higher-order ordinary differential

equations,partial differential equations (PDEs) and systems [1-8]. These works are
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summarized in the following. In [1] used the Adomian’s technique for solving an ellip-

tical boundary value problem with an auxiliary condition. Adomian et al. [2] solved

mathematical models of the dynamic interaction of immune response with a popu-

lation of bacteria, viruses, antigens or tumor cells have been modelled as systems of

nonlinear differential equations or delay-differential equations by the ADM. Abbaoui

[3] studied a model of thermic exchanges in a drilling well which was solved with

the decomposition method. Ndour et al. [4] presented an example of an interaction

model between two species. Guellal et al. [5] used the decomposition method for

solving differential systems coming from physics. They gave a comparison between

the Runge-Kutta method and the decomposition technique. Abbaoui and Cherruault

[6] used the decomposition method for solving the cauchy problem without using the

canonical form of Adomian. They also gave a proof of convergence by using a new for-

mulation of the Adomian polynomials and they compared the ADM with the Picard

method. In [7], the Adomian’s scheme was used for solving differential systems for

modelling the HIV immune dynamics. Sanchez et al. [8] investigated the weaknesses

of the thin-sheet approximation and proposed a higher-order development allowing

to increase the range of convergence and preserving the nonlinear dependence of the

variables.

The decomposition method yields rapidly convergent series solutions by using a

few iterations for both linear and nonlinear deterministic and stochastic equations.

The advantage of this method is that it provides a direct scheme for solving the

problem, i.e., without the need for linearization, perturbation, massive computation

and any transformation.

The convergence of this method have investigated by Cherruault and co-operators.

In [9], Cherruault proposed a new definition of the method and then he insisted that it

will become possible to prove the convergence of the decomposition method. In [10],

Cherruault and Adomian proposed a new convergence proof of Adomian’s method

based on properties of convergent series. In [11], Abbaoui et. al., a new approach

of decomposition method was obtained in a more natural way than in the classical
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presentation, was given. Lesnic [12] investigated convergence of Adomian’s method

to periodic temperature fields in heat conductors.

In this work, we will consider the adaptive numerical approximation of nonlinear

evolution equation of the form (reaction-diffusion system):

ut −∇ (A (x)∇u) = F (x, t, u) , x ∈ Ω ∈ R, t ∈ (0, T ],

u (x, 0) = u0 (x) , x ∈ Ω,
(1)

subject to boundary conditions for the solution vector u = (u1, u2, . . . , um)
T and where

A (x) is the diffusion matrix and the nonlinear vector function F (x, t, u) describes

possible reaction mechanism of the problems. Some assumptions are taken for the

data A, F, u0 in order to assure the existence of a unique local strong solution of the

system (1). The reaction-diffusion equations arise in many fields of biology, ecology,

chemistry and physics. For instance, the equation are used to describe the dispersive

behaviour of cell or animal populations as well as chemical concentrations.

This system can be solved by the different numerical approaches. Some examples

are summarized in the following. Comincioli et al. [13] use a wavelet-based method for

numerical solution of the system (1). Classical method of lines is considered in [14-16]

using a Galerkin-wavelet or collocation-wavelet method for space discretization. In

this framework, first the space variable are discretization, usually on a priori selected

grid, then the PDE is converted in a system of ODEs, which can be solved by some

automatic ODE solver.

Here we are mainly concerned with the performance of the ADM with some nu-

merical test.

The organization of this paper is as the following: We give a brief definition

of this method and the proof of convergence in Section 2 and 3, respectively. The

accuracy and efficiency of the decomposition method is investigated with numerical

illustrations in Section 4. Section 5 consists of a brief conclusions.
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2. THE DECOMPOSITION METHOD

The principal algorithm of the Adomian decomposition method when applied to

a general nonlinear equation is in the form

Lu+Ru+Nu = g. (2)

The linear terms are decomposed into L+R, while the nonlinear terms are represented

byNu. L is taken as the highest order derivative to avoid difficult integration involving

complicated Green’s functions, and R is the remainder of the linear operator. L−1 is

regarded as the inverse operator of L and is defined by a definite integration from 0

to t, i.e.,

L−1 (.) =

∫

t

0

∫

t

0

(.) dt dt. (3)

If L is a second-order operator, L−1 is a two-fold indefinite integral,

L−1Lu = u (x, t)− u (x, 0)− t
∂u (x, 0)

∂t
. (4)

Operating on both sides of Eq.(2) with L−1 yields

L−1Lu = L−1g − L−1Ru− L−1Nu, (5)

and gives

u (x, t) = u (x, 0) + t ut (x, 0) + L−1g − L−1Ru− L−1Nu. (6)

The decomposition method represents the solution of Eq.(6) as a series

u (x, t) =
∞
∑

n=0

un (x, t) . (7)

The nonlinear operator, Nu, is decomposed as

Nu =
∞
∑

n=0

An. (8)

Substituting (7) and (8) into (6), then we obtain

∞
∑

n=0

un (x, t) = u0 − L−1R

∞
∑

n=0

un − L−1

∞
∑

n=0

An, (9)
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where

u0 = u (x, 0) + t ut (x, 0) + L−1g. (10)

Consequently, it can be written as

u1 = −L−1Ru0 − L−1A0,

u2 = −L−1Ru1 − L−1A1,

...

un+1 = −L−1Run − L−1An, n ≥ 0,

(11)

where An are Adomian’s polynomials of u0, u1, . . . , un and are obtained from the

formula

An =
1

n!

dn

dλn

[

F

(

∞
∑

i=0

λiui

)]

λ=0

, n = 0, 1, 2, . . . (12)

Eq.(12) gives

A0 = f (u0) ,

A1 = u1

d

du0

f (u0) ,

A2 = u2

d

du0

f (u0) +
u2

1

2!

d2

du2
0

f (u0) ,

A3 = u3
d

du0

f (u0) + u1u2
d2

du2

0

f (u0) +
u
3

1

3!

d3

du3

0

f (u0) ,

...

(13)

The accuracy level of the approximation of u (x, t) can be dramatically enhanced

by computing components as far as we like. The n−term approximant

lim
n→∞

limφn = u (x, t) where φn (x, t) =
n−1
∑

k=0

uk (x, t) , n ≥ 0, (14)

can be used to approximate the solution.

3. CONVERGENCE RESULTS

We consider in the following the hypotheses [17,18]:

· (H1) (T (u)− T (v) , u− v) ≥ k ‖u− v‖2
, k > 0, u, v ∈ H.
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· (H2) Whatever may be M > 0, there exists a constant C (M) > 0 such that

for u, v ∈ H with ‖u‖ ≤M, ‖v‖ ≤M, we have:

(T (u)− T (v) , w) ≤ C (M) ‖u− v‖ ‖w‖ for every w ∈ H,

where H is a Hilbert space.

Theorem (Sufficient condition of convergence). If N is Lipschitzian func-

tion in H, the Adomian method applied to the following nonlinear heat equation

∂

∂t
(u) =

∂2

∂x2
(u) + f (u) ,

where f (u) is the nonlinear terms.

Proof. We consider the above equation, then we set

L (u) =
∂

∂t
(u) , R (u) = −

∂2

∂x2
(u) , N (u) = −f (u) .

We have,

L (u) =
∂

∂t
(u) = −T (u) =

∂2

∂x2
(u) + f (u) .

This operator T is hemicontinuous. We can the convergence hypothesis (H1) : i.e.

there exists a constant k > 0, such that for u, v ∈ H, we have

(T (u)− T (v) , u− v) ≥ k ‖u− v‖2
,

T (u)− T (v) = −
∂2

∂x2
(u− v)− (f (u)− f (v)) ,

(T (u)− T (v) , u− v) =

(

−
∂2

∂x2
(u− v) , u− v

)

− (f (u)− f (v) , u− v) .

But there exists a real δ > 0 such that
(

−
∂2

∂x2
(u− v) , u− v

)

≥ δ ‖u− v‖2
,

because
∂2

∂x2
,

is a differential operator in H. In addition,

(f (u)− f (v) , u− v) ≤ α ‖u− v‖2
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where α > 0 is the Lipschitzian constant and therefore

(T (u)− T (v) , u− v) ≥ (δ − α) ‖u− v‖2
,

and taking k = δ − α, then we obtain hypothesis (H1) .

We can now prove the hypothesis (H2) , i.e. ∀M > 0, ∃C (M) > 0 such that

‖u‖ ≤M, ‖v‖ ≤M ⇒ (T (u)− T (v) , w) ≤ C (M) ‖u− v‖ ‖w‖ , ∀w ∈ H.

Thus we have

(T (u)− T (v) , w) ≤ ‖u− v‖ ‖w‖+ α ‖u− v‖ ‖w‖

≤ C (M) ‖u− v‖ ‖w‖ ,

where C (M) = 1 + α. Hence, the hypothesis (H2) is satisfied.

4. NUMERICAL EXAMPLES

The aim of our work is to present an efficient, robust and reliable method for the

solution of nonlinear evolution equations. For illustration purposes we will consider

both linear and nonlinear evolution equations in this section. We will show that how

the ADM is computationally efficient. To give a clear overview of the methodology,

the following test problems will be discussed.

Test problem 1 (Two wavelike solution). We consider the following linear

heat equation problem:
ut = uxx + f (x, t) ,

u (x, 0) = f (x) ,
(15)

where f (x, t) , f (x) and Dirichlet boundary conditions are chosen so that the exact

solution is [16]:

u (x, t) = tanh (10 (x− t) + 2)− tanh (10 (x− t) + 1)

+2 tanh (20 (x+ 2t)− 26)− tanh (29 (x+ 2t)− 32) .
(16)

Proceeding as before, we find the recursive scheme as follows:

u0 = u (x, 0) + L−1
t

[f (x, t)] ,

...

un+1 = L−1
t
Lxun, n ≥ 0,

(17)
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where

Lt =
∂

∂t
, Lx =

∂2

∂x2
, L−1

t
(.) =

∫

t

0

(.) dt. (18)

In order to verify numerically whether the proposed methodolgy lead to higher

accuracy, we can evaluate the numerical solutions using the n-term approximation

(14). Table 1 show the difference of exact solution and approximate solution of the

absolute error. We also demonstrate the numerical exact solutions in Figure 1.

x, t 0.01 0.02 0.03 0.04 0.05
0.1 6.762E − 16 1.394E − 13 2.167E − 12 2.704E − 11 3.412E − 10
0.2 1.317E − 15 2.781E − 13 4.165E − 12 5.546E − 11 6.913E − 10
0.3 2.197E − 15 4.196E − 13 6.268E − 11 8.343E − 11 1.046E − 09
0.4 2.697E − 15 5.588E − 13 8.349E − 11 1.124E − 10 1.491E − 09
0.5 3.297E − 15 6.885E − 13 1.147E − 11 1.384E − 10 1.781E − 09

Table 1. Numerical results for Test problem 1.
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Fig. 1. The surface shows the exact and numerical (φ5) solutions of u (x, t) and its

plot at t = 0.

Many other iterates could be generated by using Mathematica. Table 1 shows

the errors obtained upon solving the linear heat equation (15) after normalizing the

constants and using only five iterations of the decomposition method. It is to be noted

that only 5 iterates were needed to obtain an error of less than 10−8%. The overall

errors can be made even much smaller by adding new terms of the decomposition.
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Test problem 2 (Rational solution). We consider the following the nonlinear

reaction-diffusion equation:

ut − uxx = u2 − (ux)
2
, (19)

subject to the initial condition

u (x, 0) = u0 = ex. (20)

Since u0 is known, then the exact solution is obtained the following recursive relation

u1 = L−1
t

(Lxu0) + L−1
t

(A0)− L−1
t

(B0) ,

...

un+1 = L−1
t

(Lxun) + L−1
t

(An)− L−1
t

(Bn) , n ≥ 0,

(21)

where An and Bn are so-called Adomian polynomials as calculated in [19] according

to specific algorithms
A0 = u2

0,

A1 = 2u0u1,

A2 = u2
1 + 2u0u2,

A3 = 2u0u3 + 2u1u2,

...

(22)

B0 =
(

u2
0

)

x
,

B1 = (2u0u1)x ,

B2 =
(

u2
1 + 2u0u2

)

x
,

B3 = (2u0u3 + 2u1u2)x ,

...

(23)

and so on. To obtain the decomposition solution subject to initial condition given,

we first use the equation (19) in an operator form in the same manner as form (6)

and then we use (21) to determine the individual terms of the series (7), we get

u (x, t) = ex
(

1 + t+
1

2!
t2 +

1

3!
t3 + . . .

)

, (24)

and in a closed form given by

u (x, t) = ex+t. (25)
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This can be justified through substitution.

5. CONCLUSIONS

In this paper, we calculated the exact solution of the reaction-diffusion systems (1)

with initial condition by using Adomian decomposition method. We demonstrated

that the decomposition procedure is quite efficient to determine solution in closed

form by using initial condition. Our present method avoids the tedious work needed

by traditional techniques. We got the analytical solution by using only the initial

condition in this method. The method avoids the difficulties and massive computa-

tional work that usually arise from Parellel techniques, Finite difference method and

Crank-Nicolson finite difference method.

It is possible to solve this problem by using both the initial condition and/or the

boundary conditions. It will be sufficient to look at the studies [20] to find u0 by

using the boundary conditions.
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