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Abstract. The aim of this work is to investigate the effect of the function, f(x) > 0 on

the boundary value problem

d2θ

dx2
+

j

x

dθ

dx
+ δf(x) exp(θ) = 0

dθ

dx
(x = s) = 0 θ(1) = 0

for some f(x) > 0. We established that there exist a δcr > 0, such that if 0 ≤ δ ≤ δcr, a
steady state solution for the boundary value problem exist, while for δ > δcr, no solution
exist. Analytical solutions were obtained for some f(x) > 0 and geometry, while a numerical
method is applied to others where analytical method fails. In particular, the variational
method was implemented using the Mathematica software package. These solutions have
thus given us the choice of comparing the behaviour of the solutions for the special cases
of slab and cylinder. Our results have not only confirmed previous, it has has facilitated a
better understanding of the problem not previously considered.
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1. INTRODUCTION

The concept of criticality or non-existence of steady state solutions in boundary

value problems has been established several decades ago. This may not be uncon-

nected with the physical applications of the study, especially in science and technolog-

ical applications. This paper is concerned with the class of solutions for the boundary

value problem,
d2θ

dx2
+

j

x

dθ

dx
+ δf(x) exp(θ) = 0 (1)

dθ

dx
(x = s) = 0 θ(1) = 0, (2)

where j is the geometry factor (j = 0, 1, for slab and cylinder respectively), δ is the

Frank-Kamenetskii parameter which determines non-existence of the steady state

solutions (criticality), θ is the temperature and x is the spatial coordinate. The task

here is to examine how some function (f(x) > 0) would affect the solutions of (1)

and (2). The function f(x) > 0 takes a variety of forms depending on the nature

of the problem. Stolin et al. [8] obtained an analytical expressions for the critical

conditions under which hydrodynamic thermal explosion in power law fluids may

be expected in flat(j = 0) or cylindrical rotary viscosimeter (j = 1) under various

thermal conditions at the walls for s = −1 and f(x) = 1. Subcritical conditions for

steady temperature and velocity fields are determined. Hill and Marchant [6] has also

studied the critical conditions for thermal explosion for the problem where f(x) = 1

and s = 0 for the slab and the cylinder, using a numerical method. They also carried

out a stability analysis of the solutions and their results is good in agreement with the

well known exact solution in literature. Instead of the interval 0 < s < 1 considered

by Hill and Marchant [6], Novozhilov et al [12], studied the thermal explosion of same

problem in the interval 0 ≤ a < s < b ≤ 1 and the criticality formulation in the three

regions is investigated. Here the critical parameter δcr which is the requirement for

criticality (or thermal explosion), now depends on a and b. This problem is solved by

a numerical method and the effect of stirring on the criticality or thermal explosion

of the system is shown.
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In the modelling of Microwave, Hill and Pincombe [7] considered the spatial de-

pendence,

f(x) = exp(−βx), β > 0, (3)

as an approximation of the electric field intensity which decays exponentially. Simi-

larly, Coleman [3] proposed a polynomial decay,

f(x) = α1x
−β, β > 0 (4)

which may be seen as the Taylor’s series expansion of (3) about the origin, where α1

is a constant.

Okoya [9] obtained new exact solutions for a variation of (1) and (2) with source

term which decreases spatially and increases with temperature. These solutions are

derived for the infinite slab, infinite cylinder and sphere through a simple Mathemat-

ical procedure. Recently Okoya and Ajadi [10] also studied a variation of (1) and

(2), where the thermal conductivity is a function of temperature and the source term

decreasing spatially. They ascertain the way in which thermal explosion is affected

by different boundary conditions for β > 0. In combustion modelling, f(x) is known

to be an approximation of the concentration of the reactants, where β > 0 is the

order of the reactants. Specifically, Choi [2] studied (1) and (2) for the slab (j = 0)

for f(x) ∈ C1(0, 1] for isothermal boundary conditions. They showed using some

qualitative argument, that there exist a δcr such that for 0 ≤ δ ≤ δcr, a solution is in

C1(0, 1] ∩ C2(0, 1]. In general, the proposed functions f(x) may satisfy the following

properties;

(i) f(x) is in C1(0, 1]

(ii) f(x) > 0 and can be singular at x = 0 (origin).

Since closed form (or exact) solutions are not always easy to come-by, approx-

imate methods are usually employed. Boddington et al. [1] studied problems (1)

and (2) for a pair of simultaneous exothermic reactions using a quadrature method

earlier proposed for plane geometry (slab). A more flexible method, the variational

method, is capable of handling all the geometries. Graham-Eagle et al. [4] extends

the investigation of Boddington et al. [1] to the other two geometries of the infinite
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cylinder and sphere. There results are presented numerically in tabular form.

In our considerations, we have investigated criticality for the Slab and cylindrical

geometries for a class of functions

f(x) ∈
{
1, x−β, exp(−βx)

}
.

We presented in tabular form the variation of δcr with s ∈ (0, 1), where analytical

solution is possible, while a tabular presentation variation of δcr with β was carried

out where the variational method is used. This is so because the variational method

has been developed for s = 0. However, the variational result for some fixed β at

s = 0 is compared with that obtained by exact solution and there is a close agreement.

2. MATHEMATICAL FORMULATION

We study the non-existence of steady state solutions of the boundary value prob-

lem (1) and (2) for the slab and cylinder for the spatial functions; f(x) = 1, f(x) =

x−β and f(x) = exp(−βx) using the analytical and the variational methods.

3. ANALYTICAL SOLUTIONS

3.1. THE PLANAR GEOMETRY (SLAB)

f(x) = 1

In this consideration, equation (1) reduces to

d2θ

dx2
+ δ exp(θ) = 0, (3)

which has a well known closed - form solution (see Stolin et al [8], Hill and Marchant

[6] and Okoya [9]).

exp(θ) =
A

cosh2
(√

Aδ
2

ln x−B
) , (4)
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where A and B are constant of integration. Using the boundary conditions (2), we

obtain √
δ

2
=

B

ln s cosh B

and the expression for criticality is dδ
dB

= 0. Thus,

B tanh B − 1 = 0, and Bcr = 1.2

s .1 .2 .3 .4 .5 .6 .7 .8 .9

δcr .165687 .339135 .6060 1.046 1.828 3.3665 6.9050 17.64 79.13

Table 1. δcr against s.

From Table 1. δ is a monotonically increasing function of s.

f(x) = exp(−βx)

Here equation (1) reduces to

d2θ

dx2
+ δ exp(−βx) exp(θ) = 0. (5)

By using the transformation V = θ − βx, equation (5) reduces to

d2V

dx2
+ δ exp(θ), (6)

which is similar to (3). Hence the solution is

exp(θ) =
A exp(βx)

cosh2
(√

Aδ
2

ln x−B
) . (7)

By using the boundary condition (2), we obtain

A = exp(−β) cosh2(B) and

√
δ

2
=

βs coth[
√

Aδ
2

ln(s)−B]

2
√

A
. (8)

Combining these equations, we obtain
√

δ

2
=

βs

2

[
√

δ
2
ln(s) cosh B −B]

exp(−β
2

) cosh B
. (9)

Thus the Mathematical expression for criticality i.e dδ
dB

= 0 and we obtain

2


1−

√
δ

2
sinh B ln s


 coth(B)− sinh


2(

√
δ

2
ln(s) cosh B −B)


 = 0. (10)
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s .1 .2 .3 .4 .5 .6 .7 .8

θcr 1.474 1.586 .883 1.642 1.617 1.568 1.498 1.4113

δ 0.442 0.793 0.1265 2.291 4.122 8.045 17.92 50.67

Table 2. δcr against s for β = 2.

From Table 2., we also observe that δ is monotonically increasing function of s.

The case of f(x) = x−β cannot be solved analytically(see Sachdev [12]).

3.2. THE CYLINDRICAL GEOMETRY

f(x) = 1

The well known closed form solution for

d2θ

dx2
+

1

x

dθ

dx
+ δ exp(θ) = 0, (11)

is

θ(x) = B − 2 ln

[
1 +

δ exp(B)x2

8

]
,

which becomes

δ = 8 exp(−B)(exp(
B

2
)− 1),

when the boundary conditions (2) for s = 0 is applied (see Hill and Marchant [6] ).

Similarly, the expression for criticality is

dδ

dB
= 0, which implies that exp(−Bcr)

(−1

2
exp(

Bcr

2
) + 1

)
= 0. (12)

Hence, Bcr = 2 ln 2 and δcr = 2. The profiles of the solution in 0 < s < 1 is not

feasible.

f(x) = x−β

In this case (1) reduces to

d2θ

dx2
+

1

x

dθ

dx
+ δx−β exp(θ) = 0. (13)
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To obtain a closed form solution, we invoke the transforamtion x = exp(z), then (13)

is transformed to
d2θ

dx2
+ δ exp(θ) = 0, (14)

for β = 2. Hence the solution is of the form (4), thus

exp(θ) =
A

cosh2
(√

Aδ
2

ln ln x−B
) . (15)

If we also subject (15) to the boundary conditions (2), we obtain

B =

√
Aδ

2
ln ln(s + ε) and A = cosh2




√
Aδ

2
ln ln(1 + ε)−B


 , (16)

where ε > 0, a very small number has been introduced to take care of the singularity

at s = 0. The combination of equations (16) gives
√

δ

2
=

B

cosh
[

ln ln(1+ε)
ln ln(s+ε)

− 1
]
B

,

and the expression for criticality dδ
dB

= 0 gives
[
ln ln(1 + ε)

ln ln(s + ε)
− 1

]
Bcr × tanh

[
ln ln(1 + ε)

ln ln(s + ε)
− 1

]
Bcr = 1. (17)

It is necessary to seek for |B| in (17) to order to obtain a real value. Using

Newton’s iterative scheme in the Mathematica software, we obtain the roots of the

equation, |Bcr| and the corresponding values δcr for 0 < s < 1.

s .1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θcr .179 .415 .911 .922 .94 .97 1.015 .21 .247

δcr 0.0304 0.139 0.2933 0.297 0.301 .306 .31 0.34 0.355

Table 3. δcr against s for β = 2.

In Table 3. δcr is a monotonically increasing function of s, which indicates the

disappearance of criticality as s increases.

The case of f(x) = exp(−βx) for j = 1 is also not amenable to analytical solution,

hence would be treated numerically.
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4. THE VARIATIONAL METHOD

This method has been used extensively in [4] and [5]. In this section, the boundary

value problem (1) and (2) uses a fixed functional

Hδ(θ) =
∫

D

(
1

2
|∇θ|2 − δG(θ)

)
dV, (18)

where G is a primitive of F. In particular, this method would be used for the source

terms,

F (θ) = x−β exp(θ) and exp(−βx) exp(θ), (19)

for the slab and cylinder respectively. Hence (18) becomes

Hδ(θ) =
∫ 1

0

(
xj(

dθ

dx
)2

)
dx− δ

∫

01

(
xjG(θ)dx

)
. (20)

Since the domain of Hδ is restricted to those functions satisfying (2) for s = 0, an

example is θ(x) = A cos(πx
2

) + B cos(3πx
2

). Hence the variational principle suggests

that A, B be determined as the solutions of the systems

∂Hδ

∂A
= 0 and

∂Hδ

∂B
= 0, (21)

which gives an approximate solution of θ corresponding to the chosen δ. The condition

determining the criticality is according to the implicit function theorem, i.e

Det




∂2Hδ

∂A2
∂2Hδ

∂A∂B

∂2Hδ

∂A∂B
∂2Hδ

∂B2


 = 0. (22)

Hence from equations (20), (21) and (22), we obtain the simultaneous equations,

1

4
π2(uA + 3vB)− δ

∫ 1

0
xj dG

dA
(θ)dx = 0 (23)

3

4
π2(vA + 3wB)− δ

∫ 1

0
xj dG

dB
(θ)dx = 0 (24)

{
π2u

4
− δ

∫ 1

0
xj d2

dA2
G(θ)

}
×

{
9π2w

4
−δ

∫ 1

0
xj d2

dB2
G(θ)dx

}

=

{
3π2v

4
− δ

∫ 1

0
xj d2

dAdB
G(θ)

}2 (25)
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which are to be solved simultaneously for A, B and δ.

The constants u, v, w are obtained from

u =
∫ 1

0
xj sin2(

πx

2
)dx =





1
2
, j = 0,

1
2(j+1)

+ 1
π2 , j = 1

v =
∫ 1

0
xj sin2(

πx

2
) sin2(

3πx

2
)dx =





0, j = 0,

−1
π2 , j = 1

w =
∫ 1

0
xj sin2(

3πx

2
)dx =





1
2
, j = 0,

1
2(j+1)

+ 1
9π2 , j = 1

Since these equations are difficult to handle by simple numerical calculations, a short

numerical code implemented in the Mathematica software package is used. This code

uses the Simpson’s method to evaluate the integral.

Slab(j = 0) and f(x) = x−β

Here, equation (1) reduces to

d2θ

dx2
+ δx−β exp(θ) = 0 (26)

dθ

dx
(x = 0) = 0 θ(1) = 0. (27)

By using the code, we obtain the result tabulated in Table 4.

β 0 .5 1.0 1.5 2.0 2.5 3.0

θcr 1.167 1.146 1.1286 1.1142 1.1026 1.0933 1.0857

δcr 0.878355 1.01663 1.16259 1.31525 1.4737 1.637 1.80466

Table 4. δcr against β for s = 0.

Cylinder (j = 1) and f(x) = exp(−βx)

The resulting equations are

d2θ

dx2
+ δ exp(−βx) exp(θ) (28)
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dθ

dx
(x = 0) = 0 θ(1) = 0. (29)

Using the same numerical code,

β 0 .5 1.0 1.5 2.0

θcr 1.3553 1.3085 1.208 1.0257 1.0000

δcr 0.878355 1.01663 1.16259 1.31525 1.4737

Table 5. δcr against β for s = 0.

As a check, at the point s = 0, we observe from Tables 4 and 5 that the values of

θcr and δcr are in full agreement with the exact result values in literature (see [1] and

[4] and [3]). In addition, the results has provided us with the opportunity of being

able to compare results and choose a suitable model.
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