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Abstract. Because of their flexibility, much attention has been given to the study of
generalized models in recent times. In particular, many authors have investigated the
properties of the generalized logistic distribution and its application in analysing bioassay
and quantal response data.

Recently, Wu Jong-Wuu et al (2000) developed a method which was used to obtain the
density function of a five-parameter generalized logistic distribution. He investigated some
of its properties and used it to analyse some bioassay data.

In this present paper, we take a step forward by defining a suitable random variable
that enables us to obtain a six-parameter generalized logistic distribution.

The cumulants of the distribution are derived and it is indicated how an approximation
to the c.d.f. can be obtained. Finally we state and prove some theorems that relate the
distribution to some other common statistical distributions.

1. INTRODUCTION

The role of the logistic model in analysing bioassay and quantal response data

are well known (see Berkson 1944, Cox 1970, Johnson and Kotz 1970, Ojo 1989), to

mention a few. However, in general, generalized models being more flexible than

ordinary single models, are usually prefered in analysing most data sets. This has
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prompted several authors to embark upon investigating the properties and

applications of generalized models. In particular, because of its roles in analysing

bioassay and quantal response experiments, a lot of research has been reported in

literature in studying the properties and applications of the generalized logistic

models (see El-Saidi et al 1990, George and Ojo 1980, Meenakshi et al 1993,

Aranda-Ordaz 1982, Zelterman 1989, Patil and Taillie 1994, Ojo 2002, Ojo 2003).

Wu Jong-Wuu et al (2000) made an extension to the usual four-parameter

generalized logistic distribution. He developed a method of deriving a five-parameter

generalized logistic distribution and discussed some of its properties and applications.

In this present paper, a step forward is taken. By defining a suitable random

variable, the density function of a six-parameter generalized logistic distribution is

derived. The cumulants of the distribution are obtained and it is indicated how

its c.d.f can be approximated. Finally, we establish some relationships between the

distribution and some other well known statistical distributions.

2. THE SIX-PARAMETER GENERALIZED LOGISTIC DISTRIBUTION,
ITS MOMENTS AND CUMULATIVE DISTRIBUTION FUNCTION

2.1. THE SIX-PARAMETER GENERALIZED LOGISTIC DISTRIBUTION

Without loss of generality we shall assume throughout the standardized form for

all the distributions under consideration. That is, we shall assume that the location

and scale parameters take the values 0 and 1 respectively.

Theorem 2.1. Let X be a random variable that has a generalized beta type II

distribution with parameters λ, p and q whose density is defined as

f(x; 0, 1, λ, p, q) =
λq

B(p, q)

xp−1

(λ + x)p+q
, 0 < x < ∞, λ > 0, p > 0, q > 0, (2.1)

(see Patil and Taillie 1994). Then, the random variable Y = ln(X/β) has the

six-parameter generalized logistic distribution with parameters (0, 1, λ, β, p, q).
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Proof. By using the transformation y = ln(x/β) in 2.1 above we readily have

g(y; 0, 1, λ, β, p, q) =
λqβp

B(p, q)

epy

(λ + βey)p+q
, −∞ < y < ∞. (2.2)

This distribution is symetric only when λ = β and p = q and assymetric for all

other combinations of the parameters. It reduces to the five-parameter generalized

logistic of Wu Jong-Wuu et al (2000) when β = 1 and reduces to the four-parameter

generalized logistic when λ = β = 1. Of course when (λ, β, p, q) = (1, 1, 1, 1) we have

the famous logistic distribution which had been studied and used by several authors.

2.2. THE CUMULANTS OF THE DISTRIBUTION

The moment generating function is given as

φ(t) =
λqβp

B(p, q)

∫ ∞

−∞
e(p+t)y

(λ + βey)p+q
dy =

λqβp

B(p, q)

∫ ∞

0

yp+t−1

(λ + βy)p+q
dy

=
λqβp

B(p, q)

∫ ∞

0

up+t−1

(1 + u)p+q
du

= λtβ−t Γ(p + t)

Γ(p)

Γ(q − t)

Γ(q)
.

(2.3)

The corresponding characteristic function is given as

φ(it) = λitβ−it Γ(p + it)

Γ(p)

Γ(q − it)

Γ(q)
. (2.4)

The cumulant generating function is given as

lnφ(t) = tln(λ/β) + lnΓ(p + t) + lnΓ(q − t)− lnΓ(p)− lnΓ(q).

The rth cumulant is obtained as

κr(y) =
dr

dtr
[tln(

λ

β
)]t=0 +

dr

dtr
[lnΓ(p + t) + lnΓ(q − t)]t=0. (2.5)

The 2nd or the 3rd term of the right hand side of equation (2.5) is called di-gamma

function. The series expansion of this function (see Copson 1962) is given as

ψr−1(x) = (r − 1)![(−1)r
∞∑

j=0

(j + x)−r]r≥2
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and

ψ(x) =
∞∑

j=0

(j + x)−1, r = 1.

Therefore

κr(Y ) = (r − 1)!(−1)r[
∞∑

j=0

(j + p)−r + (−1)r
∞∑

j=0

(j + q)−r]r≥2 (2.6)

and

κr(Y ) = ln
λ

β
+

∞∑

j=0

(j + q)−1 −
∞∑

j=0

(j + p)−1, r = 1. (2.7)

2.3. THE CUMULATIVE DISTRIBUTION FUNCTION AND ITS
APPROXIMATION

Let F (y) denote the c.d.f of Y

F (y) =
λqβp

B(p, q)

∫ y

−∞
epx

(λ + βex)p+q
dx

=
1

B(p, q)

∫ β
λ

ey/(1+β
λ

ey)

0
tp−1(1− t)q−1dt = Iu(p, q).

Where u = β/λey

1+β/λey and where I( . , .) denotes the incomplete beta function.

Thus, the c.d.f is an incomplete beta function which has earlier on been successfully

approximated by the t−distribution (Ojo 1988). For the purpose of this paper we

hereby quote the result of the approximation as follows.

Pr[Y ≤ log
u

(1− u)
]

.
= Pr[tν ≤ c(log(

u

(1− u)
)− κ1)]

and in terms of percentile

u = [1 + exp− (
tν
c

+ κ1)]

where tν denotes the lower percentile of the t distribution with ν degrees of freedom,

c = σt

κ
1/2
2

, σt2 = ν/ν − 2 and κi is the ith cumulant of Y . The appropriate values of ν

are obtained by matching kurtosis. That is by equating the coefficient of kurtosis of

the t−distribution to that of the generalized logistic distribution (see the details of

this approximation in Ojo 1988).
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3. RELATIONSHIPS WITH SOME OTHER DISTRIBUTIONS

In what follows, we state and prove a few number of theorems which relate the

six-parameter generalized logistic distribution to some other distributions.

Theorem 3.1. Let X be a beta random variable with parameters p and q. Let

the random variable Y be defined as

Y = ln

(
λX

β(1−X)

)
.

Then the random variable Y has a six-parameter generalized logistic distribution with

parameters (0, 1, λ, β, p, q).

Proof. The characteristic function of Y is given as

φY (it) = E(eitY ) = E




(
λX

β(1−X)

)it



=
λit

βit

1

B(p, q)

∫ 1

0
xp+it−1(1− x)q−it−1dx

= λitβ−it Γ(p + it)Γ(q − it)

Γ(p)Γ(q)

by virtue of equation (2.4), the theorem is proved.

Theorem 3.2. Let X1 and X2 be random variables having the generalized Gumbel

distributions with densities defined as

g1(x1) =
λ−p

Γ(p)
epx1e−1/λex1 , −∞ < x1 < ∞

and

g2(x2) =
β−q

Γ(q)
eqx2e−1/βex2 , −∞ < x2 < ∞.

The random variable Y = X1−X2 has the six-parameter generalized logistic if X1

and X2 are independent.

Proof. The characteristic function of X1 is given as

φX1(it) =
λ−p

Γ(p)

∫ ∞

−∞
epx1e−1/λex1 · eitx1dx1

=
λ−p

Γ(p)

∫ ∞

0
up+it−1e−udu =

λitΓ(p + it)

Γ(p)
.
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Similarly, the c.f of −X2 is given as

φ−X2(it) =
β−itΓ(q − it)

Γ(q)
.

Since X1 and X2 are independent, then the c.f of Y = X1 −X2 is simply

φY (it) = λitβ−it Γ(p + it)Γ(q − it)

Γ(p)Γ(q)
.

Since this is exactly the c.f of the six-parameter generalized logistic, the theorem is

established.

Theorem 3.3. Let X be an F−random variable with (2p, 2q) degrees of freedom.

Define the random variable Y = ln(λp
βq

X), λ, β > 0. Then the random variable Y

has the six-parameter generalized logistic distribution.

Proof. The density function of an F (2p, 2q) random variable is given as

f(x) =
1

B(p, q)

(p
q
)pxp−1

(1 + p
q
x)p+q

, 0 < x < ∞.

Now define the transformation y = ln(λp
βq

x). The Jacobian of the inverse tranforma-

tion is given as

|J | = βq

λp
ey.

Thus the density function of Y is

g(y) =
λqβp

B(p, q)

epy

(λ + βey)p+q
, −∞ < y < ∞.

This completes the proof.
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