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Abstract. We provide a simple proof of an expression for the distance between vertices of
a tree T in terms of the Laplacian matrix L of this tree. Let vi and vj be distinct vertices of
T , at distance d(vi, vj) . Then d(vi, vj) = detL[i, j] , where L[i, j] is the submatrix, obtained
by deleting the i-th and the j-th rows and columns from L .

INTRODUCTION

In this paper we are concerned with graphs without multiple and directed edges

and without self–loops. Let G be such a graph, let n be the number of its vertices,

and let V (G) = {v1, v2, . . . , vn} be its vertex set.

The distance between two distinct vertices vi and vj of G , denoted by d(vi, vj|G)

is equal to the length of (number of edges in) the shortest path that connects vi and

vj . Conventionally, d(vi, vi|G) = 0 .

The degree of a vertex vj , denoted by δj , is equal to the number of vertices

adjacent to vj . A vertex of degree one is said to be pendent .



20

The Laplacian matrix of the graph G , denoted by L = L(G) = ||Lij|| , is a square

matrix of order n whose elements are defined as

Lij =





δi if i = j
−1 if i 6= j and the vertices vi , vj are adjacent

0 if i 6= j and the vertices vi , vj are not adjacent .

A forest is a graph without cycles. A tree is a connected graph without cycles.

Any tree with n ≥ 2 vertices has at least two pendent vertices. The n-vertex tree

with exactly two pendent vertices is the path, denoted by Pn .

If M is a square matrix, then by M [i1, i2, . . . , ip] we denote the submatrix obtained

by deleting from M the i1-th, i2-th, . . . , ip-th rows and the i1-th, i2-th, . . . , ip-th

columns.

In this paper we point out a relation between the submatrix L(G)[i, j] of the

Laplacian matrix and the distance d(vi, vj|G) in case when G is a tree. In particular,

we prove:

Theorem 1. Let vi and vj be distinct vertices of a tree T , at distance d(vi, vj|T ) .

If T possesses at least three vertices, then

det L(T )[i, j] = d(vi, vj|T ) (1)

where L(T )[i, j] is the submatrix, obtained by deleting the i-th and the j-th rows and

columns from the Laplacian matrix of T .

Numerous results are known, connecting various determinant–related invariants

of the Laplacian matrix of a graph with the spanning forests of this graph. Of these

the best known is the classical Kirchhoff theorem [2], according to which, for any

i , 1 ≤ i ≤ n , the determinant of L[i] is equal to the number of spanning trees of G .

Another famous result of this kind is the Kel’mans theorem [2] relating the coefficient

ck of the Laplacian characteristic polynomial,

ψ(G, λ) = det(λ I − L) =
∑

k≥0

ck λn−k
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to the (n − k)-component spanning forests of G . Recently Bapat and Kulkarni [1]

found expressions in terms of spanning forests for det L(G)[i1, i2, . . . , ip] for any p

2 ≤ p ≤ n− 1 . For p = 2 their result reads:

Theorem 2. Let vi and vj be distinct vertices of a graph G . Then det L(G)[i, j]

is equal to the number of 2-component spanning forests of G in which vi and vj belong

to different components.

Theorem 1 can be viewed as a special case of Theorem 2. In what follows we

describe an alternative proof of Theorem 1, in which spanning forests are not encoun-

tered.

PROOF OF THEOREM 1

We first show that the claim of Theorem 1 holds if T is the n-vertex path Pn,

n ≥ 3 , and vi, vj are its two pendent vertices. This is the exceptional case, when a

tree T has no pendent vertices other than vi and vj .

Lemma 3. If vi and vj are the terminal vertices of the path Pn , then

det L(Pn)[i, j] = n− 1 = d(vi, vj|Pn) .

Proof. Without loss of generality the vertices of Pn may be labelled so that vk is

adjacent to vk+1 , k = 1, 2, . . . n− 1 . Then i = 1 and j = n , and L(Pn)[1, n] assumes

the form 


2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0

0 −1 2 −1 · · · 0 0 0
...

...
...

...
...

0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 2




.

Denote det L(Pn)[1, n] by Dn . Expanding Dn with regard to its first row we obtain

Dn = 2 Dn−1 −Dn−2



22

which together with the initial conditions D3 = 2 and D4 = 3 , yields Dn = n − 1 .

This, in turn, is just the distance between the terminal vertices of Pn . 2

In what follows we prove Theorem 1 by induction on the number n of vertices.

For trees with three and four vertices the validity of Theorem 1 can be verified by

direct checking.

Assume thus that Theorem 1 holds for all trees with fewer than n vertices.

Let T be an n-vertex tree and let vi and vj be its two vertices. In view of Lemma

3 we need to examine only the case when T possesses at least one pendent vertex,

different from vi and vj . Let this pendent vertex be vn and its (unique) neighbor

vn−1 .

Let T ′ be the (n − 1)-vertex tree, obtained by deleting vn from T . Then the

Laplacian matrix of T is of the form

L(T ) =

[
L∗(T ′) ut

u 1

]
(2)

where u = (0, 0, . . . , 0,−1) , and where L∗(T ′) is a square matrix of order n−1 , whose

elements are equal to those of L(T ′) , except that L∗(T ′)n−1,n−1 = L(T ′)n−1,n−1 + 1 .

Without loss of generality we may require that i < j . Then two cases need to be

distinguished: (1) j < n− 1 and (2) j = n− 1 .

Case 1: j < n− 1 . Then in view of Eq. (2),

L(T )[i, j] =

[
L∗(T ′)[i, j] ut

u 1

]
. (3)

The determinant of the right–hand side of (3) is equal to the determinant of the

matrix [
L(T ′)[i, j] 0t

u 1

]
(4)

obtained by adding the n-th row of L(T )[i, j] to its (n− 1)-th row. In formula (4) 0

stands for an all-zero (n− 1)-dimensional vector. Clearly,

det

[
L(T ′)[i, j] 0t

u 1

]
= det L(T ′)[i, j]
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which, by the induction hypotheses is equal to d(vi, vj|T ′) . Because d(vi, vj|T ′) =

d(vi, vj|T ) , we conclude that relation (1) is satisfied.

Case 2: j = n− 1 . Then in view of Eq. (2),

L(T )[i, j] =

[
L(T ′)[i, j] 0t

0 1

]

from which it immediately follows

det L(T )[i, j] = det L(T ′)[i, j] = d(vi, vj|T ′) = d(vi, vj|T )

implying the validity of relation (1) also in Case 2.

This completes the proof of Theorem 1. 2

DISCUSSION

Earlier studies revealed several other relations between the Laplacian matrix and

distances in trees. Of these we mention here the following. The distance matrix

D = D(G) of a graph G is the matrix whose (i, j)-entry is equal to d(vi, vj|G) .

Theorem 4a. Let T be a tree on n vertices, n ≥ 2 , with Laplacian matrix L and

with distance matrix D . Then LD L = −2 L .

Denote the eigenvalues of L by µ1, µ2, . . . , µn and label them so that µn = 0 (and

therefore, if the underlying graph is connected, µ1, µ2, . . . , µn−1 are positive–valued)

[6]. The eigenvector corresponding to µk is Xk = (X1k, X2k, . . . , Xnk)
t , i. e.,

LXk = µk Xk

holds for k = 1, 2, . . . , n . We choose these eigenvectors to be real, normalized and

mutually orthogonal (which always is possible).

Theorem 4b. If T is an n-vertex tree, then

d(vi, vj|T ) =
n−1∑

k=1

1

µk

(Xik −Xjk)
2 (5)
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and

W (T ) = n
n−1∑

k=1

1

µk

(6)

where W (T ) denotes the Wiener number, i. e., the sum of distances between all pairs

of vertices of T .

The result stated in Theorem 4a was obtained by Xiao and one of the present

authors [4]. Formula (6) was first reported by Merris [5], but was independently

discovered several times; for details see the review [3]. Formula (5) was recently

communicated in [7].

Theorem 1 is one more result of the same kind, perhaps the most explicit connec-

tion between the Laplacian matrix and graph metrics.
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