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Abstract. In this paper, by using the definition of oriented hyperbolic angle be-
tween two non–null vectors in the Lorentzian plane L2, we characterize the area
of a triangle and obtain some Lorentzian trigonometric relations. In particular, we
study the hyperbolic sine law and the hyperbolic cosine law holding in a triangle.

1. Introduction

One of the basic notions in the Lorentzian plane geometry is the notion of so–
called hyperbolic angle between two vectors (directions). The notion of oriented
hyperbolic angle between any two timelike vectors is defined in [1,2], where the
authors studied the main properties of the hyperbolic angle function. Some of the
mentioned properties can be also found in [5]. The notion of oriented hyperbolic
angle is further extended in [4]. Moreover, in [4] the authors have defined oriented
hyperbolic angle between any two spacelike vectors as well as between a spacelike
vector and a timelike vector. They also defined a measure on the set of oriented
hyperbolic angles.

In this paper, using definitions of oriented hyperbolic angles between non–null
vectors, we obtain some Lorentzian trigonometric relations holding in a triangle.
In particular, we study the hyperbolic sine law and the hyperbolic cosine law.

2. Preliminaries

The Lorentzian space Ln is the vector space Rn provided with the Lorentzian
inner product < ·, · > given by

< X, Y >= x1y1 + · · ·+ xn−1yn−1 − xnyn

where X = (x1, . . . , xn) and Y = (y1, . . . , yn). Since < ·, · > is indefinite metric,
a vector V ∈ Ln can have one of three causal characters: it can be spacelike if
< V, V > 0 or V = 0, timelike if < V, V >< 0 and null (lightlike) if < V, V >= 0
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and V 6= 0. The norm of a vector v is given by ||V || =
√
| < V, V > | and two

vectors V, W ∈ Ln are said to be orthogonal if < V,W >= 0. In particular, in
the Lorentzian plane L2, let E = (0, 1). Then the time–orientation is defined
in the following way. A non–null vector V = (v1, v2) is said to be respectively
future–pointing or past–pointing, if < V, E >< 0 or < V,E >> 0.

In the sequel, we recall the definitions of the hyperbolic angle between two
non–null vectors. Denote by G the proper Lorentz group consisting of all matrices
of the form

A(u) =
[

coshu sinhu
sinhu coshu

]
, u ∈ R.

Then G is the group of all linear transformations of L2 which preserve inner
product, orientation and time–orientation.

Recall that if V and W are both unit future–pointing (past–pointing) timelike
vectors in L2, then the oriented hyperbolic angle from V to W is defined in [1]
to be the number u ∈ R such that A(u)V = W (a.1). In particular, the oriented
hyperbolic angle from a unit future–pointing timelike vector V to a unit past–
pointing timelike vector −W is defined in [2] to be the number −u ∈ R such that
−A(−u)(V ) = −W (a.2).

Further, denote by D the matrix of the Euclidean reflection D in the first
diagonal {(x, x)|x ∈ R} of R2, given by

D =
[

0 1
1 0

]
.

Then we have DA(u) = A(u)D. Let B(u) = A(u)D. Then the matrix B(u) is
given by:

B(u) =
[

sinhu cosh u
cosh u sinhu

]
, u ∈ R.

If X = (x1, x2) and Y = (y1, y2) are two unit spacelike vectors with sgn x1 = sgn
y1, then u ∈ R is defined in [4] to be the oriented hyperbolic angle from X to Y
if A(u)X = Y (b.1). Moreover, if sgn x1 6= sgn y1, then u ∈ R is said to be the
oriented hyperbolic angle from X to Y , if −A(u)X = Y (b.2).

Finally, recall that the oriented hyperbolic angle between a unit spacelike
vector X = (x1, x2) and a unit timelike vector V = (v1, v2) is defined in [4] as
follows. If sgn x1 = sgn v2, then u ∈ R is said to be the oriented hyperbolic angle
from X to V if B(u)X = V (c.1). On the other hand, if sgn x1 6= sgn v2, then
u ∈ R is said to be the oriented hyperbolic angle from X to V , if −B(u)X = V
(c.2).

Note that the above definitions for the oriented angle (X, Y ) = u between
unit vectors X and Y amount to the following:

(a.1) cosh(u) = − < X, Y >, sinh(u) = − < X,DY >;
(a.2) cosh(u) =< X, Y >, sinh(u) =< X,DY >;
(b.1) cosh(u) =< X, Y > sinh(u) =< X, DY >;
(b.2) cosh(u) = − < X, Y > sinh(u) = − < X, DY >;
(c.1) cosh(u) =< X,DY > sinh(u) =< X, Y >;
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(c.2) cosh(u) = − < X,DY > sinh(u) = − < X, Y >.
Therefore, for vectors X and Y of arbitrary lengths ||X|| 6= 0 6= ||Y ||, for

instance in case (b.1) we have:

(b.1’) cosh(u) =
< X, Y >

||X|| ||Y || , sinh(u) =
< X, DY >

||X|| ||Y || .

3. Some trigonometric relations in the Lorentzian plane L2

In this section, using the notion of hyperbolic angle between two non–null
vectors, we characterize the area of a triangle in the Lorentzian plane and give
some Lorentzian trigonometric relations. Recall that in the Lorentzian plane the
area of the parallelogram spanned by vectors X = (x1, x2) and Y = (y1, y2) is
given in [1] by A = |x1y2 − x2y1| = | < X,DY > |. It follows that the area S of
the triangle 4ABC is equal to one half of the area of the parallelogram spanned
by

−→
AB and

−→
AC, i.e. it is given by the formula S = | <

−→
AB, D(

−→
AC) > |/2. In

the following theorems, (
−→
X ,

−→
Y ) will denote the oriented hyperbolic angle from the

vector
−→
X to the vector

−→
Y .

Theorem 3.1. If
−→
AB = (x1, x2),

−→
AC = (y1, y2) are two noncollinear spacelike

vectors, then the area of the triangle ABC is given by

S =
||−→AB|| ||−→AC|| | sinh(

−→
AB,

−→
AC)|

2
.

Proof. Since S = | < −→
AB, D(

−→
AC) > |/2, using the equations (b.1’) and (b.2’), we

easily get the above equation. ¤

It is proved in [1] that theorem 3.1 is also valid when vectors
−→
AB and

−→
AC are

timelike.

Theorem 3.2. If
−→
AB = (x1, x2),

−→
AC = (y1, y2) are a spacelike and a timelike

vectors respectively, then the area of the triangle ABC is given by

S =
||−→AB|| ||−→AC|| cosh(

−→
AB,

−→
AC)

2
.

Proof. Using formula for the area S and equations (c.1’) and (c.2’), we easily
obtain the above equation. ¤

Theorem 3.3. If
−→
AB = (x1, x2) and

−→
AC = (z1, z2) are two noncollinear

spacelike vectors and
−→
BC = (y1, y2) is timelike vector such that g(

−→
AB,

−→
BC) = 0,

then
cosh(

−→
AB,

−→
AC) = cosh(

−→
BC,

−→
AC) = ||−→AB||/||−→AC||,

| sinh(
−→
AB,

−→
AC)| = | sinh(

−→
BC,

−→
AC)| = ||−→BC||/||−→AC||.



222

Proof. Since
−→
AB +

−→
BC =

−→
AC, it follows that

(3.1) x1 + y1 = z1, x2 + y2 = z2.

First we prove that sgn x1 = sgn z1. If sgn x1 6= sgn z1, then 0 <<
−→
AB,

−→
AC >2<

2x1z1 <
−→
AB,

−→
AC > and thus <

−→
AB,

−→
AC >< 0. On the other hand, <

−→
AB,

−→
AC >=

||−→AB||2 > 0, which is a contradiction. Therefore, sgn x1 = sgn z1 and we distin-
guish two cases: (1◦) sgn x1 = sgn z1 = sgn y2; (2◦) sgn x1 = sgn z1 6= sgn
y2.

(1◦). Then cosh(
−→
AB,

−→
AC) =<

−→
AB,

−→
AC > /||−→AB|| ||−→AC|| = ||−→AB||/||−→AC||,

sinh(
−→
AB,

−→
AC) =<

−→
AB,D(

−→
AC) > /||−→AB|| ||−→AC||, which together with (3.1) gives

(3.2) sinh(
−→
AB,

−→
AC) =<

−→
AB,D(

−→
BC) > /||−→AB|| ||−→AC||.

Since sinh(
−→
AB,

−→
BC) =<

−→
AB,

−→
BC > /||−→AB|| ||−→BC|| = 0, it follows that (

−→
AB,

−→
BC)

= 0. Consequently, cosh(
−→
AB,

−→
BC) =<

−→
AB, D(

−→
BC) > /||−→AB|| ||−→BC|| = 1. It

follows that

(3.3) <
−→
AB, D(

−→
BC) >= ||−→AB|| ||−→BC||.

Substituting (3.3) into (3.2) we obtain sinh(
−→
AB,

−→
AC) = ||−→BC||/||−→AC||. Besides,

sinh(
−→
BC,

−→
AC = − <

−→
BC,

−→
AC > /||−→BC|| ||−→AC|| = ||−→BC||/||−→AC||, cosh(

−→
BC,

−→
AC)

=<
−→
AC, D(

−→
BC) > /||−→BC|| ||−→AC||, which together with (3.1) gives cosh(

−→
BC,

−→
AC)

=<
−→
AB,D(

−→
BC) > /||−→BC|| ||−→AC||. Substituting (3.3) into the last equation, we

find cosh(
−→
BC,

−→
AC) = ||−→AB||/||−→AC||.

(2◦). In this case we have cosh(
−→
AB,

−→
AC) = ||−→AB||/||−→AC||, sinh(

−→
AB,

−→
AC)

=<
−→
AB, D(

−→
AC) > /||−→AB|| ||−→AC|| which together with (3.1) implies that

(3.4) sinh(
−→
AB,

−→
AC) =<

−→
AB,D(

−→
BC) > /||−→AB|| ||−→AC||.

Since sinh(
−→
AB,

−→
BC) = − <

−→
AB,

−→
BC > /||−→AB|| ||−→BC|| = 0, we find (

−→
AB,

−→
BC) = 0.

Therefore, cosh(
−→
AB,

−→
BC) = − <

−→
AB,D(

−→
BC) > /||−→AB|| ||−→BC|| = 1 and thus

(3.5) − <
−→
AB, D(

−→
BC) >= ||−→AB|| ||−→BC||.

Substituting (3.5) into (3.4), we find sinh(
−→
AB,

−→
AC) = −||−→BC||/||−→AC||. Next,

sinh(
−→
BC,

−→
AC) =<

−→
BC,

−→
AC > /||−→BC|| ||−→AC|| = −||−→BC||/||−→AC||, cosh(

−→
BC,

−→
AC) =

− <
−→
AC, D(

−→
BC) > /||−→BC|| ||−→AC|| which together with (3.1) gives cosh(

−→
BC,

−→
AC)

= − <
−→
AB, D(

−→
BC) > /||−→BC|| ||−→AC||. Substituting (3.5) into the last equation, we

obtain cosh(
−→
BC,

−→
AC) = ||−→AB||/||−→AC||. ¤

Theorem 3.4. If
−→
BC = (y1, y2) and

−→
AC = (z1, z2) are two noncollinear

timelike vectors and
−→
AB = (x1, x2) is spacelike vector such that g(

−→
AB,

−→
BC) = 0,

then
cosh(

−→
AB,

−→
AC) = cosh(

−→
BC,

−→
AC) = ||−→BC||/||−→AC||,

| sinh(
−→
AB,

−→
AC| = | sinh(

−→
BC,

−→
AC)| = ||−→AB||/||−→AC||.
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Proof. The proof is similar to the proof of the theorem 3.3. First we shall
prove that sgn y2 = sgn z2. If sgn y2 6= sgn z2, then 0 <<

−→
BC,

−→
AC >2<

−2y2z1g(
−→
BC,

−→
AC), so it follows that <

−→
BC,

−→
AC >> 0. On the other hand, <

−→
BC,−→

AC >=<
−→
BC,

−→
BC >= −||−→BC||2 < 0, which is a contradiction. Consequently, sgn

y2 = sgn z2 and we distinguish two cases: (1◦) sgn x1 = sgn y2 = sgn z2; (2◦) sgn
x1 6= sgn y2 = sgn z2.

(1◦). Then sinh(
−→
AB,

−→
AC) = ||−→AB||/||−→AC||, cosh(

−→
AB,

−→
AC) =<

−→
AB,D(

−→
BC) >

/||−→AB|| ||−→AC|| = ||−→BC||/||−→AC||. It follows that cosh(
−→
BC,

−→
AC) = ||−→BC||/||−→AC||,

sinh(
−→
BC,

−→
AC) =<

−→
AB, D(

−→
BC) > /||−→BC|| ||−→AC|| = ||−→AB||/||−→AC||.

(2◦). In this case sinh(
−→
AB,

−→
AC) = −||−→AB||/||−→AC||, cosh(

−→
AB,

−→
AC) =

||−→BC||/||−→AC||. Moreover, cosh(
−→
BC,

−→
AC) = ||−→BC||/||−→AC||, sinh(

−→
BC,

−→
AC) =

−||−→AB||/||−→AC||. ¤

Remark 3.1. The equations in theorems 3.3 and 3.4 also hold if the words
”spacelike” and ”timelike” are reversed.

In the following theorems, we study the hyperbolic sine law and the hyperbolic
cosine law which hold in a triangle. These laws were studied in [1] for a triangle
ABC such that

−→
AB,

−→
BC and

−→
AC are all future–pointing timelike vectors.

Theorem 3.5 (Hyperbolic sine law). If
−→
AB,

−→
AC and

−→
BC are three non-

collinear spacelike vectors and α = (
−→
AB,

−→
AC), β = (

−→
AB,

−→
BC), γ = (

−→
AC,

−→
BC),

then in the triangle ABC there holds:

(3.6)
||−→AC||
| sinhβ| =

||−→BC||
| sinhα| =

||−→AB||
| sinh γ| .

Proof. Let E be a point on the line AB such that
−→
CE is timelike and

<
−→
CE,

−→
AB >= 0. By the theorem 3.3 in triangle AEC there holds | sinhα| =

||−→CE||/||−→AC||. Next, by the theorem 3.4 in triangle BEC there holds | sinh β| =
||−→CE||/||−→BC||. Therefore,

(3.7) ||−→BC|| | sinhβ| = ||−→AC|| | sinhα|.

Further, let F be a point on the line AC such that
−→
BF is timelike and <

−→
BF,

−→
AC >

= 0. Then by the theorem 3.3 in the triangle ABF there holds | sinhα| = ||−→BF ||/
||−→AB||. Also, by the theorem 3.4 in triangle BFC holds | sinh γ| = ||−→BF ||/||−→BC||
and thus

(3.8) | sinhα| ||−→AB|| = | sinh γ| ||−→BC||.

Finally, equations (3.7) and (3.8) imply equation (3.6). ¤
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Theorem 3.6 (Hyperbolic sine law). If
−→
AB and

−→
AC are two noncollinear

spacelike (timelike) vectors,
−→
BC is the timelike (spacelike) vector and α = (

−→
AB,−→

AC), β = (
−→
AB,

−→
BC), γ = (

−→
AC,

−→
BC), then in the triangle ABC there holds

(3.9)
||−→AC||
coshβ

=
||−→BC||
| sinhα| =

||−→AB||
cosh γ

.

Proof. We give the proof in the case when
−→
AB and

−→
AC are spacelike vectors

and
−→
BC is timelike vector. The proof in the case when

−→
AB,

−→
AC are timelike and−→

BC is spacelike is analogous. Let E be a point on the line AB such that
−→
CE is

timelike and <
−→
CE,

−→
AB >= 0. Then by the theorem 3.3 in the triangle AEC

there holds | sinhα| = ||−→CE||/||−→AC||. Next, by the theorem 3.4 in triangle BEC

there holds cosh β = ||−→CE||/||−→BC||. Consequently,

(3.10) ||−→AC|| | sinhα| = ||−→BC|| cosh β.

Besides, let F be a point on the line AC such that
−→
BF is timelike and <

−→
BF,

−→
AC >

= 0. Then by theorem 3.3 in triangle ABF we have | sinhα| = ||−→BF ||/||−→AB||. Also,
by theorem 3.4 in triangle BFC there holds cosh γ = ||−→BF ||/||−→BC||. Hence

(3.11) ||−→AB|| | sinhα| = ||−→BC|| cosh γ.

Finally, equations (3.10) and (3.11) yield (3.9). ¤

Similarly, combining the causal characters of the vectors
−→
AB,

−→
BC and

−→
AC,

we obtain the following two theorems.

Theorem 3.7 (Hyperbolic sine law). If
−→
AB and

−→
BC are two noncollinear

spacelike (timelike) vectors,
−→
AC is timelike (spacelike) vector and α = (

−→
AB,

−→
AC),

β = (
−→
AB,

−→
BC), γ = (

−→
AC,

−→
BC), then in the triangle ABC there holds:

||−→AC||
| sinhβ| =

||−→BC||
cosh α

=
||−→AB||
cosh γ

.

Theorem 3.8 (Hyperbolic sine law). If
−→
BC and

−→
AC are two noncollinear

spacelike (timelike) vectors,
−→
AB is timelike (spacelike) vector and α = (

−→
AB,

−→
AC),

β = (
−→
AB,

−→
BC), γ = (

−→
AC,

−→
BC), then in the triangle ABC there holds:

||−→AC||
coshβ

=
||−→BC||
cosh α

=
||−→AB||
| sinh γ| .

Finally, in a similar way in the next two theorems, we obtain the hyperbolic
cosine law.
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Theorem 3.9 (Hyperbolic cosine law). If
−→
AB,

−→
BC and

−→
AC are three

noncollinear spacelike vectors and α = (
−→
AB,

−→
AC), β = (

−→
AB,

−→
BC), γ = (

−→
AC,

−→
BC),

then in the triangle ABC there holds

a2 = b2 ∓ 2bc cosh α + c2,

b2 = a2 ± 2ac cosh β + c2,

c2 = a2 ∓ 2ab cosh γ + b2,

where ||−→BC|| = a, ||−→AC|| = b, ||−→AB|| = c.

Proof. Since
−→
AB +

−→
BC =

−→
AC, using equations (b.1’) and (b.2’), we obtain

the above equations. ¤

Theorem 3.10 (Hyperbolic cosine law). If
−→
AB and

−→
AC are two non-

collinear spacelike vectors,
−→
BC is the timelike vector and α = (

−→
AB,

−→
AC), β =

(
−→
AB,

−→
BC), γ = (

−→
AC,

−→
BC), then in triangle ABC there holds

a2 = −b2 ± 2bc cosh α− c2,

b2 = c2 ± 2ac sinhβ − a2,

c2 = b2 ∓ 2ab sinh γ − a2,

where ||−→AB|| = c, ||−→BC|| = a, ||−→AC|| = b.

Proof. Since
−→
AB+

−→
BC =

−→
AC, using equations (b.1’), (b.2’), (c.1’) and (c.2’),

we get the above equations. ¤
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