Kragujevac J. Math. 25 (2003) 201–208.

QUATERNIONS AND LIE GROUPS ON S^2

Yusuf Yayli, H.Hilmi Hacisalihoglu, Levent Kula

Ankara University, Faculty of Science, Department of Mathematics, 06100 Tandogan-Ankara, Turkey

Abstract. Pfaff [1] using quaternion product gave some propoties of commutative multiplication of number triplets of \mathbb{R}^3 . We [2] gave a new explanation of multiplication of number triplets by representation matrix. In this paper, we show that, with the product, the great circle on S^2 are one parameter Lie groups. Furthermore, we optain that all the circles on S^2 are Lie groups.

1 PRELIMINARIES

A quaternion is defined depending on four units 1, i, j, k:

$$q = a1 + bi + cj + dk,$$

where a, b, c, d are real numbers and i, j, k are arbitrary "units" which satisfy the relations $i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j$. We now replace each quadruplet x = a1 + bi + cj + 0k = (a, b, c, 0) by the corresponding triplet (a, b, c) so that 1 = (1, 0, 0), i = (0, 1, 0) and j = (0, 0, 1), and a general trucated quaternion is written as x = a1 + bi + cj. The subspace containing the x-axis is called a leaf [1]. If $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3)$ in the same leaf, then

$$x \times y = (x_1y_1 - x_2y_2 - x_3y_3)1 + (x_1y_2 + y_1x_2)i + (x_1y_3 + y_1x_3)j, \quad (1)$$

where \times is quaternion multiplication [1]. If x and y are on different leaves, then the procedure for multiplication of x and y is as follows:

(i) The plane determined by x and y intersect the (x, y)-plane in a line passing through the origin which makes an angle, say θ , with the positive x direction.

(*ii*) Rotate the plane of x and y about z axis, bringing its line of intersection with the (x, y)-plane into coincidence with x axis and carrying the vector x and y to x' and y'.

(*iii*) The plane of x' and y' is a leaf so we can use \times product from (1). Thus we can obtain a z' vector $z' = x' \times y'$.

(iv) Rotate the plane of x' and y' and z' back to the original plane of xand y using the inverse of the rotation in used step (ii). This rotation sends x' and y' to x and y, respectively, and sends z' to a vector z, which we call the \otimes product of x and y and write $z = x \otimes y$ [1].

Pfaff [1] gave some algebraic properties of this \otimes product. It is shown that, this \otimes product is not distributive. So the resulting structure is not an algebra.

In this study, we obtain a new representation of \otimes product. We show that, if M is the plane passing through the origin then M is a division algebra. Furthermore, we give some geometrical interpretations of \otimes product.

2 NEW EXPLANATION OF \otimes PRODUCT

Let $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3)$ be any linear independent vectors in \mathbb{R}^3 . The plane determined by x and y intersects the xy-plane in a line passing through the origin which makes an angle, say θ , with the positive x direction. We can take the line $l = (\cos \theta, \sin \theta, 0)$ as the direction vector of intersection. If $A(\theta)$ is rotation matrix about the z-axis, then

$$z = x \otimes y$$

$$z = A^{-1}(\theta) [A(\theta)x \times A(\theta)y]$$
(2)

or using (1) we find,

$$z = [[(x_1 \cos \theta + x_2 \sin \theta) y_1 + (x_1 \sin \theta - x_2 \cos \theta) y_2 + (-x_3 \cos \theta) y_3] 1 (3)$$
$$[(x_2 \cos \theta - x_1 \sin \theta) y_1 + (x_1 \cos \theta + x_2 \sin \theta) y_2 + (-x_3 \sin \theta)] i +$$
$$[(x_3 \cos \theta) y_1 + (x_3 \sin \theta) y_2 + (x_1 \cos \theta + x_2 \sin \theta) y_3] j]$$

It is easy to see that, for $\theta = 0$, $x \otimes y = x \times y$, i.e., the \otimes product of xand y reduces to the \times quaternion product. If $\theta = 0$ and $x_3 = y_3 = 0$ then the \otimes product is complex product.

We can calculate matrix representation with respect to basis $\{1, i, j\}$ of the \otimes product. $z = x \otimes y = A_x(y)$, where the matrix of A_x is

$$A_{x} = \begin{bmatrix} x_{1}\cos\theta + x_{2}\sin\theta & -x_{2}\cos\theta + x_{1}\sin\theta & -x_{3}\cos\theta \\ x_{2}\cos\theta - x_{1}\sin\theta & x_{1}\cos\theta + x_{2}\sin\theta & -x_{3}\sin\theta \\ x_{3}\cos\theta & x_{3}\sin\theta & x_{1}\cos\theta + x_{2}\sin\theta \end{bmatrix}$$
(4)

Let M be the plane passing through the origin and $E = M \cap Sp\{i, j\}$. Let $l = (\cos \theta, \sin \theta, 0)$ be the unit vector of the direction E, where θ is the angle between the line E and x-axis. Let be $\Phi = (l, N)$ orthonormal basis of M, where $n\Lambda l = N$ and n is unit normal vector of M.

The \otimes product on the plane M is

$$\Phi: M \times M \to M
(x,y) \to x \otimes y = A_x y = (l\Lambda x)\Lambda y + \langle l, x \rangle y$$
(5)

Let be x unit vector in M. Then $A_x : M \to M$ is isometric mapping. A_x is not orthogonal matrix, but A_x is orthogonal matrix with respect to basis Φ . Thus A_x is a rotating matrix in plane M

From(4), $A_x A_x^t \neq I_3$. Thus A_x is not orthogonal with respect to Ψ basis of \mathbb{R}^3 .

In terms of equation (5), we can write x and y vectors with respect to Φ basis of M,

Thus,

$$x = \cos v_1 l + \sin v_1 N \text{ and } y = \cos v_2 l + \sin v_2 N$$
 (6)

where $l \otimes l = l$, $l \otimes N = N$, $N \otimes N = -l$.

Thus, from (5)

$$A_x y = \cos(v_1 + v_2) l + \sin(v_1 + v_2) N$$

$$[A_x]_{\Psi} = \begin{bmatrix} \cos v_1 & -\sin v_1 \\ \sin v_1 & \cos v_1 \end{bmatrix}$$
(7)

$$[A_x y]_{\Psi} = [A_x]_{\Psi} [y]_{\Psi}$$

 $(M, +, \otimes)$ is a field.

(M, +) is a abelian group $(Misasubvectorspacein R^3)$.

 $(i)\otimes$ is associative [2].

 $(ii) \otimes$ is commutative.

$$x \otimes y = A^{-1}(\theta) \left[A(\theta)x \times A(\theta)y \right]$$
$$x \otimes y = A^{-1}(\theta) \left[A(\theta)y \times A(\theta)x \right]$$

$$= y \otimes x$$

where \times is commutative on leaf.

(*iii*) $x = (x_1, x_2, x_3) \in M$. If x unit vector then

$$x^{-1} = (x_1 \cos 2\theta + x_2 \sin 2\theta, x_1 \sin 2\theta - x_2 \cos 2\theta, -x_3).$$

For spacial case $\theta=0$

$$x^{-1} = (x_1, -x_2, -x_3).$$

This is inverse of x quaternion on the leaf.

det $(l, x, x^{-1}) = 0$ then x^{-1} in M. (*iv*) l is unit element. $M^* = M - \{0\}$ is a Lie group.

$$\otimes : \quad M^* \times M^* \quad \to M^* \\ (x, y) \quad \to x \otimes y = A_x y$$

 \otimes is smooth.

Furthermore,

$$Sp\{l,N\}\mid_{l}=T_{l}M^{*}.$$

Let be x_1 and x_2 left invariant vector fields of M^* . For the components of these vector fields at the point $p = a_0 + a_1i + a_2j$, we have

$$(x_1)|_p = p \otimes l = p, \ (x_2)|_p = p \otimes N.$$
(8)

If we wish to find the structure of the Lie algebra of the group M^* .We compute $[x_1, x_2] = 0$ (M^* is abelian).

The values at the point p = l we obtain

$$(x_1) \mid_l = l, (x_2) \mid_l = N_l and [l, N] = 0.$$

3 One Parameter Subgroups of M^{*}

Let be $\alpha(v) = M^* \cap S^2$.

Thus we can write $\alpha(v) = \cos v l + \sin v N$. $\alpha(v)$ is a great circle in S^2 (geodesics in S^2). Then

$$\alpha(v) = \cos v(\cos \theta, \sin \theta, 0) + \sin v(n_1, n_2, n_3), \ \theta = constant.$$
(9)

For N = (0, 0, 1), $\alpha(v)$ is meridian (longitude). The \otimes product indeed on $\alpha(v)$. Then

$$\otimes : \quad \begin{array}{ll} \alpha(v) \times \alpha(v) & \to \alpha(v) \\ (\alpha(v_1), \alpha(v_2)) & \to \alpha(v_1) \otimes \alpha(v_2) \end{array}$$

$$(i) \alpha(v_1) \otimes \alpha(v_2) = \alpha(v_1 + v_2)$$

$$(ii) [\alpha(v_1)]^{-1} = \alpha(-v_1)$$

$$(iii) \alpha(0) = l$$

$$(iv) \alpha(v_1) \otimes \alpha(v_2) = \alpha(v_2) \otimes \alpha(v_1)$$

Thus $\alpha(v)$ is a one parameter subgroup of M^* . For the components of x_2 left invariant vector field at the point p of $\alpha(v)$

206

$$(x_2)\mid_p=p\otimes N$$

and

$$(x_2)\mid_l=N_l.$$

Spacial case 1 $N = (0, 0, 1), \alpha(v)$ is a meridian. Then

 $\alpha(v) = (\cos v \cos \theta, \cos v \sin \theta, \sin v)$ is a Lie group. Its Lie algebra is z-axis passing from l point.

Spacial case 2 Let be θ change and v constant. N = (0, 0, 1) and v = 0,

 $0 \leq \theta \leq 2\pi$ then $\alpha(\theta) = (\cos \theta, \sin \theta, 0)$ is equvator. \otimes product is complex product.

Example Let the equation of plane M be x - y + z = 0. Therefore $\theta = \pi/4$,

$$l=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$$
 , $n=\frac{1}{\sqrt{3}}(1,-1,1)$ and $N=n\Lambda l=\frac{1}{\sqrt{6}}\left(-1,1,2\right)$

Thus it follows that

 $\alpha(v) = \cos v(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) + \sin v \frac{1}{\sqrt{6}} (-1, 1, 2) (\alpha(v), *)$ is a one parameter Lie group of M^* .

Let be β any circle on S^2 , i.e. $\beta = T \cap S^2$ such that T is a plane. If p point on T is center of circle β curve and r is radius of β then we can give * product,

*:
$$\beta \times \beta \longrightarrow \beta$$

 $(x, y) \longrightarrow x * y = \frac{1}{r}x' \otimes y' - C$
(10)

where $C = \overrightarrow{PO}$ is translation vector and vectors x' = x + C, y' = y + Care on plane the passing through the origin that the plane parallel to T. Thus $(\beta, *)$ is a Lie group.

References

[1]Frank R. Pfaff, A Commutative Multiplication of Number Triplets.Amer. Math. Montly, 107, Feb. 2000 pp. 156-162.

[2]Y. Yayli, H.H. Hacısalihoglu, A.A. Ergin, On The Division Algebras In R³. Algebras Groups and Geometries, 18,2001, pp. 341-348.

[3]A. Karger , J. Novak, Space Kinematic and Lie Groups, Gordon and Breach Science Publishers, 1985.

[4]Werner Greub, Linear Algebra, Fourth Edition 1981, Springer. Verlag.