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Abstract. Pfaff [1] using quaternion product gave some propoties of commutative

multiplication of number triplets of R3. We [2] gave a new explanation of multipli-

cation of number triplets by representation matrix. In this paper, we show that,

with the product, the great circle on S2 are one parameter Lie groups. Further-

more, we optain that all the circles on S2 are Lie groups.

1 PRELIMINARIES

A quaternion is defined depending on four units 1, i, j, k :

q = a1 + bi + cj + dk,

where a, b, c, d are real numbers and i, j, k are arbitrary “units” which

satisfy the relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki =

−ik = j.
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We now replace each quadruplet x = a1 + bi + cj + 0k = (a, b, c, 0) by

the corresponding triplet (a, b, c) so that 1 = (1, 0, 0), i = (0, 1, 0) and j =

(0, 0, 1), and a general trucated quaternion is written as x = a1+ bi+ cj. The

subspace containing the x-axis is called a leaf [1]. If x = (x1, x2, x3), y =

(y1, y2, y3) in the same leaf, then

x× y = (x1y1 − x2y2 − x3y3)1 + (x1y2 + y1x2)i + (x1y3 + y1x3)j, (1)

where × is quaternion multiplication [1]. If x and y are on different leaves,

then the procedure for multiplication of x and y is as follows:

(i) The plane determined by x and y intersect the (x, y)-plane in a line

passing through the origin which makes an angle, say θ, with the positive x

direction.

(ii) Rotate the plane of x and y about z axis, bringing its line of inter-

section with the (x, y)-plane into coincidence with x axis and carrying the

vector x and y to x
′
and y

′
.

(iii) The plane of x
′
and y

′
is a leaf so we can use × product from (1).

Thus we can obtain a z
′
vector z

′
= x

′ × y
′
.

(iv) Rotate the plane of x
′
and y

′
and z

′
back to the original plane of x

and y using the inverse of the rotation in used step (ii) . This rotation sends

x
′
and y

′
to x and y , respectively , and sends z

′
to a vector z , which we

call the ⊗ product of x and y and write z = x⊗ y [1] .

Pfaff [1] gave some algebraic properties of this ⊗ product. It is shown

that, this ⊗ product is not distributive. So the resulting structure is not an

algebra.

In this study, we obtain a new representation of ⊗ product. We show that,

if M is the plane passing through the origin then M is a division algebra.

Furthermore, we give some geometrical interpretations of ⊗ product.
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2 NEW EXPLANATION OF ⊗ PRODUCT

Let x = (x1, x2, x3), y = (y1, y2, y3) be any linear independent vectors in R3.

The plane determined by x and y intersects the xy-plane in a line passing

through the origin which makes an angle, say θ, with the positive x direction.

We can take the line l = (cos θ, sin θ, 0) as the direction vector of intersection.

If A(θ) is rotation matrix about the z-axis, then

z = x⊗ y (2)

z = A−1(θ) [A(θ)x× A(θ)y]

or using (1) we find,

z = [[(x1 cos θ + x2 sin θ) y1 + (x1 sin θ − x2 cos θ) y2 + (−x3 cos θ) y3] 1 +(3)

[(x2 cos θ − x1 sin θ) y1 + (x1 cos θ + x2 sin θ) y2 + (−x3 sin θ)] i +

[(x3 cos θ) y1 + (x3 sin θ) y2 + (x1 cos θ + x2 sin θ) y3] j]

It is easy to see that, for θ = 0, x ⊗ y = x × y, i.e., the ⊗ product of x

and y reduces to the × quaternion product. If θ = 0 and x3 = y3 = 0 then

the ⊗ product is complex product.

We can calculate matrix representation with respect to basis {1, i, j} of

the ⊗ product. z = x⊗ y = Ax(y) , where the matrix of Ax is

Ax =




x1 cos θ + x2 sin θ −x2 cos θ + x1 sin θ −x3 cos θ
x2 cos θ − x1 sin θ x1 cos θ + x2 sin θ −x3 sin θ

x3 cos θ x3 sin θ x1 cos θ + x2 sin θ


 (4)

Let M be the plane passing through the origin and E = M ∩ Sp {i, j}.
Let l = (cos θ, sin θ, 0) be the unit vector of the direction E, where θ is the
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angle between the line E and x-axis. Let be Φ = (l, N) orthonormal basis of

M , where nΛl = N and n is unit normal vector of M .

The ⊗ product on the plane M is

Φ : M ×M → M
(x, y) → x⊗ y = Axy = (lΛx)Λy + 〈l, x〉 y (5)

Let be x unit vector in M . Then Ax : M → M is isometric mapping. Ax

is not orthogonal matrix, but Ax is orthogonal matrix with respect to basis

Φ. Thus Ax is a rotating matrix in plane M

From(4) , AxA
t
x 6= I3. Thus Ax is not orthogonal with respect to Ψ basis

of R3.

In terms of equation (5) ,we can write x and y vectors with respect to Φ

basis of M ,

Thus,

x = cos v1l + sin v1N and y = cos v2l + sin v2N (6)

where l ⊗ l = l, l ⊗N = N, N ⊗N = −l.

Thus, from (5)

Axy = cos (v1 + v2) l + sin (v1 + v2) N

[Ax]Ψ =

[
cos v1 − sin v1

sin v1 cos v1

]
(7)

[Axy]Ψ = [Ax]Ψ [y]Ψ

(M, +,⊗) is a field.

(M, +) is a abelian group (MisasubvectorspaceinR3) .

(i)⊗ is associative [2] .
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(ii)⊗ is commutative.

x⊗ y = A−1(θ) [A(θ)x× A(θ)y]

x⊗ y = A−1(θ) [A(θ)y × A(θ)x]

= y ⊗ x

where × is commutative on leaf.

(iii) x = (x1, x2, x3) ∈ M. If x unit vector then

x−1 = (x1 cos 2θ + x2 sin 2θ, x1 sin 2θ − x2 cos 2θ,−x3) .

For spacial case θ = 0

x−1 = (x1,−x2,−x3).

This is inverse of x quaternion on the leaf.

det
(
l, x, x

−1
)

= 0 then x−1 in M .

(iv) l is unit element.

M∗ = M − {0} is a Lie group.

⊗ : M∗ ×M∗ → M∗

(x, y) → x⊗ y = Axy

⊗ is smooth.

Furthermore,

Sp {l, N} |l= TlM
∗.
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Let be x1 and x2 left invariant vector fields of M∗. For the components of

these vector fields at the point p = a0 + a1i + a2j , we have

(x1) |p= p⊗ l = p, (x2) |p= p⊗N. (8)

If we wish to find the structure of the Lie algebra of the group M∗.We

compute [x1, x2] = 0 (M∗ is abelian).

The values at the point p = l we obtain

(x1) |l= l, (x2) |l= Nland [l, N ] = 0.

3 One Parameter Subgroups of M∗

Let be α(v) = M∗ ∩ S2.

Thus we can write α(v) = cos vl + sin vN. α(v) is a great circle in S2

(geodesics in S2). Then

α(v) = cos v(cos θ, sin θ, 0) + sin v (n1, n2, n3) , θ = constant. (9)

For N = (0, 0, 1), α(v) is meridian (longitude). The ⊗ product indeed

on α(v) . Then

⊗ : α(v)× α(v) → α(v)
(α(v1), α(v2)) → α(v1)⊗ α(v2)

(i)α(v1)⊗ α(v2) = α(v1 + v2)

(ii) [α(v1)]
−1 = α(−v1)

(iii) α(0) = l

(iv) α(v1)⊗ α(v2) = α(v2)⊗ α(v1)

Thus α(v) is a one parameter subgroup of M∗.For the components of x2

left invariant vector field at the point p of α(v)
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(x2) |p= p⊗N

and

(x2) |l= Nl.

Spacial case 1 N = (0, 0, 1), α(v) is a meridian. Then

α(v) = (cos v cos θ, cos v sin θ, sin v) is a Lie group. Its Lie algebra is z-axis

passing from l point.

Spacial case 2 Let be θ change and v constant. N = (0, 0, 1) and

v = 0,

0 ≤ θ ≤ 2π then α(θ) = ( cos θ, sin θ, 0) is equvator. ⊗ product is

complex product.

Example Let the equation of plane M be x − y + z = 0. Therefore

θ = π/4,

l = ( 1√
2
, 1√

2
, 0) , n = 1√

3
(1,−1, 1) and N = nΛl = 1√

6
(−1, 1, 2)

Thus it follows that

α(v) = cos v( 1√
2
, 1√

2
, 0) + sin v 1√

6
(−1, 1, 2) (α(v), ∗) is a one parameter

Lie group of M∗.

Let be β any circle on S2, i.e. β = T ∩ S2 such that T is a plane. If p

point on T is center of circle β curve and r is radius of β then we can give ∗
product,

∗ : β × β → β
(x, y) → x ∗ y = 1

r
x
′ ⊗ y

′ − C
(10)

where C =
−→
PO is translation vector and vectors x

′
= x + C, y

′
= y + C

are on plane the passing through the origin that the plane parallel to T . Thus

(β, ∗) is a Lie group.



208

References

[1]Frank R. Pfaff, A Commutative Multiplication of Number Triplets.

Amer. Math. Montly, 107, Feb. 2000 pp. 156-162.

[2]Y. Yayli, H.H. Hacısalihoglu, A.A. Ergin, On The Division Algebras In

R3. Algebras Groups and Geometries, 18,2001, pp. 341-348.

[3]A. Karger , J. Novak, Space Kinematic and Lie Groups, Gordon and

Breach Science Publishers, 1985.

[4]Werner Greub, Linear Algebra, Fourth Edition 1981, Springer. Verlag.


