AHLFORS-SCHWARZ LEMMA AND CURVATURE

M. Mateljević

Faculty of mathematics, University of Belgrade, Studentski Trg 16, Belgrade, Serbia and Montenegro

Abstract In this note we give short review of known results and announce new results (see below Theorem 8 and Theorem 6 and its generalizations). In the first part of this review paper, we focus on ultrahyperbolic metric and Ahlfors lemmas and to the estimate opposite to Ahlfors-Schwarz lemma proved by the author(Theorem 5-6). The second part is devoted to Ahlfors-Schwarz lemma for harmonic-quasiregular maps and some results obtained in [AMM].

INTRODUCTION

In Section 1, of this review paper, we focus on ultrahyperbolic and pseudohermitian metrics, Ahlfors lemmas and to the estimate opposite to Ahlfors-Schwarz lemma proved by the author(Theorem 5-6).

Section 2 is devoted to Ahlfors-Schwarz lemma for harmonic-quasiregular maps .

In [W], Wan showed that every harmonic quasi-conformal diffeomorphism f from the unit disk Δ onto itself with respect to *Poincaré* metric is a quasi-isometry of *Poincaré* disk.

Let $\rho_0 = \sigma \circ f |f_z|$ and $K_0 = K_{\rho_0}$ the Gaussian curvature of the metric ρ_0 . In his proof Wan [W] used the method of sub-solutions and super-solutions and the fact that ρ_0 is complete metric.

We will show in a forthcoming paper that we can use Ahlfors-Schwarz lemma and the estimate opposite to Ahlfors-Schwarz lemma (Theorem 6) instead of the method of sub-solutions and super-solutions to prove Wan's result and get further generalizations of it .

Also , we announce the following result which we call Ahlfors-Schwarz lemma for harmonic-quasiregular maps (see also Theorem 8 below):

Theorem A . Let R be hyperbolic surfaces with Poincare metric densities λ and S be another with Poincare metric densities σ and let the Gaussian curvature of the metric $ds^2 = \rho(w)|dw|^2$ be uniformly bounded from above on S by the negative constant -a. Then any harmonic k-quasiregular map f from R into S decreases distances up to a constant depending only on a and k.

Let $\rho_0 = \sigma \circ f |p|$ and $K_0 = K_{\rho_0}$ the Gaussian curvature of the metric ρ_0 .

A proof of Theorem A can be based on the estimate of the curvature $K_0 = K_S (1 - |\mu|^2)$ and Ahlfors-Schwarz lemma.

In Section 3, we discuss some results obtained in [AMM].

An uniform estimate of radius of maximal φ -disks of the Hopf differential of a quasiregular harmonic map with respect to strongly negatively curved metric(see below Theorem 9) is proved. As an application we show that the Hopf differential of a quasiregular harmonic map with respect to strongly negatively curved metric belongs to Bers space.

Finally , in Section 4 , we state several dimensional generalization of Schwarz lemma due to Yau and Royden .

1. Ahlfors-Schwarz Lemma

Hyperbolic distance and Schwarz lemma . By Δ we denote the unit disk . Let *B* be the disk with center at z_0 and radius *r*. Using the conformal automorphisms $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$, $a \in \Delta$, of Δ , one can define pseudo-hyperbolic distance on Δ by

$$\delta(a,b) = |\phi_a(b)|, \ a, b \in \Delta.$$

Next, using the conformal map $A(\zeta) = \frac{\zeta - z_0}{r}$ from B onto Δ , one can define pseudo-hyperbolic distance on B by

$$\delta_B(z,w) = \delta(A(z), A(w))$$

and the *hyperbolic metric* on B by

$$\lambda(z, w) = \log \frac{1 + \delta_B(z, w)}{1 - \delta_B(z, w)}$$

for $z, w \in B$.

In particular , hyperbolic distance on the unit disk Δ is

$$\lambda(z,\omega) = \ln \frac{1 + \left|\frac{z-\omega}{1-z\bar{\omega}}\right|}{1 - \left|\frac{z-\omega}{1-z\bar{\omega}}\right|}$$

The classic Schwarz lemma states : If $f : \Delta \to \Delta$ is an analytic function, and if f(0) = 0, then $|f(z)| \leq |z|$ and $|f'(0)| \leq 1$. Equality |f(z)| = |z| with $z \neq 0$ or |f'(0)| = 1 can occur only for $f(z) = e^{i\alpha} z$, α is a real constant.

It was noted by Pick that result can be expressed in invariant form . We refer the following result as Schwarz-Pick lemma .

Theorem 1. (Schwarz - Pick lemma). Let F be an analytic function from a disk B to another disk U. Then F does not increase the corresponding hyperbolic (pseudo-hyperbolic) distances.

Curvature. A Riemannian metric given by the fundamental form

$$ds^2 = \rho^2 (dx^2 + dy^2)$$

or $ds = \rho |dz|$, $\rho > 0$, is conformal with euclidian metric.

If $\rho > 0$ is a C^2 function on Δ , the Gaussian curvature of a Riemannian metric ρ on Δ is expressed by the formula

$$K = K_{\rho} = -\rho^{-2} \Delta \ln \rho \; .$$

Also we write $K(\rho)$ instead of K_{ρ} .

Recall that a pseudohermitian metric on Δ is a non-negative upper semicontinuous function ρ such the set $\rho^{-1}(0)$ is discrete in Δ .

If u is an upper semicontinuous function, the *lower generalized Laplacian* of u is defined by ([AP], see also [GeVi])

$$\boldsymbol{\Delta}_L u(\omega) = 4 \liminf_{r \to 0} \frac{1}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} u(\omega + re^{it}) dt - u(\omega)\right).$$

When u is a C^2 function , then the lower generalized Laplasian of u reduces to the usual Laplacian

$$\Delta u = u_{xx} + u_{yy}$$
 .

The Gaussian curvature of a pseudohermitian metric ρ on Δ is defined by the formula

$$K = K_{\rho} = -\rho^{-2} \Delta_{\mathbf{L}} \ln \rho.$$

For all a > 0 define the family of functions λ_a

$$\lambda_a(z) = \frac{2}{a(1-|z|^2)}$$

Also, it is convenient to write λ instead of λ_1 . The Gaussian curvature of λ_a is $K(\lambda_a) = -a$. This family of Hermitian metrics on Δ is of interest because it allows an ordering of all pseudohermitian metrics on Δ in the sence of the following ([AP]).

Theorem 2. Let ρ be a pseudohermitian metric on Δ such that

$$K_{\rho}(z) \leq -a$$

for some a > 0. Then $\rho \leq \lambda_a$.

This kind of estimate is similar to Ahlfors-Schwarz lemma . Ahlfors lemma can be found in Ahlfors [Ah].

Ahlfors-Schwarz lemma

A metric ρ is said to be ultrahyperbolic in a region Ω if it has the following properties :

(a) ρ is upper semicontinuous ; and

(b) at every z_0 there exits a supporting metric ρ_0 , defined and class C^2 in a neighborhood V of z_0 , such that $\rho_0 \leq \rho$ and $K_{\rho_0} \leq -1$ in V, while $\rho_0(z_0) = \rho(z_0)$.

Theorem 3. (Ahlfors Lemma 1). Suppose ρ is an ultrahyperbolic metric on Δ . Then $\rho \leq \lambda$.

The version presented in [Ga] has a slightly modified definition of supporting metric. This modification and formulation is due to Earle . This version has been used (see [Ga]) to prove that Teichmüller distance is less than equal to Kobayashi's on Teichmüller space .

Ahlfors [Ah] proved a stronger version of Schwarz's lemma and Ahlfors lemma 1.

Theorem 4. (Ahlfors lemma 2). Let f be an analytic mapping of Δ into a region on which there is given ultrahyperbolic metric ρ . Then $\rho[f(z)] |f'(z)| \leq \lambda$.

The proof consists of observation that $\rho[f(z)] |f'(z)|$ is ultrahyperbolic metric on Δ . Observe that the zeros of f'(z) are singularities of this metric.

Note that if f is the identity map on Δ we get Theorem 3 (Ahlfors lemma 1) from Theorem 4 .

The notation of an ultrahyperbolic metric makes sense , and the theorem remains valid if Ω is replaced by a Riemann surface .

In a plane region Ω whose complement has at least two points , there exists a unique maximal ultrahyperbolic metric , and this metric has constant curvature -1

The maximal metric is called the *Poincaré metric* of Ω , and we denote it by λ_{Ω} . It is maximal in the sense that every ultrhyperbolic metric ρ satisfies $\rho \leq \lambda_{\Omega}$ throughout Ω .

The hyperbolic metric of a disk |z| < R is given by

$$\lambda_R(z) = \frac{2R}{R^2 - |z|^2} \; .$$

If ρ is ultrhyperbolic in |z| < R, then $\rho \leq \lambda_R$. In particular, if ρ is ultrhyperbolic in the whole plane, then $\rho = 0$. Hence there is no ultrahyperbolic metric in the whole plane.

The same is true of the punctured plane $C^* = \{z : z \neq 0\}$. Indeed, if ρ were ultrahyperbolic metric in the whole plane, then $\rho(e^z) \mid e^z \mid$ would be ultrahyperbolic in the hole plane. These are only cases in which ultrahyperbolic metric fails to exist.

Ahlfors [Ah] used Theorem 4 to prove Bloch and the Picard theorems.Ultrahypebolic metrics (without the name) were introduced by Ahlfors . They found many applications in the theory of several complex variables .

An inequality opposite to Ahlfors-Schwarz lemma

Mateljević [Ma] proved an estimate opposite to Ahlfors-Schwarz lemma .

A metric H|dz| is said to be superhyperbolic in a region Ω if it has the following properties :

(a) H is continuous (more general, lower semicontinuous) on Ω .

(b) at every z_0 there exists a supporting metric H_0 , defined and class C^2 in a neighborhood V of z_0 , such that $H_0 \ge H$ and $K_{H_0} \ge -1$ in V, while $H_0(z_0) = H(z_0)$.

Theorem 5. ([Ma]).Suppose H is a superhyperbolic metric on Δ for which (c) H(z) tends to $+\infty$ when |z| tends to 1_{-} Then $\lambda \leq H$.

By applying a method developed by Yau in [Ya1] (or by generalized maximum principle of Cheng and Yau [CYa]), it follows that this result holds if we suppose instead of (c) that

(d) H is a complete metric on Δ .

Theorem 6. If ρ and σ are two metrics on Δ , σ complete and $0 > K_{\sigma} \ge K_{\rho}$ on Δ , then $\sigma \ge \rho$.

This theorem remains valid if ρ is ultrahyperbolic metric and σ superhyperbolic metric on Δ . Also , we can get further generalizations if Δ is replaced by a Riemann surface .

The method of sub-solutions and super-solutions have been used in study harmonic maps between surfaces. We will show in a forthcoming paper that we can use Theorem 6 instead of the method of sub-solutions and super-solutions.

2. Schwarz Lemma for harmonic and quasiconformal maps

Wan [W] showed that

Theorem 7. (Wan) . Every harmonic quasi-conformal diffeomorphism from Δ onto itself with respect to Poincaré metric is a quasi-isometry of Poincaré disk.

Let $\rho_0 = \sigma \circ f |f_z|$ and $K_0 = K_{\rho_0}$ the Gaussian curvature of ρ . In his proof Wan [W] used the method of sub-solutions and super-solutions and the fact that ρ_0 is complete metric. Recall ,we will show in a forthcoming paper that we can use Ahlfors-Schwarz lemma and Theorem 6 instead of the method of sub-solutions and super-solutions and, in particular, that a proof of Wan's result can be based on these results .

Definition and properties of Harmonic and quasiregular maps

Let R and S be two surfaces. Let $\sigma(z)|dz|^2$ and $\rho(w)|dw|^2$ be the metrics with respect to the isothermal coordinate charts on R and S respectively, and let f be a C^2 -map from R to S.

It is convenient to use notation in local coordinates $df = p dz + q d\overline{z}$, where $p = f_z$ and $q = f_{\overline{z}}$. Also we introduce the complex (Beltrami) dilatation

$$\mu_f = Belt[f] = \frac{q}{p}$$

where it is defined.

The energy integral of f is

$$E(f,\rho) = \int_R \rho \circ f\left(|p|^2 + |q|^2\right) dxdy \,.$$

A critical point of the energy functional is called a harmonic mapping. The Euler-Lagrange equation for the energy functional is

$$\tau(f) = f_{z\overline{z}} + (\log \rho)_w \circ f \, p \, q = 0 \, .$$

Thus, we say that a C^2 -map f from R to S is harmonic if f satisfies the above equation. For basic properties of harmonic maps and for further information on the literature we refer to Jost [Jo] and Schoen-Yau [SYa3].

The following facts and notation are important in our approach:

A1 If f is a harmonic mapping then

$$\varphi \, dz^2 = \rho \circ f \, p \, \overline{q} \, dz^2$$

is a quadratic differential on R, and we say that φ is the *Hopf differential* of f and we write $\varphi = \text{Hopf}(f)$.

A2 The Gaussian curvature on *S* is given by

$$K_S = -\frac{1}{2} \frac{\Delta \ln \rho}{\rho} \,.$$

A3 We will use the following notation $\mu = Belt[f] = \frac{q}{p}$ and $\tau = \log \frac{1}{|\mu|}$ and *Bochner* formula (see [SYa3])

$$\Delta \ln |\partial f| = -K_S J(f) + K_R,$$
$$\Delta \ln |\bar{\partial}f| = K_S J(f) + K_R,$$

$$\Delta \tau = -K_S \left| \varphi \right| \sinh \tau \, .$$

A4 Definition of quasiregular function. Let R and S be two Riemann surfaces and $f: R \to S$ be a C^2 -mapping. If P is a point on R, $\tilde{P} = f(P) \in S$, ϕ

a local parameter on R defined near P and ψ a local parameter on S defined near \tilde{P} , then the map w = h(z) defined by $h = \psi \circ f \circ \phi^{-1}|_V$ (V is a sufficiently small neighborhood of P) is called a local representer of f at P. The map f is called k-quasiregular if there is a constant $k \in (0, 1)$ such that for every representer h, at every point of R, $|h_{\overline{z}}| \leq k|h_z|$.

Ahlfors-Schwarz lemma for harmonic-quasiregular maps

Let $\rho_0 = \sigma \circ f |p|$ and $K_0 = K_{\rho_0}$ the Gaussian curvature of ρ .

Using that $K_0 = K_S (1 - |\mu|^2)$ and Ahlfors-Schwarz lemma we can prove the following result .

Theorem 8. Let R be hyperbolic surfaces with Poincare metric densities λ and S be another with Poincare metric densities σ and let the Gaussian curvature of the metric $ds^2 = \rho(w)|dw|^2$ be uniformly bounded from above on S by the negative constant -a. Then any harmonic k-quasiregular map f from R into S decreases distances up to a constant depending only on a and k.

3. Applications

Uniformly bounded maximal φ -disks, Bers space and harmonic maps Let φ be an analytic function on the unit disk Δ . Then φ belongs to *Bers space* $Q = Q(\Delta)$ if

$$\operatorname{ess\,sup}\omega(z)^2|\varphi(z)| < +\infty \;,$$

where $\omega(z) = 1 - |z|^2$.

In this section we will give an uniform estimate of radius of maximal φ -disks of the Hopf differential of a quasiregular harmonic map with respect to strongly negatively curved metric (see below Theorem 9). As an application we show that the Hopf differential of a quasiregular harmonic map with respect to strongly negatively curved metric belongs to Bers space. First we define maximal φ -disks.

Maximal φ -disk. Let φ be an analytic function on the unit disk Δ and let z_0 be a regular point of φ , i.e. $\varphi(z_0) \neq 0$. Let Φ_0 be a single valued branch of

$$w = \Phi(z) = \int \sqrt{\varphi(z)} \, dz$$

near z_0 , $\Phi(z_0) = 0$. There is a neighborhood U of z_0 which is mapped one-to-one conformally onto an open set V in the w-plane. We can assume, by restriction, that V is a disk around w = 0. The inverse Φ_0^{-1} is a conformal homeomorphism of V into Δ and evidently there is a largest open disk V_0 around w = 0 such that the analytic continuation of Φ_0^{-1} (which is still denoted by Φ_0^{-1}) is homeomorphic, and that $\Phi_0^{-1}(V_0) \subset \Delta$. The image $U_0 = \Phi_0^{-1}(V_0)$ is called the maximal φ -disk around z_0 ; its φ -radius (injectivity radius) r_0 is the Euclidean radius of V_0 .

For the definition of φ -disks and a discussion of their important role in the theory of holomorphic quadratic differentials we refer the interested reader to Strebel's book [St]. **Theorem 9.** ([AMM]) Let ρ be the metric on Δ with Gaussian curvature Kuniformly bonded from above on Δ by the negative constant -a, and let f be a harmonic k-quasiregular map from Δ into itself with respect to the metric ρ . If $R = R_z$ is the radius of the maximal φ -disk around z, where $\varphi = \text{Hopf}(f)$, then Ris bounded from above by the constant C which depends only on k and a.

Proof. Let $R = R_z$ be the radius of the maximal φ -disk $U = U_z$ around $z \in \Delta$. Since f is k-quairegular then $\tau \ge m$, where $m = \log \frac{1}{k}$. m > 0. Let $\zeta = \Phi(z)$ be the natural parameter in U and $\Phi(U) = V = B(0, R)$ With respect to the parameter ζ the Bochner formula takes the simple form

$$\Delta \tau = -K \sinh \tau \,.$$

Since $K \leq -a$ and $\tau \geq m$, we conclude that

(1)
$$\Delta \tau \ge \delta e^{\tau} \text{ on } V$$

where $\delta = \frac{a \sinh m}{e^m}$. Let $ds = \lambda(\zeta) |d\zeta|$, where $\lambda(\zeta) = \frac{2R}{R^2 - |\zeta|^2}$ is the hyperbolic metric on V and let $\tilde{\lambda}(\zeta) = \left(\frac{\delta}{2}e^{\tau(\zeta)}\right)^{\frac{1}{2}}$. From (1) we have for the Gaussian curvature of the metric $d\tilde{s} = \tilde{\lambda}(\zeta) |d\zeta|$ on V that $\tilde{K} \leq -1$ and then we can use the Ahlfors-Schwarz Lemma 1 (see also [Ah]) to obtain

(2)
$$\frac{\delta}{2k} \le \tilde{\lambda}^2(\zeta) \le \lambda^2(\zeta) \,.$$

Setting $\zeta = 0$ in (2) one obtains

(3)
$$R^2 \le \frac{8k}{\delta} \,.$$

In [AMM], I. Anić, V. Marković and M. Mateljević characterize Bers space by means of maximal φ -disks. As an application, using Theorem 9 , they show that the Hopf differential of a quasiregular harmonic map with respect to strongly negatively curved metric belongs to Bers space. Also they give further sufficient or necessary conditions for a holomorphic function to belong to Bers space.

Let φ be a quadratic differential on a hyperbolic Riemann surface R with Poincaré metric $ds^2 = \rho(z)|dz|^2$. Let $p \in R$ and let z be a local parameter near p. We will define

$$\|\varphi\|(p) = \rho^{-1}(z(p))|\varphi(z(p))|.$$

We say that φ belongs to the *Bers space* of R (notation Q(R)) if $\|\varphi\|$ is a uniformly bounded function on R.

Theorem 10. ([AMM]) Let R and S be hyperbolic surfaces with metric densities σ and ρ respectively and let the Gaussian curvature of the metric $ds^2 = \rho(w)|dw|^2$ be uniformly bounded from above on S by the negative constant -a. If f is a harmonic k-quasiregular map from R into S with Hopf differential φ , then $\varphi \in Q(R)$.

Proof. Let \tilde{f} be the lifting of f which maps Δ into itself and let $\tilde{\varphi}$ be the lifting of the quadratic differential φ . Let $\tilde{\rho}$ be the lifting of the density ρ . Since \tilde{f} is harmonic with respect to the metric $\tilde{\rho}(\tilde{w})|d\tilde{w}|^2$ on Δ and k-quasiregular then, by Theorem 2 [AMM], $\tilde{\varphi} \in Q(\Delta)$. Hence $\varphi \in Q(R)$.

4. Further results

There are many results related to subject of this note .We will mention only a few of them.

Yau [Ya2] proved the following generalization of Schwarz lemma .

Theorem 11. (Yau). Let M be a complete Kähler manifold with Ricci curvature bounded from below by a constant, and N be another Hermitian menifold with holomorphic bisectional curvature bounded from above by a negative constant. Then any holomorphic mapping f from M into N decrease distances up to a constant depending only on the curvature of M and N.

Royden [Ro] improved the estimate in Yau theorem.

Theorem 12. (Royden). Let M be a complete Hermitian manifold with holomorphic sectional curvature bounded from below by a constant $k \leq 0$, and N be another Hermitian menifold with holomorphic sectional curvature bounded from above by a negative constant K < 0. Assume either that M has Riemann sectional curvature bounded from below or that M is Kähler with holomorphic bisectional curvature bounded from below. Then any holomorphic mapping f from M into N satisfies

$$\|df\|^2 \le \frac{k}{K}$$

In [Ya2], Yau mentioned that in order to draw a useful conclusion in the case of harmonic mappings between Riemannian manifolds, it seems that one has to assume the mapping is quasi-conformal.

Since we can consider Theorem 8 as a version of Schwarz lemma for harmonicquasiregular maps between surfaces it seems natural to ask whether there exists a version of Yau-Royden theorem for harmonic-quasiregular maps.

Pseudoholomorphic version of the Schwarz Lemma (known as Gromov-Schwarz Lemma) is important tool in symplectic geometry .

The author is indebted to the referee for useful suggestions which improved exposition .

References

- [AP] Abate M., Patrizio G. , Holomorphic curvature of Finsler metrics and complex geodesics , Preprint , Max-Planck-Institut fur Matematik, Bonn (1992)
- [Ah] Ahlfors,L., Conformal invariants, McGraw-Hill Book Company, 1973.
- [AMM] I. Anić, V. Marković and M. Mateljević, Uniformly bounded maximal φ -disks and Bers space and Harmonic maps ,Proc. Amer. Math. Soc. **128** (2000) 2947-2956

- [CYa] Cheng,S.Y. and Yau,S.,T., Differential equations on Riemannian manifolds and their geometric applications, Comm.Pure and Appl. Math. 28 (1975) 333-354
- [Ga] Gardiner, F., P., Teichmüller Theory and Quadratic Differentials, New York: Awiley-Interscience Publication, 1987.
- [GeVi] Gentili G. and Visintin B., Finsler Complex Geodesics and Holomorphic Curvature, Rendinconti Accad. XL Memorie di Matematica bf 111 (1993) 153-170
- [Ha] Han,Z-C., Remarks on the geometric behavior of harmonic maps between surfaces, Elliptic and parabolic methods in geometry. Proceedings of a workshop, Minneapolis, May 23-27, 1994., Wellesley
- [HTTW] Han,Z-C., Tam,L-F., Treibergs,A. and Wan,T., Harmonic maps from the complex plane into surfaces with nonpositive curvature, Commun.Anal.Geom. 3 (1995) 85-114
- [Jo] Jost, J., Two-dimensional Geometric Variational Problems, John Wiley & Sons, 1991.
- [LiTaWa] Li,P., Tam,L. and Wang,J., Harmonic diffeomorphisms between hyperbolic Hadamard manifolds, to appear Jour.Geom.Anal.
- [LV] Lehto, O. and Virtanen, K.I., Quasiconformal Mappings in the Plane, Springer-Verlag, 1973.
- [Ma] Mateljević, M., Note on Schwarz lemma, curvature and distance, Zbornik radova PMF 13 (1992) 25-29
- [MaMa] Marković, M. and Mateljević, M., New versions of Reich-Strebel inequality and uniqueness of harmonic mappings, Journal d'Analyse 79 (1999) 315-334
- [Mi] Minsky,Y., Harmonic maps, lenght and energy in Teichmüller space, J.Diff.Geom. 35 (1992), 151-217
- [Re] Reich, E. and Strebel, K., On the Gerstenhaber-Rauch principle, Israel J.Math. 57, (1987) 89-100
- [Ro] Royden,H.L., The Ahlfors-Schwarz lemma in several complex variables, Comment Math. Helvitici bf 55 (1980) 547-558
- [SYa3] Schoen, R. and Yau, S., T., Lectures on Harmonic Maps, Conf. Proc. and Lect. Not. in Geometry and Topology, Vol.II, Inter. Press, 1997.
- [SYa2] Schoen, R. and Yau, S., T., On univalent harmonic maps between surfaces, Invent.Math. 44 (1978), 265-278
- [St] Strebel, K., Quadratic Differentials, Springer-Verlag, 1984.
- [TaW1] Tam,L. and Wan,T., Quasiconformal harmonic diffeomorphism and universal Teichmüler space, J.Diff.Geom. 42 (1995) 368-410
- [TaW2] Tam,L. and Wan,T., Harmonic diffeomorphisms into Cartan-Hadamard surfaces with prescribed Hopf differentials, Comm.Anal.Geom.4 (1994) 593-625
- [W] Wan,T., Conastant mean curvature surface, harmonic maps, and universal Teichmüller space, J.Diff.Geom. 35 (1992) 643-657
- [Wo1] Wolf,M., The Teichmüller theory of harmonic maps, J.Diff.Geom. 29 (1989) 449-479
- [Wo2] Wolf,M., High-energy degeneration of harmonic maps between surfaces and rays in Teichmüler space, Topology 30 (1991), 517-540
- [Ya1] Yau,S.,T., Harmonic functions on complete Riemannian manifolds, Comm.Pure and Appl. Math. 28 (1975) 201-228
- [Ya2] Yau,S.,T., A general Schwarz lemma for Kahler manifolds, Am. J. of Math. 100 (1978) 197-203