Kragujevac J. Math. 25 (2003) 147–154.

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (φ, ξ, η, G) -STRUCTURE

Jovanka Nikić

Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia and Montenegro

Abstract. We shall investigate a necessary and sufficient condition for a submanifold immersed in an almost paracontact Riemannian manifold to be invariant and show further properties of invariant submanifold in a manifold with the (φ, ξ, η, G) -structure.

1. (φ, ξ, η, G) -structure

Let $\overline{\mathcal{M}}$ be an *m*-dimensional differentiable manifold. If there exist on $\overline{\mathcal{M}}$ a (1,1)-tensor field φ , a vector field ξ and a 1-form η satisfying

$$\eta(\xi) = 1, \qquad \varphi^2 = I - \eta \otimes \xi, \tag{1.1}$$

where I is the identity, then $\overline{\mathcal{M}}$ is said to be an almost paracontact manifold. In the almost paracontact manifold, the following relations hold good:

$$\varphi \xi = 0, \qquad \eta \circ \varphi = 0, \qquad \operatorname{rank}(\varphi) = m - 1.$$
 (1.2)

Every almost paracontact manifold has a positive definite Riemannian metric ${\cal G}$ such that

$$\eta(\bar{X}) = G(\xi, \bar{X}), G(\varphi\bar{X}, \varphi\bar{Y}) = G(\bar{X}, \bar{Y}) - \eta(\bar{X})\eta(\bar{Y}), \bar{X}, \bar{Y} \in \mathcal{X}(\bar{\mathcal{M}}),$$
(1.3)

where $\mathcal{X}(\bar{\mathcal{M}})$ denotes the set of differentiable vector fields on $\bar{\mathcal{M}}$. In this case, we say that $\bar{\mathcal{M}}$ has an almost paracontact Riemannian structure (φ, ξ, η, G) and $\bar{\mathcal{M}}$ is said to be an almost paracontact Riemannian manifold [1]. From (1.3) we can easily get the relation

$$G(\varphi \bar{X}, \bar{Y}) = G(\bar{X}, \varphi \bar{Y}). \tag{1.4}$$

Hereafter, we assume that $\overline{\mathcal{M}}$ is an almost paracontact Riemannian manifold with a structure (φ, ξ, η, G) . It is clear that the eigenvalues of the matrix (φ) are 0 and ± 1 , where the multiplicity of 0 is equal to 1.

Let \mathcal{M} be an *n*-dimensional differentiable manifold (m - n = s) and suppose that \mathcal{M} is immersed in the almost paracontact Riemannian manifold $\overline{\mathcal{M}}$ by the immersion $i: \mathcal{M} \to \overline{\mathcal{M}}$. We denote by B the differential of the immersion i. The induced Riemannian metric g of \mathcal{M} is given by $g(X,Y) = G(BX,BY), X,Y \in \mathcal{X}(\mathcal{M})$, where $\mathcal{X}(\mathcal{M})$ is the set of differentiable vector fields on \mathcal{M} . We denote by $T_p(\mathcal{M})$ the tangent space of \mathcal{M} at $p \in \mathcal{M}$, by $T_p(\mathcal{M})^{\perp}$ the normal space of \mathcal{M} at p and by $\{N_1, N_2, \ldots, N_s\}$ an orthonormal basis of the normal space $T_p(\mathcal{M})^{\perp}$.

The transform φBX of $X \in T_p(\mathcal{M})$ by φ and φN_i of N_i by φ can be respectively written in the next forms:

$$\varphi BX = B\psi X + \sum_{i=1}^{s} u_i(X)N_i, \qquad X \in \mathcal{X}(\mathcal{M}), \tag{1.5}$$

$$\varphi N_i = BU_i + \sum_{i=1}^s \lambda_{ij} N_j, \qquad (1.6)$$

where ψ , u_i , U_i and λ_{ij} are respectively a induced (1, 1)-tensor, 1-forms, vector fields and functions on \mathcal{M} and Latin indices h, i, j, k, l run over the range $\{1, 2, \ldots, s\}$. The vector field ξ can be expressed as follows:

$$\xi = BV + \sum_{i=1}^{s} \alpha_i N_i, \tag{1.7}$$

where V and α_i are respectively a vector field and functions on \mathcal{M} . Using (1.5) and (1.6) for $X, Y \in \mathcal{X}(\mathcal{M})$

$$g(\psi X, Y) = G(B\psi X, BY) = G(\varphi BX, BY) = G(BX, \varphi BY) = G(BX, B\psi Y) = G($$

Therefore we have $g(\psi X, Y) = g(X, \psi Y)$. Furthermore, from $G(\varphi BX, N_i) = G(BX, \varphi N_i)$ and $G(\varphi N_i, N_j) = G(N_i, \varphi N_j)$, we can respectively get the equations $u_i(X) = g(U_i, X), \lambda_{ij} = \lambda_{ji}$.

Lemma 1.1. In a submanifold \mathcal{M} immersed in an almost paracontact Riemannian manifold $\overline{\mathcal{M}}$, the following equations hold good:

$$\psi^2 X = X - v(X)V - \sum_{i=1}^s u_i(X)U_i \text{ or } \psi^2 = I - v \otimes V - \sum_{i=1}^s u_i \otimes U_i, \ X \in \mathcal{X}(\mathcal{M}),$$
(1.8)

$$u_j(\psi X) + \sum_{i=1}^{s} \lambda_{ji} u_i(X) + \alpha_j v(X) = 0, \qquad (1.9)$$

$$\psi U_j + \sum_{i=1}^s \lambda_{ji} U_i + \alpha_j V = 0, \qquad (1.10)$$

$$u_k(U_j) = \delta_{kj} - \alpha_k \alpha_j - \sum_{i=1}^s \lambda_{ki} \lambda_{ji}, \qquad (1.11)$$

where v is a 1-form on \mathcal{M} and v(X) = g(V, X).

Proof. From (1.5), we have

$$\varphi^2 B X = \varphi B \psi X + \sum_i u_i(X) \varphi N_i$$
$$= B \psi^2 X + \sum_i u_i(\psi X) B U_i + \sum_i u_i(X) \sum_j \lambda_{ij} N_j.$$

On the other hand, since we have

$$\varphi^2 B X = B X - \eta(B X) \xi = B X - v(X) i - v(X) \sum_j \alpha_j N_j,$$

we get (1.8) and (1.9). Similarly, from (1.6) we have (1.10) and (1.11).

Equations (1.9) and (1.10) are equivalent.

Lemma 1.2. In a submanifold \mathcal{M} immersed in an almost paracontact Riemannian manifold $\overline{\mathcal{M}}$, the following equations hold good:

$$\psi V + \sum_{i=1}^{s} \alpha_i U_i = 0, \qquad u_i(V) + \sum_{j=1}^{s} \alpha_j \lambda_{ji} = 0,$$
 (1.12)

$$v(V) = 1 - \sum_{i=1}^{s} \alpha_i^2, \qquad (1.13)$$

$$g(\psi X, \psi Y) = g(X, Y) - v(X)v(Y) - \sum_{i=1}^{s} u_i(X)u_i(Y), \qquad (1.14)$$

where $X, Y \in \mathcal{X}(\mathcal{M})$.

Proof. From (1.7),

$$\varphi \xi = \varphi BV + \sum_{i} \alpha_i \varphi N_i = B \psi V + \sum_{i} u_i(V) N_i + \sum_{i} \alpha_i (BU_i + \sum_{j} \lambda_{ij} N_j).$$

By means of $\varphi \xi = 0$, we have (1.12). Similarly, from $\eta(\xi) = 1$ we get (1.13). And using $G(\varphi BX, \varphi BY) = G(BX, BY) - \eta(BX)\eta(BY)$, we have (1.14).

Let $\{N_1, N_2, \ldots, N_s\}$ be an orthonormal basis of the normal space $T_p(\mathcal{M})^{\perp}$ at $p \in \mathcal{M}$ [1]. We assume that $\{\bar{N}_1, \bar{N}_2, \ldots, \bar{N}_s\}$ is the another orthonormal basis of $T_p(\mathcal{M})^{\perp}$ and we put

$$\bar{N}_i = \sum_{l=1}^s k_{li} N_l.$$
(1.15)

By means of $G(\bar{N}_i, \bar{N}_j) = \sum_{l=1}^{s} k_{li}k_{lj} = \delta_{ij}$, from which $\sum_{h=1}^{s} k_{ih}k_{jh} = \delta_{ij}$. Consequently a matrix (k_{ij}) is an orthogonal matrix. Thus from (1.15), we have $N_j = \sum_{l=1}^{s} k_{jl}\bar{N}_l$.

Making use of (1.15), equations (1.5), (1.6) and (1.7) are respectively written in the following form:

$$\varphi BX = B\psi X + \sum_{l=1}^{s} \bar{u}_{l}(X)\bar{N}_{l},$$

$$\varphi \bar{N}_{l} = B\bar{U}_{l} + \sum_{h=1}^{s} \bar{\lambda}_{lh}\bar{N}_{h},$$

$$\xi = BV + \sum_{l=1}^{s} \bar{\alpha}_{l}\bar{N}_{l},$$
(1.16)

where

$$\bar{u}_l(X) = \sum_{i=1}^s k_{il} u_i(X), \quad \bar{U}_l = \sum_{i=1}^s k_{il} U_i,$$
 (1.17)

$$\bar{\lambda}_{lh} = \sum_{i,j=1}^{s} k_{il} \lambda_{ij} k_{jh}, \quad \bar{\lambda}_{lh} = \bar{\lambda}_{hl}, \qquad (1.18)$$

$$\bar{\alpha}_l = \sum_{i=1}^s k_{il} \alpha_i$$

By virtue of (1.17), the linear independence of vectors $U_i (i = 1, 2, ..., s)$ is invariant under the transformation (1.15) of the orthonormal basis $\{N_1, N_2, ..., N_s\}$.

150

Furthermore, because λ_{ij} is symmetric in *i* and *j*, from (1.18) we can find that under a suitable transformation (1.15) λ_{ij} reduces to $\bar{\lambda}_{ij} = \lambda_i \delta_{ij}$, where $\lambda_i (i = 1, 2, ..., s)$ are eigenvalues of matrix (λ_{ij}) . In this case, (1.16) and (1.11) are respectively written in the next forms:

$$\varphi \bar{N}_l = B \bar{U}_l + \lambda_l \bar{N}_l, \bar{u}_k (\bar{U}_j) = \delta_{kj} - \bar{\alpha}_k \bar{\alpha}_j - \lambda_k \lambda_j \delta_{kj},$$
(1.19)

from which we have $\bar{u}_j(\bar{U}_j) = 1 - \bar{\alpha}_j^2 - \lambda_j^2$ and $\bar{u}_k(\bar{U}_j) = -\bar{\alpha}_k \bar{\alpha}_j (k \neq j)$.

2. Invariant submanifolds of an almost paracontact Riemannian manifold

Let \mathcal{M} be a submanifold immersed in an almost paracontact Riemannian manifold $\overline{\mathcal{M}}$. If $\varphi(B(T_p(\mathcal{M}))) \subset T_p(\mathcal{M})$ for any point $p \in \mathcal{M}$, then \mathcal{M} is called an invariant submanifold [4]. In an invariant submanifold \mathcal{M} , (1.5), (1.6) and (1.7) are respectively written in the following forms:

$$\varphi BX = B\psi X, \qquad X \in \mathcal{X}(\mathcal{M}), \tag{2.1}$$

$$\varphi N_i = \sum_{j=1}^s \lambda_{ij} N_j, \qquad (2.2)$$

$$\xi = BV + \sum_{i=1}^{s} \alpha_i N_i. \tag{2.3}$$

Furthermore, from Lemma 1.1 and Lemma 1.2, we have the following lemmas.

Lemma 2.1. In an invariant submanifold \mathcal{M} immersed in an almost paracontact Riemannian manifold $\overline{\mathcal{M}}$, the following equations hold good:

$$\psi^2 = I - v \otimes V, \tag{2.4}$$

$$\alpha_i V = 0, \tag{2.5}$$

$$\delta_{kj} - \alpha_k \alpha_j - \sum_{i=1}^s \lambda_{ki} \lambda_{ji} = 0, \qquad (2.6)$$

$$\psi V = 0, \tag{2.7}$$

$$\sum_{i=1}^{s} \alpha_i \lambda_{ij} = 0, \qquad (2.8)$$

$$v(V) = 1 - \sum_{i=1}^{s} \alpha_i^2, \qquad (2.9)$$

$$g(\psi X, \psi Y) = g(X, Y) - v(X)v(Y), \qquad X, Y \in \mathcal{X}(\mathcal{M}).$$
(2.10)

From (2.5) and (2.9), we get the following two cases:

When V = 0 (or $\sum_{i} \alpha_i^2 = 1$), that is, ξ is normal to \mathcal{M} , since from (2.4) and (2.10) we have $\psi^2 = I$, $g(\psi X, \psi Y) = g(X, Y)$, (ψ, g) is an almost product Riemannian structure whenever ψ is non-trivial.

When $V \neq 0$ (or $\alpha_i = 0$), that is, ξ is tangent to \mathcal{M} , by means of (2.4), (2.9), (2.10) and v(X) = g(V, X), (ψ, V, v, g) is an almost paracontact Riemannian structure. From [2], [3] we have

Theorem 2.1. Let \mathcal{M} be an invariant submanifold immersed in an almost paracontact Riemannian manifold \mathcal{M} with a structure (φ, ξ, η, G) . Then one of the following cases occurs.

1.) ξ is normal to \mathcal{M} . In this case, the induced structure (ψ, g) on \mathcal{M} is an almost product Riemannian structure whenever ψ is non-trivial.

2.) ξ is tangent to \mathcal{M} . In this case, the induced structure (ψ, V, v, g) is an almost paracontact Riemannian structure.

Furthermore, we have the following theorems.

Theorem 2.2. In order that, in an almost paracontact Riemannian manifold $\overline{\mathcal{M}}$ with a structure (φ, ξ, η, G) , the submanifold \mathcal{M} of $\overline{\mathcal{M}}$ is invariant, it is necessary and sufficient that the induced structure (ψ, g) on \mathcal{M} is an almost product Riemannian structure whenever ψ is non-trivial or the induced structure (ψ, V, v, g) on \mathcal{M} is an almost paracontact Riemannian structure.

Proof. From Theorem 2.1, the necessity is evident. Conversely, we first assume that the induced structure (ψ, g) is an almost product Riemannian structure. Then from (1.8) we have $v(X)V + \sum_{i} u_i(X)U_i = 0$, from which $g(v(X)V + \sum_{i} u_i(X)U_i, X) = 0$, that is, $v(X)^2 + \sum_{i} u_i(X)^2 = 0$. Consequently, since we get $v(X) = u_i(X) = 0$ (i = 1, 2, ..., s), the submanifold \mathcal{M} is invariant and ξ is normal to \mathcal{M} .

Next, we assume that the induced structure (ψ, V, v, g) is an almost paracontact Riemannian structure. Then from (1.8) we have $\sum_{i} u_i(X)U_i = 0$,

from which $u_i(X) = 0$ (i = 1, 2, ..., s) and from (1.9) we get $\alpha_i = 0$. Thus \mathcal{M} is invariant and ξ is tangent to \mathcal{M} .

Theorem 2.3. In order that, in an almost paracontact Riemannian manifold $\overline{\mathcal{M}}$ with a structure (φ, ξ, η, G) , the submanifold \mathcal{M} of $\overline{\mathcal{M}}$ is invariant, it is necessary and sufficient that the normal space $T_p(\mathcal{M})^{\perp}$ at every point $p \in \mathcal{M}$ admits an orthonormal basis consisting of eigenvectors of the matrix (φ) .

Proof. We assume that \mathcal{M} is invariant.

1.) When ξ is normal to \mathcal{M} , at $p \in \mathcal{M}$ we consider an s-dimensional vector space \tilde{W} and investigate the eigenvalues of the (s, s)-matrix (λ_{ij}) .

By means of (2.8) and (2.9), it is clear that the vector $(\alpha_1, \alpha_2, \ldots, \alpha_s)$ of the vector space \tilde{W} is a unit eigenvector of the matrix (λ_{ij}) and its eigenvalue is equal to 0.

Next, suppose that a vector (w_1, w_2, \ldots, w_s) satisfying $\sum_i \alpha_i w_i = 0$ is an eigenvector and its eignevalue is λ . Then we have $\sum_j \lambda_{ji} w_j = \lambda w_i$. From this equation, we get $\sum_{i,j} \lambda_{ki} \lambda_{ji} w_j = \lambda \sum_i \lambda_{ki} w_i$, from which $\sum_j (\sum_i \lambda_{ki} \lambda_{ji}) w_j = \lambda^2 w_k$. Using (2.6), we have $\sum_j (\delta_{kj} - \alpha_k \alpha_j) w_j = \lambda^2 w_k$, that is, $w_k = \lambda^2 w_k$. Then we get $\lambda^2 = 1$.

Consequently, if by a suitable transformation of the orthonormal basis $\{N_1, N_2, \ldots, N_s\}$ of $T_p(\mathcal{M})^{\perp}$, the matrix (λ_{ij}) becomes a diagonal matrix, then the diagonal components $\lambda_1, \lambda_2, \ldots, \lambda_s$ satisfy relations

$$\lambda_1^2 = \lambda_2^2 = \ldots = \lambda_{s-1}^2, \quad \lambda_s = 0.$$

In this case, if we denote by $\{\bar{N}_1, \bar{N}_2, \ldots, \bar{N}_s\}$ the orthonormal basis of $T_p(\mathcal{M})^{\perp}$, then from (1.18) we have $\varphi \bar{N}_l = \lambda_l \bar{N}_l$. Therefore, $\bar{N}_l (l = 1, 2, \ldots, s)$ are eigenvectors of the matrix (φ) and $\bar{N}_s = \xi$.

2.) When ξ is tangent to \mathcal{M} , from (2.6) we have $\sum_{i} \lambda_{ki}\lambda_{ji} = \delta_{kj}$. If we denote by (w_1, w_2, \ldots, w_s) an eigenvector of matrix (λ_{ij}) and by λ its eigenvalue, then we have $\sum_{j} \lambda_{ji} w_j = \lambda w_i$. Consequently, we have $\sum_{i,j} \lambda_{ki} \lambda_{ji} w_j = \lambda \sum_{i} \lambda_{ki} w_i$, that is, $w_k = \lambda^2 w_k$, from which we get $\lambda^2 = 1$. Thus since the eigenvalues of (λ_{ij}) are ± 1 , if by a suitable transformation of the orthonormal basis of $T_p(\mathcal{M})^{\perp}$, $\{N_1, N_2, \ldots, N_s\}$ becomes $\{\bar{N}_1, \bar{N}_2, \ldots, \bar{N}_s\}$, then $\bar{N}_1, \bar{N}_2, \ldots, \bar{N}_s$ are eigenvectors of matrix (φ) .

Conversely, if the orthonormal basis $\{\bar{N}_1, \bar{N}_2, \ldots, \bar{N}_s\}$ of $T_p(\mathcal{M})^{\perp}$ consists of eigenvectors of (φ) and these eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_s$ satisfy $\lambda_1^2 = \lambda_2^2 = \ldots = \lambda_{s-1}^2 = 1$, $\lambda_s = \pm 1$ or 0, then we have $\varphi \bar{N}_l = \lambda_l \bar{N}_l$. Consequently, since we have $\bar{U}_l = 0$, \mathcal{M} is invariant.

References

- T. Adati and T. Miyazawa: On paracontact Riemannian manifolds, TRU Math., 13-2 (1977), 27–39.
- [2] T. Miyazawa: Invariant hypersurface immersed in almost paracontact Riemannian manifold II, TRU Math., 15-2 (1979), 9–20.
- [3] J. Nikić: Submanifolds of the manifold with an $f(3, \varepsilon)$ -structure, N. Sad, J. Math. Vol. 27, No. 1, 1997, 111–116.
- [4] K. Yano, S. Ishihara: Invariant submanifolds of almost contact manifolds, *Kodai Math. Sem. Rep.*, **21** (1969) 350–364.