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Abstract. The object of the paper is to investigate the curvature tensor of the
complex conformal connection on locally conformal Kähler manifolds.

§ 1. Complex conformal connection.

Let (M, g, J), dimM = 2n, be an almost Hermitian manifold with metric g
and complex strusture J . This means that, with respect to the local coordinates
(xi), we have

J i
tJ

t
j = −δi

j , gpqJ
p
i Jq

j = gij .

The change of metric
g̃ij = e2pgij ,

there p is a certain scalar function, is conformal change of metric. Here and in the
sequel, we suppose that all functions are of the class C3.

In [4], K. Yano proved the following.
The affine connection ∇̃ with components Γ̃h

ji which satisfies

(1.1)

(a) ∇̃kg̃ji = 0,

(b) ∇̃kJh
j = ∇kJh

j ,

(c) Γ̃h
ji − Γ̃h

ij = −2Fjiq
h,

where qh is a vector field, Fji = J t
jgti and ∇ is the operator of covariant dif-

ferentiation with respect to the Christoffel symbols {h
ji} of the metric g, is given

by

(1.2) Γ̃h
ji = {h

ji}+ pjδ
h
i + piδ

h
j − gjip

h + qjJ
h
i + qiJ

h
j − Fjiq

h,
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where pi is the gradient of p and

(1.3)

(a) ph = ptg
th,

(b) qi = −ptJ
t
i ,

(c) qh = qtg
th.

The relation (1.3 (b)) is the consequence of the condition (1.1(b)). Yano
proved this for the Kähler manifolds, i.e. he used the condition ∇̃kJh

j = 0. In the
general case (1.1(b)), the proof is the same, and so we omit it. We note that we
have, as a consequence of (1.3(b)),

(1.4) qh = ptJh
t , pi = qtJ

t
i , ph = −Jh

t qt.

The connection (1.2) is called complex conformal connection. Yano also proved
the following [4]:

If in an 2n–dimensional Kähler manifold (2n ≥ 4) there exist a scalar function
p such that the complex conformal connection (1.2) is of zero curvature, then the
Bochner curvature tensor of the manifold vanishes.

This theorem can be generalized in the following way [3]:
If the curvature tensor R̃ of the connection (1.2) in an 2n–dimensional Kähler

manifold (2n ≥ 4) is algebraic curvature tensor and satisfies the Kähler condition

R(X, Y, JZ, JW ) = R(X, Y, Z, W ),

then its Weyl component is the Bochner tensor of the considered Kähler manifold.

The object of this paper is to investigate complex conformal connection (1.2)
on the locally conformal Kähler manifolds. After preliminary § 2, we find in § 3,
the necessary and sufficient condition such that the curvature tensor of the con-
nection (1.2) is an algebraic curvature tensor. In § 4, we give an example of locally
conformal Kähler manifold satisfying this condition. In § 5, we prove the relation
(5.7).

§ 2. Curvature tensor of a complex conformal connection.

Let

R̃kji
s = akΓ̃s

ji − ajΓ̃s
ki + Γ̃s

ktΓ̃
t
ji − Γ̃s

jtΓ̃
t
ki

be the curvature tensor of the connection (1.2), and

R̃kjih = g̃shR̃kji
s = e2pgshR̃kji

s.
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Then

(2.1)

e−2pR̃kjih = Rkjih

+ gjh(∇kpi − pkpi + qkqi +
1
2
gkiptp

t)

− gkh(∇jpi − pjpi + qjqi +
1
2
gjiptp

t)

− gji(∇kph − pkph + qkqh +
1
2
gkhptp

t)

+ gki(∇jph − pjph + qjqh +
1
2
gjhptp

t)

+ Fjh(∇kqi − pkqi − qkpi +
1
2
Fkiptp

t)

− Fkh(∇jqi − pjqi − qjpi +
1
2
Fjiptp

t)

− Fji(∇kqh − pkqh − qkph +
1
2
Fkhptp

t)

+ Fki(∇jqh − pjqh − qjph +
1
2
Fjhptp

t)

+ 2Fjk(piqh − qiph) + Fih(∇kqj −∇jqk)

+ qh(∇jFki −∇kFji) + qi(∇kFjh −∇jFkh)

+ qj∇kFih − qk∇jFih,

where Rkjih is the Riemannian curvature tensor, i.e. the curvature tensor of the
Levi–Civita connection {h

ji}.
Now, let us suppose that (M, g, J) is a locally conformal Kähler manifold, i.e.

we suppose that

(2.2) gij = e2σ ◦gij ,

where
◦
g is the metric of a Kähler manifold (M,

◦
g, J) and σ is a scalar function.

Then [1]

(2.3) ∇iJ
k
j = δk

i σtJ
t
j + gijσ

tJk
t − Jk

i σj + Fijσ
k,

where
σi =

aσ

axi
, σh = ghtσt.

From (2.3), we get

(2.4) ∇iFjh = gihσtJ
t
j − gijσtJ

t
h − Fihσj + Fijσh.

Substituting (2.4) into (2.1), we find

(2.5)

e−2pR̃kjih = Rkjih

+ gjhpki + gkipjh − gkhpji − gjipkh

+ Fjhqki + Fkiqjh − Fkhqji − Fjiqkh

+ Fkjβih − Fihαkj ,
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where

(2.6)

pji = ∇jpi − pjpi + qjqi +
1
2
gjiptp

t − qiσtJ
t
j − qjσtJ

t
i ,

qji = ∇jqi − pjqi − qjpi +
1
2
Fjiptp

t + qiσj + qjσi,

αkj = −(∇kqj −∇jqk),

βih = 2(piqh − qiph + qhσi − qiσh).

§ 3. The condition such that R̃ be the algebraic curvature tensor.

Let us suppose that R̃ is algebraic curvature tensor, i.e. that it satisfies

(3.1)

(a) R̃kjih = −R̃jkih = −R̃kjhi,

(b) R̃kjih = R̃ihkj ,

(c) R̃kjih + R̃jikh + R̃ikjh = 0.

The conditions (3.1(a)) are satisfied because, according (2.6), both αkj and βih

are skewsymmetric.
The condition (3.1(c)) is satisfied if and only if

(3.2)

Fjh(qki − qik − αik) + Fih(qjk − qkj − αkj) + Fkh(qij − qji − αji)

+ Fki(2qjh + βjh) + Fjk(2qih + βih)

+ Fij(2qkh + βkh) = 0.

But, according (2.6), we have

−qji + qij − αji = Fijptp
t.

This means that (3.2) can be rewritten in the form

(3.3)
Fik(2qjh + βjh + Fjhptp

t) + Fkj(2qih + βih + Fihptp
t)

+ Fji(2qkh + βkh + Fkhptp
t) = 0.

Transvecting (3.3) with J i
tg

tj , we get

2(n− 1)(2qkh + βkh + Fkhptp
t) = 0.

Thus, for n > 1, the condition

(3.4) 2qkh + βkh + Fkhptp
t = 0

is necessary and sufficient for (3.1(c)) to be satisfied.
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Taking into account (2.6), we can rewrite (3.4) in the form

(3.5) ∇kqh = 2qkph − 2qhσk − Fkhptp
t

Now,
αjh = −∇jqh +∇hqj

= −2qjph + 2qhpj + 2qhσj − 2qjσh + 2Fjhptp
t

and in view of
βjh = 2(pjqh − qjph + qhσj − qjσh),

we have

(3.6) αjh − βjh = 2Fjhptp
t.

Finally, from (3.4), we get

(3.7) qkh + qhk = 0.

Now, we can discuss (3.1(b)). This relation is satisfied if and only if

(3.8)
Fjh(qki + qik) + Fki(qjh + qhj)− Fkh(qji + qij)− Fji(qkh + qhk)

+ Fkj(αih − βih)− Fih(αkj − βkj) = 0.

But, in view of (3.6) and (3.7), (3.8) is satisfied identicaly.
From (3.5), in view of (1.3) and (1.4), we have

(∇kqt)J t
j = −2qkqj − 2pjσk − gijσtσ

t.

But
(∇kqt)J t

j = ∇k(qtJ
t
j )− qt∇kJ t

j ,

and using (2.3), we get

(∇kqt)J t
j = ∇kpj − qkσtJ

t
j − gkjqtσ

sJ t
s + pkσj − Fkjqtσ

t.

Thus,

(3.9)
∇kpj = −2qkqj − 2pjσk + gkj(ptσ

t − ptp
t)

− pkσj + Fkjqtσ
t,

But ∇kpj is a symmetric tensor because pj is a gradient. Therefore,

pjσk − pkσj + qjσtJ
t
k − qkσtJ

t
j = 2Fkjqtσ

t.

Transvecting this with pj , we find

(3.10) ptp
tσk − pkσtp

t = −qkqtσ
t.
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Transvecting (3.10) with qk, we obtain

ptp
tσkqk = −pkpkqtσ

t

that is, σtq
t = 0 because of ptp

t 6= 0. Thus, (3.10) reduces to

ptp
tσk = pkσtp

t.

If σtp
t = 0, then σk = 0, i.e. σ = const., which means that (M, g, J) ia a Kähler

manifold. Thus, σtp
t 6= 0 and we have

(3.11) pk = fσk, qk = −fσtJ
t
k, ptp

t = f2σtσ
t,

where

f =
ptp

t

ptσt
,

is some scalar function. Now, (3.9) and (3.5) reduce, respectively to

(3.12) ∇kpj = −(f + 2f2)σtσsJ
t
kJs

j − 3fσjσk + (f − f2)σtσ
tgkj ,

and

(3.13) ∇kqj = −2f2σtJ
t
kσj + 2fσtJ

t
jσk − f2Fkjσtσ

t,

and we can state the theorem

Theorem 1. Let (M, g, J) be a locally conformal Kähler manifold, dimM =
2n, 2n ≥ 4, and let R̃ be the curvature tensor of the complex conformal connection

(1.2) on it. Then R̃ is an algebraic curvature tensor if and only if (3.12), or
equivalently (3.13), holds. The functions σ and f are determined by (2.2) and
(3.11) respectively.

In view of (2.6), (3.11), (3.12) and (3.13), we have

(3.14)

pji = (f − f2)σtσsJ
t
jJ

s
i − (3f + f2)σjσi + (f − 1

2
f2)σtσ

tgji,

qji = −(f2 + f)σtJ
t
jσi + (f2 + f)σtJ

t
i σj − 1

2
σtσ

tFji,

αkj = 2(f2 + f)σtJ
t
kσj − 2(f2 + f)σtJ

t
jσk + 2f2σtσ

tFkj ,

βih = 2(f2 + f)σtJ
t
i σh − 2(f2 + f)σtJ

t
hσi.
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§ 4. Example.

In [2] it is proved the following.
Let a Riemannian space M , dimM = 2n, have a metric defined by

(4.1)
◦
gab =

◦
ga+n b+n = aabG + aa+n b+nG,

◦
ga b+n = aa b+nG− aa+n bG,

where
G = G(x1 + S(x2, . . . , xn, x2+n, . . . , x2n)),

G′G′′ 6= 0, G, S are functions of given arguments, a, b = 1, 2, . . . , n; |◦gij | 6= 0.
Then this space is the Kähler space which admits a scalar function σ such

that the vector field σi = aσ
axi satisfies

(4.2)
◦
∇jσi = a◦gji + c(σiσj + σpσqJ

p
i Jq

j ),

where
◦
∇ denotes the Levi–Civita connection with respect to the metric (4.1), and

a and c are some functions.
We note that the latin indices i, j, k, p, q, t run over the range 1, 2, ..., 2n.
In local coordinates in which the conditions (4.1) are valid, the complex struc-

ture is defined by

(4.3) Ja+n
b = −Ja

b+n = δa
b , Ja

b = Ja+n
b+n = 0.

As for vector field σi, it has the components σi = aσ
axi =

◦
gi1 and thus σi =

◦
gijσj =

δi
1. Therefore

σ1 =
aσ

ax1
=
◦
g11 = G,′′

σ1+n =
aσ

ax1+n
=
◦
g1+n 1 = 0,

σα =
aσ

axα
=
◦
gα1 = G′′

aS

axα
,

σα+n =
aσ

axα+n
=
◦
gα+n 1 = G′′

aS

axα+n
, α = 2, ..., n.

Thus, we see that

(4.4) σ = G′.

Also,

(4.5) σtσ
t =

◦
gijσ

iσj =
◦
gijδ

i
1δ

j
1 =

◦
g11 = G′′.
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As for the functions a and c, we have [2]:

a =
1
2

G′′

G′
, c =

1
2

G′′′G′ − (G′′)2

G′(G′′)2
.

In view of (4.4) and (4.5), the function a can be expressed in the form

a =
1
2

σtσ
t

σ
.

Now, let us suppose that G is the solution of the differential equation

(4.6)
1
2

G′′′G′ − (G′′)2

G′(G′′)2
=

1
G′

− 1.

Then c = 1/G′ − 1 and therefore 2a/(σtσ
t) = 1 + c. Let us put

(4.7) f = − 1
2σ

.

Then
a = −fσtσ

t, c = −2f − 1,

and (4.2) can be rewritten as follows

(4.8)
◦
∇jσi = (−fσtσ

t)
◦
gij − (1 + 2f)(σiσj + σpσqJ

p
i Jq

j ).

Now, let us consider the conformal change

g = e2σ ◦g.

Then (M, g, J) is the locally conformal Kähler manifold. Obviously, we have

{k
ij} =

◦
{k

ij}+ δk
i σj + δk

j σi − ◦
gijσ

k

and
∇jσi =

◦
∇jσi − 2σiσj +

◦
gijσtσ

t,

where ∇ and
◦
∇ denote the Levi–Civita connections with respect to the metrics g

and
◦
g respectively. Substituting (4.8) into the last relation, we find

(4.9) ∇jσi = −(3 + 2f)σjσi − (1 + 2f)σpσqJ
p
j Jq

i + (1− f)σtσ
tgji.

Finally, let us put pi = fσi (see (3.11)). Then

∇jpi =
af

axj
σi + f∇jσi.
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But, taking into account (4.7), we have

af

axj
= 2f2σj .

This means that

∇jσi =
1
f
∇jpi − 2fσiσj .

Substitutuing this into (4.9), we find

∇jpi = −3fσjσi − f(1 + 2f)σpσqJ
p
j Jq

i + f(1− f)σtσ
tgji.

But this is just the condition (3.12). Thus we can state

Theorem 2. Let us consider the Kähler manifold (M,
◦
g, J) with metric (4.1)

and complex structure (4.3). Let the function G be the solution of the differential
equation (4.6). If we put

σ = G′, gij = e2σ ◦gij ,

then (M, g, J) is the locally conformal Kähler manifold satisfying the conditions
of Theorem 1, where f = −1/(2σ) = −1/(2G′).

§ 5. Some more results.

Transvecting (2.5) with gkh = e2pg̃kh and denoting by R̃ji and Rji the corre-
sponding Ricci tensors, we find

(5.1)
R̃ji = Rji − 2(n− 1)pji − gjipkhgkh

+ J t
j (qti + βit)− J t

i (qjt + αtj).

But, according (3.14), we have

pkhgkh = [(2n− 2)f − (n + 2)f2]σtσ
t,

(qti + βit)J t
j = 3(f2 + f)σjσi + 3(f2 + f)σpσqJ

p
i Jq

j +
1
2
f2gijσtσ

t,

(qjt + αtj)J t
i = −3(f2 + f)σiσj − 3(f2 + f)σpσqJ

p
i Jq

j −
σ

2
f2gijσtσ

t,

because of which, (5.1) becomes

R̃ji = Rji + [6nf + 2(n + 2)f2]σiσj

+ [−2(n− 4)f + 2(n + 2)f2]σpσqJ
p
i Jq

j

+ [−4(n− 1)f + 2(n + 2)f2]σtσ
tgij .
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Let us put

(5.2)

6nf + 2(n + 2)f2 = A,

− 2(n− 4)f + 2(n + 2)f2 = B,

[−4(n− 1)f + 2(n + 2)f2]σtσ
t = C.

Then the preceding relation can be rewritten in the form

(5.3) R̃ji = Rji + Aσiσj + BσpσqJ
p
i Jq

j + Cgij ,

from which it follows

(5.4) R̃pqJ
p
i Jq

j = RpqJ
p
i Jq

j + Bσiσj + AσpσqJ
p
i Jq

j + Cgij .

We obtain from (5.3) and (5.4)

σiσj =
( A

A2 −B2
R̃ij − B

A2 −B2
R̃pqJ

p
i Jq

j

)

−
( A

A2 −B2
Rij − B

A2 −B2
RpqJ

p
i Jq

j

)
− C

A + B
gij ,

σpσqJ
p
i Jq

j = −
( B

A2 −B2
R̃ij − A

A2 −B2
R̃pqJ

p
i Jq

j

)

+
( B

A2 −B2
Rij − A

A2 −B2
RpqJ

p
i Jq

j

)
− C

A + B
gij ,

σiσtJ
t
j =

( A

A2 −B2
R̃tiJ

t
j +

B

A2 −B2
R̃jtJ

t
i

)

−
( A

A2 −B2
RtiJ

t
j +

B

A2 −B2
RjtJ

t
i

)
− C

A + B
Fji.

Substituting this into (3.14), we find

pji =−
[ (3f + f2)A + (f − f2)B

A2 −B2
R̃ji − (3f + f2)B + (f − f2)A

A2 −B2
R̃pqJ

p
i Jq

j

]

+
[ (3f + f2)A + (f − f2)B

A2 −B2
Rji − (3f + f2)B + (f − f2)A

A2 −B2
RpqJ

p
i Jq

j

]

+
[2(f + f2)C

A + B
+ (f − 1

2
f2)σtσ

t
]
gij ,

qji =(f + f2)[−(R̃tiJ
t
j − R̃tjJ

t
i ) + (RtiJ

t
j −RtjJ

t
i )]

+
[2(f + f2)C

A + B
− 1

2
f2σtσ

t
]
Fji,

αkj =
2(f + f2)

A + B
[(R̃tjJ

t
k − R̃tkJ t

j )− (RtjJ
t
k −RtkJ t

j )]

+ [−4(f + f2)
C

A + B
+ 2f2σtσ

t]Fkj ,

βih =− 2(f + f2)
A + B

[(R̃tiJ
t
h − R̃thJ t

i )− (RtiJ
t
h −RthJ t

i )] +
4(f + f2)C

A + B
Fhi.
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To determine σtσ
t we transvect (5.3) with gij = e2pg̃ij . Then, putting

R̃ = R̃ij g̃
ij , R = Rijg

ij ,

we get

(5.5) σtσ
t =

e2pR̃−R

4ϕ
,

where

(5.6) ϕ = (n + 1)(n + 2)f2 − (2n2 − 3n− 2)f.

We note that, in view of (5.3), R̃ij is the symmetric tensor. Also, we note that

A + B = 4(n + 2)(f + f2), A−B = 8(n− 1)f,

A2 −B2 = 32(n− 1)(n + 2)f(f + f2).

Thus, if f 6= −1, we finally have

pji =−
( 2n + 1

4(n− 1)(n + 2)
R̃ji − 3

4(n− 1)(n + 2)
R̃pqJ

p
j Jq

i

)

+
( 2n + 1

4(n− 1)(n + 2)
Rji − 3

4(n− 1)(n + 2)
RpqJ

p
j Jq

i

)

+
(1

2
f2 − n− 4

n + 2
f
)(e2pR̃−R

4ϕ

)
gji,

qji =− 1
4(n + 2)

(R̃tiJ
t
j − R̃tjJ

t
i ) +

1
4(n + 2)

(RtiJ
t
j −RtjJ

t
i )

+
[1
2
f2 − 2(n− 1)

n + 2
f
](e2pR̃−R

4ϕ

)
Fji,

αkj =
1

2(n + 2)
(R̃tjJ

t
k − R̃tkJ t

j

)
− 1

2(n + 2)
(RtjJ

t
k −RtkJ t

j )

+
4(n− 1)f

n + 2

(e2pR̃−R

4ϕ

)
Fkj ,

βih =− 1
2(n + 2)

(R̃tiJ
t
h − R̃thJ t

i ) +
1

2(n + 2)
(RtiJ

t
h −RthJ t

i )

+
1

n + 2
[2(n + 2)f2 − 4(n− 1)f ]

(e2pR̃−R

4ϕ

)
Fhi.

Substituting this into (2.5), we get

(5.7) e−2pW̃kjih = Wkjih
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where

(5.8)

Wkjih = Rkjih

+
2n + 1

4(n− 1)(n + 2)
(gjhRki + gkiRjh − gkhRji − gjiRkh)

− 3
4(n− 1)(n + 2)

(gjhRstJ
s
kJ t

i + gkiRstJ
s
j J t

h − gkhRstJ
s
j J t

i

− gjiRstJ
s
kJ t

h)

+
1

4(n + 2)
[Fjh(RtiJ

t
k −RtkJ t

i ) + Fki(RthJ t
j −RtjJ

t
h)

− Fkh(RtiJ
t
j −RtjJ

t
i )− Fji(RthJ t

k −RtkJ t
h)]

− 1
2(n + 2)

[Fkj(RtiJ
t
h −RthJ t

i ) + Fih(RtkJ t
j −RtjJ

t
k)]

+
R

4ϕ

[(
f2 − 2(n− 4)

n + 2
f
)
(gkhgji − gjhgki)

+
(
f2 − 4(n− 1)f

n + 2

)
(FkhFji − FjhFki − 2FkjFih)

]
,

and W̃kjih is constructed in the same manner, but using the curvature tensor R̃kjih

and the metruc g̃.
We can easely see that the Ricci tensor of the tensor (5.8), Wji = Wkjihgkh,

vaniches. Thus, and in view of Theorem 1, we can state

Theorem 3. Let (M, g, J) be a locally conformal Kähler manifold and let R̃

be the curvature tensor of the complex conformal connection (1.2) on it. If R̃ is
an algebraic curvature tensor and f 6= −1, then for the tensor (5.8) and the tensor

W̃ constructed in the same manner but using R̃ and the metric g̃ instead of R and
g, (5.7) holds. The Ricci tensor of the tensor (5.8) vanishes.
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