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ABSTRACT. The object of the paper is to investigate the curvature tensor of the
complex conformal connection on locally conformal K&ahler manifolds.

§1. Complex conformal connection.

Let (M,g,J), dimM = 2n, be an almost Hermitian manifold with metric g
and complex strusture J. This means that, with respect to the local coordinates
("), we have

- :
The change of metric
gij = e Gij,
there p is a certain scalar function, is conformal change of metric. Here and in the
sequel, we suppose that all functions are of the class C3.

In [4], K. Yano proved the following.
The affine connection V with components F;-’i which satisfies

(a) Vigji =0,
S tho_ h
(c) F;'Li - f?g = —2F}q",

where ¢" is a vector field, Fj; = J;gti and V is the operator of covariant dif-

ferentiation with respect to the Christoffel symbols ?Z} of the metric g, is given
by
(1.2) F?i = {?z} + p;o; +pz'5jh —giip" + g I+ quJh — Fjiq",

Typeset by ApS-TEX
127



128

where p; is the gradient of p and

(a) p"=pig™,
(1.3) (b) ¢ = —pJ},
) ¢" = aqg™.

The relation (1.3 (b)) is the consequence of the condition (1.1(b)). Yano
proved this for the Kéahler manifolds, i.e. he used the condition Vil Jh = 0. In the
general case (1.1(b)), the proof is the same, and so we omit it. We note that we
have, as a consequence of (1.3(b)),

(1.4) ¢ =p' I, pi=aldl, pPP=-Jtq.

The connection (1.2) is called complex conformal connection. Yano also proved
the following [4]:

If in an 2n—dimensional Kahler manifold (2n > 4) there exist a scalar function
p such that the complex conformal connection (1.2) is of zero curvature, then the
Bochner curvature tensor of the manifold vanishes.

This theorem can be generalized in the following way [3]:

If the curvature tensor R of the connection (1.2) in an 2n—dimensional K&hler
manifold (2n > 4) is algebraic curvature tensor and satisfies the Kéhler condition

R(X,Y,JZ,JW) = R(X,Y, Z,W),

then its Weyl component is the Bochner tensor of the considered Kahler manifold.

The object of this paper is to investigate complex conformal connection (1.2)
on the locally conformal Kéhler manifolds. After preliminary §2, we find in §3,
the necessary and sufficient condition such that the curvature tensor of the con-
nection (1.2) is an algebraic curvature tensor. In § 4, we give an example of locally
conformal Kéhler manifold satisfying this condition. In §5, we prove the relation
(5.7).

§2. Curvature tensor of a complex conformal connection.

Let
Ekjis = akfiz - Djfzi + thfzz - fjtf};z

be the curvature tensor of the connection (1.2), and

~ L S~
Ryjin = gsnRiji® = e PgsnRiji°.
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Then
e Ryjin = Rujin
+%M%ﬁ—m%+mm+%%%ﬁ)
— 9kn(Vipi — pipi + @0 + %gjiptpt)
—%W@%—mm+%%+%%wﬁ)
+mﬂ%m—mm+%%+%wﬁﬁ)
(2.1) +Emvwrﬂwn—%m+%ﬂwm5

1
— Fin(Vjiqi —pjqi — qjpi + 2 5ipep')

1
— F5i(Viean — pran — qepn + §Fkhptpt)

1

+ Fri(Viqn — pjqn — qjpn + 5 inpep’)

+ 2F}i(pign — qipn) + Fin(Viq; — Viar)

+qn(ViFri — ViFji) + ¢i(ViFjn — ViFry)

+q;ViFin — q Vi Fip,
where Rjjip is the Riemannian curvature tensor, i.e. the curvature tensor of the
Levi-Civita connection { ?Z}

Now, let us suppose that (M, g, J) is a locally conformal Kéhler manifold, i.e.

we suppose that

(2.2) 9ij = 6’20;13'7

where g is the metric of a Kéhler manifold (M, g,J) and ¢ is a scalar function.
Then [1]

(2.3) ViJ} = 0701J} + gijo' I — Jfoj + Fio®,
where 5
o
0; = Dy’ = ghto-t'

From (2.3), we get

(24) Vith = gihatJ; - gijotJ,’i — Fihaj + Fijo'h-

Substituting (2.4) into (2.1), we find

e_zpékjih = Ryjin
+ 9jnDki + 9kiPjh — GkhPji — 9jiPkh
+ Finqri + Friqjn — Frenqji — Fjiqen
+ FijBin — Finau;,

(2.5)
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where
1 t t t
Pji = Vjipi — pipi + ¢ + 593iPtP — giotd; — qjord;,
1
(2.6) qji = V¢ — piqi — q;pi + B jiptpt + qio; + q;04,

ar; = —(Vig; — Viar),
Bin = 2(pign — ¢iPn + qnoi — qion).

§3. The condition such that R be the algebraic curvature tensor.

Let us suppose that R is algebraic curvature tensor, i.e. that it satisfies

(a) éka‘h = —éjm'h = _ékjhia

(3.1) (b) Ekjih = Rinkj,
(c) éka’h + fiﬂkh + Eikjh = 0.

The conditions (3.1(a)) are satisfied because, according (2.6), both ay; and S
are skewsymmetric.
The condition (3.1(c)) is satisfied if and only if

Fin(qri — ix — cir) + Fin(qjn — arj — o) + Frn(qi; — 50 — ai)
(3.2) + Fri(2q;n + Bjn) + Fir(2qin + Bin)
+ Fi;(2qxn + Brn) = 0.

But, according (2.6), we have
—Qji + @ij — aji = Fijpp'.
This means that (3.2) can be rewritten in the form

(3.3) Fir(2qjn + Bjn + Finpep') + Fioj (2qin + Bin + Finpep")
+ Fji(2qrn + Bin + Frnpep’) = 0.
Transvecting (3.3) with Jig/, we get

2(n — 1)(2qrn + Ben + Fenpp') = 0.
Thus, for n > 1, the condition

(3.4) 2qxn + Brn + Frnpip’ =0

is necessary and sufficient for (3.1(c)) to be satisfied.
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Taking into account (2.6), we can rewrite (3.4) in the form

(3.5) Vian = 2qkpn — 20k — Frnpip’

Now,
ajn = —Viqn + Vig;

= —2q;pn + 2qnpj + 2qn0;j — 2qj0n + 2F;npep’

and in view of

Bin = 2(pjan — ¢ipn + @0 — qj0n),
we have
(3.6) ajn — Bjn = 2thptpt-
Finally, from (3.4), we get
(3.7) qkh + qnr = 0.

Now, we can discuss (3.1(b)). This relation is satisfied if and only if

Fin(qri + qix) + Fri(qin + ang) — Frn(qji + @i5) — Fji(qren + qne)

(3.8)
+ Fj(cin — Bin) — Fin(akj — Brj) = 0.

But, in view of (3.6) and (3.7), (3.8) is satisfied identicaly.
From (3.5), in view of (1.3) and (1.4), we have

(Viae)Jj = —2qrq; — 2pjor — gijoeo’.

But
(Vige)Jj = Via:J}) — ¢: Vi,

and using (2.3), we get
(Viae)Jj = Vip; — qxovJ; — grjaeo® JL + proy — Frjqo”.
Thus,

Vip; = —2qrq; — 200k + grj(pro’ — pep’)
(3.9) ;
—proj + Friqo”,
But Vip; is a symmetric tensor because p; is a gradient. Therefore,
Piok — Proj + qjoJi — qpoe ] = 2Fy 0"

Transvecting this with p?, we find

(3.10) piptor — prop’ = —qrqio’
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Transvecting (3.10) with ¢*, we obtain
pep'org® = —prp*asot
that is, o4q" = 0 because of p;p* # 0. Thus, (3.10) reduces to
pep'or = prowp’.

If oyp' = 0, then o = 0, i.e. o = const., which means that (M, g, J) ia a Kéahler
manifold. Thus, o;p’ # 0 and we have

(3.11) k= for, q.=—foud}, pp' = fPoot,
where .
_ btp
PtUt’

is some scalar function. Now, (3.9) and (3.5) reduce, respectively to
(3.12) Vip; = —(f + 2!]”2)0,508(]};%‘-9 —3fojor+ (f — fQ)Jtatgkj,
and

(3.13) Vg = —2f20tJ};aj + 2fatJ;ak - szkjatat,

and we can state the theorem

Theorem 1. Let (M, g,J) be a locally conformal Kéhler manifold, dimM =
2n, 2n > 4, and let R be the curvature tensor of the complex conformal connection
(1.2) on it. Then R is an algebraic curvature tensor if and only if (3.12), or
equivalently (3.13), holds. The functions o and f are determined by (2.2) and
(3.11) respectively.

In view of (2.6), (3.11), (3.12) and (3.13), we have

pji = (f — f2)owos JLJS — (3f + f2)ojoi + (f — %fQ)UtUtgjia

1
(3.14) i = —(f* + f)UtJ;Ui +(f* + foeJioj — §O't0'tFji,

Qpj = 2(f2 + f)atJ,iaj — 2(f2 + f)JtJ;ka + QfQUtUtij7
Bin =2(f* + fowJion — 2(f* + fovJ}o:.
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§4. Example.

In [2] it is proved the following.
Let a Riemannian space M, dimM = 2n, have a metric defined by

(4‘1) E]ab = ga-i-n b+n — DabG + Da—i—n b+nG7

,aa b+n — Da b—l—nG - Da—i—n va

where
G =G+ S, 2", ™),

G'G" #0, G, S are functions of given arguments, a, b=1,2,...,n; |§U\ #0.

Then this space is the Kahler space which admits a scalar function o such

that the vector field o; = gg satisfies

o

(4.2) Vjoi = 2gji + c(ojo; + 730477 J});

where V denotes the Levi-Civita connection with respect to the metric (4.1), and
a and c are some functions.

We note that the latin indices ¢, j, k, p, ¢, t run over the range 1,2, ..., 2n.

In local coordinates in which the conditions (4.1) are valid, the complex struc-
ture is defined by

(4.3) JPr = =g, =6y, Iy = J;j,? =0.

As for vector field o;, it has the components o; = % = 51'1 and thus ¢* = Eij g; =
§%. Therefore

oo o
01 = Szl =gu =G/
oo o
Oltn = 5 95, = Ji4n1 = 0,
o0 o  _,08
Oa = ox® =91 =G oz’
oo o oS

Oatn = Spatn =0Jatnl = G//onﬂ'”’ a=2,..n.
Thus, we see that
(4.4) o=0_G"
Also,

(45) O'tO't = ‘E]ijO'iO'j == 513(51(5{ = 511 = G”.
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As for the functions a and ¢, we have [2]:

1 G// 1 G///G/ _ (G//)Q
26 ‘T2 ey

a

In view of (4.4) and (4.5), the function a can be expressed in the form

1 0.0t

T2 0

a

Now, let us suppose that GG is the solution of the differential equation

1 G///G/ _ (G//)2 B 1

(4.6) 9 G/(G//)Q - a

Then ¢ = 1/G" — 1 and therefore 2a/(c;0') = 1+ ¢. Let us put

1
20"

(4.7) f=

Then
a=—fo0!, c=-2f—1,

and (4.2) can be rewritten as follows
(4.8) Vjo; = (—fUtUt)E]ij —(1+2f)(oioj + Upquszjq)-
Now, let us consider the conformal change

g=e

Then (M, g,J) is the locally conformal Kéhler manifold. Obviously, we have

gy =5} +6Fa; + 850 — gijo”

and

[¢]
o
t
Vo =Vjo; —20,0; + gij0:0°,

¢}
where V and V denote the Levi-Civita connections with respect to the metrics g
and ¢ respectively. Substituting (4.8) into the last relation, we find

(4.9) Vjoi == +2f)ojoi — (1 +2f)opoq J7 T + (1 - ooty
Finally, let us put p; = fo; (see (3.11)). Then

of
Vjp,- = @O’i —+ ijO’i.
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But, taking into account (4.7), we have

of o

This means that .
f

Substitutuing this into (4.9), we find

VjO'i = Vjpi —QfO'iO'j.

Vjpi = =3fojoi — f(1 4 2f)opoy J} J] + f(1 = flowo'gj:.
But this is just the condition (3.12). Thus we can state

Theorem 2. Let us consider the Kihler manifold (M, g,J) with metric (4.1)
and complex structure (4.3). Let the function G be the solution of the differential
equation (4.6). If we put

o=G", gij =g
then (M, g, J) is the locally conformal Kéhler manifold satisfying the conditions
of Theorem 1, where f = —1/(20) = —1/(2G").

§5. Some more results.

Transvecting (2.5) with ¢g*" = e?’§*" and denoting by Eji and R;; the corre-
sponding Ricci tensors, we find

Eji = Rji —2(n — )pj; — gipng™"

(5.1) ) .
+ Jj(qei + Bie) — Ji (q5e + agj).

But, according (3.14), we have
peng™" = [(2n = 2)f — (n +2) f*|oy0”,
1
(gri + Bie) T} = 3(f* + [lojoi + 3(f* + [lopog J] J] + §f29ij0t0t;

o
(4t + )y = =3(f* + [loio; = 3(f* + flopog J} ] — §f29ij‘7t‘7t7
because of which, (5.1) becomes

Rji = Rji + [6nf + 2(n + 2) fYoio;
+ [=2(n = 4)f +2(n +2) f*loyog ST
+[—4(n — 1)f +2(n +2) f*]os0" gij.
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Let us put

6nf +2(n+2)f? =
(5.2) —2(n—4)f +2(n+2)f* =B,
[—4(n — 1)f +2(n + 2) f?|oo’ = C.

Then the preceding relation can be rewritten in the form

(53) Eji = Rji + AO'z'O'j + BO'pO'qupJ]q + Cgij,
from which it follows

(5.4) quJpJq quJpJq + Booj + AapanpJ +Cgij.

We obtain from (5.3) and (5.4)

A = B -
1% = <A2 —pli T e quJfJf)
A B C
(oo ~ momtn) ~ o
B - A =
79031} = ~( g i — gr g Fon 1)
B A C
+<A2 2RiJ_A2_BszqupJ;’1>_—A+B9ij»
A
0100J) = (73 Resl} + 5 e}
C
t t) _ .
<A2 3 iy + RﬂJ) A1 B
Substituting this into (3.14), we find
(Bf+A+(F-f)Bs  Bf+f)B+(f-[)AS
P == A2 B2 Hii = 2B R 17}
(3f+f2)A+(f f?)B Bf+ B+ (f - A
+| Ea—r Ry — T Ry 7|
2(f + f3)C Lo t]
+ | A+ B +(f_ f )O-to']gzp
gi =(f + )~ (Res T} — Rt]‘]t) + (RuiJ; — RijJ;)]
2+ )0 1, -
M s i T
f+£
oty =S EID (Rt~ B t) — (g It s )
C
A+ ) g T2 oo E,
2(f + %), ~ ~ A4(f + f4)C
Bin = — ﬁ[(RtiJﬁb — RupJY) — (Rudf — RnJH)] + %Fm.
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To determine o0t we transvect (5.3) with g% = e?Pg%. Then, putting

we get
; e>R — R
(5.5) o0 = 1o
where
(5.6) o= n+1)(n+2)f*—(2n* —3n —2)f.

We note that, in view of (5.3), R;; is the symmetric tensor. Also, we note that

A+B=4n+2)(f+f?), A-B=8(n-1)f,

A2 - B?=32(n—1)(n+2)f(f + ).
Thus, if f # —1, we finally have
2n +1 ~
Pii == (4(n "Dt v
2n +1 )
+ (4(n— Din+2) 7 4n—1)(n+2)

[ =P
1

T (RuJt— Rt

3 D 7P 74
M= 1)(n 1 2) el 7)
3

Ry J7J7 )

qji = — (RtiJ}5 - Rtjjf)

4(n+2)

n— ¢*’R —
()

(FujJi — R Jt) —

1 2

3
1

2(n+2) 2(n+2)
An—1)f /e R— R

T2 ( 4o >F’”"

1 D7t D t
2(n+2)(R“Jh RinJ;) +

+ni2[2(n+2)f2—4(n—1)f]<

(Rij Ty — RunJ)

O,/kj =

Bin = — (ReiJf, — RenJy)

2(n+2)
e?R — R
4o

) P
Substituting this into (2.5), we get

(5.7) G_QPijih = ijih
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where
Whiiin = Rijin
2n+1
= 1)(n 1 2) i & graltin = g By = ggiftun)
3
B TCEs ey (9inRst I3 I + geiRst I3 Jf, — ginRse JS I}
— gjiRat J3J})
1
(5.8) + 4(n + 2) [Fjn(ReiJy — ReJ) + szi(RthJ; — Ry J})
— Fun(RuiJ; — RijJi) — Fyi(RanJi — R J}))]
1
- W[ij(RtiJﬁ — RinJ}) + Fin(RuJ] — RejJy)]
R 2(n — 4
tapl(r - %f ) (@nss = gingr)

(f — %)(FkhFji — FjpFri — 2ijFih)]7

and Wkﬂh is constructed in the same manner, but using the curvature tensor fikﬂh
and the metruc g.

We can easely see that the Ricci tensor of the tensor (5.8), Wi = ijihgkh
vaniches. Thus, and in view of Theorem 1, we can state

Theorem 3. Let (M, g, J) be a locally conformal Kahler manifold and let R

be the curvature tensor of the complex conformal connection (1.2) on it. If R is
an algebraic curvature tensor and f # —1, then for the tensor (5.8) and the tensor

W constructed in the same manner but using R and the metric g instead of R and
g, (5.7) holds. The Ricci tensor of the tensor (5.8) vanishes.
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