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Abstract. 1. In [1] Owojori and Imoru [10] introduced a three-step iteration procedure
and established some convergence results.

2. In this work, a more acceptable revised three-step iteration scheme is introduced as

a generalization of the Ishikawa and Mann iteration schemes with errors given by Liu [11]

and Xu [16]. Some new fixed point results are then established which improve the results of

Owojori and Imoru [13] and are generalizations of the results of Ishikawa(1974), Chidume

[1, 2, 3, 4], Liu [11], Xu [16], and Chidume and Osilike [5, 6] on fixed points (solutions) of

pseudocontractive operators (accretive operator equations) in arbitrary Banach spaces
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1. INTRODUCTION

In the last four decades, researchers have been investigating fixed points

of nonlinear operators with one-step and two-step iteration schemes, for which the

Mann and iteration schemes have been prominent . Liu [8] introduced the Ishikawa

and Mann iteration schemes with errors as a generalization of the Mann and Ishikawa

iteration schemes . He defined the Ishikawa scheme with errors iteratively for arbitrary

x1 ∈ K by:
xn+1 = (1− αn)xn + αnTyn + un

yn(1− βn)xn + βnTxn + vn

}
n ≥ 1 (1.1)

where {αn}, {βn} are sequences in [0,1] ,

and
∑ ‖un‖ < ∞ and

∑ ‖vn‖ < ∞ .

This was used by many researchers to approximate solutions of nonlinear operator

equations for various contractive mappings. However, it was observed by some au-

thors that the condition that the error terms be absolutely summable is rather too

restrictive. Xu[15] later introduced a more acceptable Ishikawa iteration schemes

with errors which he defined for an arbitrary x0 ∈ K - a nonempty convex subset of

a normed space X by :

xn+1 = anxn + bnTyn + cnun

yna
′
nxn + b

′
nTxn + c

′
nvn

}
n ≥ 1 (1.2)

where T is a selfmapping of K. {un}, {vn} are bounded sequences in K and {an},
{bn}, {cn}, {a′n}, {b′n}, {c′n}, are sequences in [0,1], satisfying

an + bn + cn = 1 = a
′
n + b

′
n + c

′
n, and

∑
bn = 0, ∀ n ≥ 1 .

The scheme (1.2) became more acceptable than (1.1) because of the less restrictive

conditions on the error terms. However, in either case, when b
′
n = c

′
n = 0 for all

n ≥ 0 then the resulting scheme is called the Mann iteration scheme with errors. In

particular, (1.2) reduces to

xn+1 = anxn + bnTxn + cnun (1.3)
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2. A GENERALIZED ISHIKAWA TYPE ITERATION SCHEME

We now consider a new improved iteration scheme which is a three-step

iteration scheme, given by the following :

Definition 2.1 Let K be a nonempty compact and convex subset of a Banach

space B. For arbitrary x1 ∈ K, define sequence {xn} iteratively by :

xn+1 = anxn + bnTyn + cnSxn

yn = a
′
nxn + b

′
nSzn + c

′
nvn

zna
′′
nxn + b

′′
nTxn + c

′′
nωn





n ≥ 1 (2.1)

where S, T are uniformly continuous self-mappings of K satisfying some contractive

definitions, {vn}, {ωn} are arbitrary sequences in K and {an}, {a′n}, {a′′n}, {bn}, {b′n},
{b′′n}, {cn, {c′n}, {c′′n}, are real sequences in [0, 1] satisfying

(i) an + bn + cn = a
′
n + b

′
n + c

′
n = a

′′
n + b

′′
n + c

′′
n = 1 ,

(ii)
∑

bn = ∞ .

The scheme (2.1) is called the generalized Ishikawa type iteration scheme with errors.

Remark 2.2 When S = T in the (2.1), we obtain a version given by :

xn+1 = anxn + bnTyn + cnTxn

yn = a
′
nxn + b

′
nTzn + c

′
nvn

zn = a
′′
nxn + b

′′
nTxn + c

′′
nωn





n ≥ 1 (2.2)

which is contained in (2.1) as a special case.

Since S is uniformly continuous and K is convex, then we can always find an un ∈ K

such that Sxn = un. In this case, (2.1) reduces to :

xn+1 = anxn + bnTyn + cnun

yn = a
′
nxn + b

′
nSzn + c

′
nvn

zn = a
′′
nxn + b

′′
nTxn + c

′′
nωn





n ≥ 1 (2.1a)

Now letting S = T in (2.1a), we obtain the following

xn+1 = anxn + bnTyn + cnun

yn = a
′
nxn + b

′
nTzn + c

′
nvn

zn = a
′′
nxn + b

′′
nTxn + c

′′
nωn





n ≥ 1 (2.3)

We observe that the iteration schemes (2.1), (2.2) and (2.3) are well defined and

are generalizations of the Mann and Ishikawa types iteration schemes with errors in
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the sense of Liu[8] and Xu[15]. This is evident by specialising some of the parameters.

Indeed, when c
′′
n = b

′′
n = 0, then (2.3) reduces to:

xn+1 = anxn + bnTyn + cnωn

yna
′
nxn + b

′
nTxn + c

′
nun

}
n ≥ 1

which is the Ishikawa iteration scheme with errors in the sense of Xu [16]. Further-

more, if in addition, cn = c
′
n = 0, then it becomes the Ishikawa iteration scheme.

When b
′′
nc

′′
n = 0 and c

′
n = b

′
n = 0, then (2.3) will reduce to the Mann iteration scheme

with errors in the sense of Xu [16]. Hence the revised generalized Ishikawa type itera-

tion scheme (2.1) and its special cases (2.2) and (2.3) include the Mann and Ishikawa

iteration schemes with errors in the sense of Liu [11] and Xu [16] as special cases.

3. FIXED POINTS OF PSEUDOCONTRACTIVE OPERATORS

In this section we establish the convergence of the revised three-step Ishikawa

type iteration scheme (2.3) to the fixed point of uniformly continuous and strongly

pseudocontractive operators in arbitrary Banach spaces. Then the convergence of

the slightly more general scheme (2.2) to solution of the uniformly continuous and

strongly accretive operator equation Tx = f , for a given f ∈ K, is established.

Let K be a nonempty subset of Banach space B. An operator T : D(T ) → B, where

D(T ) is a proper subset of a Banach space B, is called pseudo-contractive if for all

r > 0, the inequality

‖x− y‖ ≤ ‖(1 + r)(x− y)− r(Tx− Ty)‖ (3.1)

holds for each pair of points x, y ∈ D(T ) .

Also, an operator T with domain D(T ) and range R(T ) in a real Banach space B

is called accretive if the inequality

‖x− y‖ ≤ ‖x− y + r(Tx− Ty)‖ (3.2)
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holds for each pair of points x, y ∈ D(T ) and for all r > 0 .

An operator T is strongly pseudocontrctive ( strongly accretive), if there exists a real

number k ∈ (0, 1) such that (T − kI) is pseudocontractive (accretive).

In the sequel, we shall require the following result:

Lemma 3.1 (L. Qihou [14]) Let {xn}∞n=1 be a sequence of real numbers satis-

fying the following inequality:

xn+1 ≤ ωxn + σn, n ≥ 1 (3.3)

where xn ≥ 0, σn ≥ 0 and lim
n→∞σn = 0, 0 ≤ ω < 1. Then xn → 0, as n →∞.

Our main result is the following:

Theorem 3.2 Let K be a nonempty closed bounded and convex subset of an

arbitrary real Banach space B and suppose T is a uniformly continuous and strongly

pseudocontractive self-mapping of K. Define sequence {xn} iteratively for arbitrary

x1 ∈ K by:

xn+1 = anxn + bnTyn + cnun

yn = a
′
nxn + b

′
nTzn + c

′
nvn

zn = a
′′
nxn + b

′′
nTxn + c

′′
nωn





where {un}, {vn} and {ωn} are bounded sequences in K and {an}, {a′n}, {a′′n},
{bn},{b′n}, {b′′n}, {cn}, {c′n}, {c′′n}, are real sequences in [0, 1] satisfying:

(i) an + bn + cn = a
′
n + b

′
n + c

′
n = a

′′
n + b

′′
n + c

′′
n = 1,

(ii)
∑

bn = ∞,

(iii) lim
n→∞ bn = lim

n→∞ b
′
n lim

n→∞ b
′′
n = 0,

(iv) αn := bn + cn, βn := bn
′ + cn

′, γn : bn” + cn”,

lim
n→∞

1
1+kαn

= 0, for all k ∈ (0, 1)

Then, the sequence {xn} converges strongly to a fixed point of T .
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Proof. The existence of the unique fixed point of T follows from Deimling [5].

Let x∗ be the unique fixed point of T , i.e. Tx∗ = x∗. The operator T is strongly

pseudocontractive implies that (I−T ) is strongly accretive and therefore (I−T )−kI =

(I − T − kI) is accretive. Therefore, for all r > 0 and k ∈ (0, 1), we have

‖x− y‖ ≤ ‖x− y + r[(I − T − kI)x− (I − T − kI)y] (3.4)

From our hypothesis, we obtain the following estimates.

xn+1 = (1− αn)xn + bnTyn + cnun

xn − αnxn + bnTyn + cnun

So that

xn = xn+1 + αnxn − bnTyn − cnun (3.5)

From (3.5), we have

xn = xn+1 + αnxn − bnTyn − cnun

= xn+1 + αnxn+1 − αnxn+1 + αnxn − bnTyn − cnun

= (1 + αn)xn+1 + αn(I − T − kI)xn+1 − αn(I − T − kI)xn+1

− αn(xn+1 − xn)− bnTyn − cnun

= (1 + αn)xn+1 + αn(I − T − kI)xn+1 − αn(I − kI)xn+1

+ αnTxn+1 + αn(xn − xn+1)− bnTyn − cnun

(3.6)

Since x∗ is a fixed point of T , we can also write

x∗ = (1 + αn)x∗ + αn(I − T − kI)x∗ − αn(1− k)x∗ (3.7)

Subtracting (3.7) from (3.6) yields

xn − x∗ = (1 + αn)(xn+1 − x∗) + αn[(I − T − kI)xn+1 − (I − T − kI)x∗]
− αn(1− k)(xn+1 − x∗) + [αn(T − I)xn+1 − bnTyn]
+ [αnxn − cnun]

(3.8)

Therefore,

‖xn − x∗‖ = ‖(1 + αn)[(xn+1 − x∗) + αn

1+αn
{(I − T − kI)xn+1 − (I − T − kI)x∗}]

− αn(1− k)(xn+1 − x∗) + [αn(T − I)xn+1 − cnun]
+ [αnxn − bnTyn]‖
≥ (1 + αn)‖[xn+1 − x∗ + αn

1+αn
{(I − T − kI)xn+1 − (I − T − kI)x∗}]

− αn(1− k)‖xn+1 − x∗‖ − ‖αn(T − I)xn+1 − cnun‖
− ‖αnxn − bnTyn‖

(3.9)
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But T is strongly pseudocontractive, then (3.9) yields

‖xn − x∗‖ ≥ (1 + αn)‖xn+1 − x∗‖ − αn(1− k)‖xn+1 − x∗‖
−‖αn(T − I)xn+1 − cnun‖
− ‖αnxn − bnTyn‖
(1 + kαn)‖xn+1 − x∗‖ − ‖αn(T − I)xn+1 − cnun‖ − ‖αnxn − bnTyn‖

Therefore,

‖xn+1−x∗‖ ≤ 1

1 + kαn

[‖xn−x∗‖+‖αn(T−I)xn+1−cnun‖+‖αnxn−bnTyn‖] (3.10)

Since T is uniformly continuous on the bounded set K, there exists a positive real

number M < ∞ such that

‖αn(T − I)xn+1− cnun‖ ≤ M/2 and ‖αnxn− bnTyn‖ ≤ M/2. Thus (3.10) reduces to

‖xn+1 − x∗‖ ≤ 1

1 + αnk
‖xn − x∗‖+

1

1 + αnk
M (3.11)

Now, put δn
1

1+αnk
, σn = δnM and

ρn = ‖xn − x∗‖

Then (3.11) reduces to

ρn+1 ≤ δnρn + σn

Clearly, 0 ≤ δn < 1 and lim
n→∞σn = 0 since lim

n→∞ δn = 0. Therefore, by Lemma 3.1

(Qihou [11]), we have

lim
n→∞ ρn = 0

which implies that the sequence {xn} converges strongly to x∗. This completes the

proof.

Remark. Theorem 3.2 above is a genralization of Theorem 1 of Ishikawa [9],

Chidume [1, 2] and Chidume and Osilike [3, 4], Ishikawa [7] and others to the more

general Ishikawa type iteration scheme and also to continuous pseudocontractive op-

erators in arbitrary real Banach spaces.
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Corollary 3.3 Let B be a Banach space and K a nonempty closed bounded

convex subset of B. Suppose T is a continuous pseudocontractive selfmapping of K

and define sequence {xn} iteratively for arbitrary x1 ∈ K by

xn+1 = anxn + bnTyn + cnTxn

yn = a
′
nxn + b

′
nTzn + c

′
nun

zn = a
′′
nxn + b

′′
nTxn + c

′′
nvn





n ≥ 1

where {un}, {vn} are bounded sequences in K and {an}, {a′n}, {a′′n}, {bn},{b′n}, {b′′n},
{cn , {c′n}, {c′′n}, are real sequences in [0, 1] satisfying the following conditions:

(i)an + bn + cn = a
′
n + b

′
n + c

′
n = a

′′
n + b

′′
n + c

′′
n = 1,

(ii)
∑

bn = ∞
(iii)αn := bn + cn, βn = b

′
n + c

′
n, γn = b

′′
n + c

′′
n.

Then the sequence {xn} converges strongly to the fixed point of T .

Proof. The proof follows directly by following exactly the same procedure as in

the proof of the Theorem (with un replaced by Txn).

4. APPROXIMATION OF SOLUTIONS OF ACCRETIVE

OPERATOR EQUATIONS

In this section, the convergence of the slightly more general Ishikawa type iteration

scheme to the solution of accretive operator equations in Banach spaces is established.

Our main result here is the following

Theorem 4.1 Let T be uniformly continuous and strongly accretive selfmapping

of a closed convex bounded subset K of an arbitrary real Banach space B . Define a

mapping R : K → K by Rx = x − Tx + f for some f ∈ B. Consider the sequence

{xn} defined iteratively for arbitrary x1 ∈ K by

xn+1 = anxn + bnRyn + cnTxn

yn = a
′
nxn + b

′
nRzn + c

′
nvn

zna
′′
nxn + b

′′
nTxn + c

′′
nωn





n ≥ 1 (4.1)

where {un}, {vn} are bounded sequences in K and {an}, {a′n}, {a′′n}, {bn}, {b′n}, {b′′n},
{cn}, {c′n}, {c′′n}, are real sequences in [0, 1] satisfying the following conditions
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(i) an + bn + cn = a
′
n + b

′
n + c

′
n = a

′′
n + b

′′
n + c

′′
n = 1,

(ii)
∑

bn = ∞,

(iii) lim
n→∞ bn = lim

n→∞ b
′
n lim

n→∞ b
′′
n = 0

(iv) αn := bn + cn, βn := bn
′ + cn

′, γn := bn” + cn”

and lim
n→∞

1
1+kαn

= 0, for all k ∈ (0, 1)

Then the sequence {xn} converges strongly to the solution of the equation Tx = f .

Proof. The existence of the unique solution of the equation Tx = f follows from

Deimling [7]. Let p be the solution. Then from the definition of R, p is a fixed point

of R. We observe that R, T are uniformly continuous and for any given f ∈ K,

(I −R)x = x− f + Tx− x = Tx− f

Since T is strongly accretive, it follows that T − kI is accretive. Therefore, for all

k ∈ (0, 1) and x, y ∈ K,

‖x− y‖ ≤ ‖x− y + r[(T − kI)x− (T − kI)y]‖

for all r > 0. Thus, we have

‖x− y + r[(I −R− kI)x− (I −R− kIy)]‖
= ‖x− y + r[(I −R)x− kIx− (I −R)y − kIy]‖
= ‖x− y + r[(Tx− f)− kIx− (Ty − f)− kIy]
= ‖x− y + r[(T − kI)x− (T − kI)y]
≥ ‖x− y‖

Hence, the

inequality

‖x− y‖ ≤ ‖x− y + r[(I −R− kI)x− (I −R− kIy)]‖y (4.2)

holds when T is strongly accretive.

Following the same procedure as in the proof of Theorem 3.2, we have

xn+1 = anxn + bnRyn + cnTxn

= (1− αn)xn + bnRyn + cnTxn

= xn − αnxn + bnRyn + cnTxn



106

Therefore,

xn = xn+1 + αnxn − bnRyn − cnTxn

= xn+1 + αnxn+1 + αn
2xn − αnbnRyn − αncnTxn

−bnRyn − cnTxn

= (1 + αn)xn+1 + αn(I −R− kI)xn+1 − αn(I − kI)xn+1

+ αnRxn+1 + αn
2xn − (1 + αn)bnRyn − (1 + αn)cnTxn

(4.3)

where k is a real constant in (0, 1).

Since p is a fixed point of R, we can also write

p = (1 + αn)p + αn(I −R− kI)p− αn(I − kI)p

for all k ∈ (0, 1). Then, we have

xn − p = (1 + αn)(xn+1 − p) + αn(I −R− kI)(xn+1 − p)
− αn(I − kI)(xn+1 − p) + αnRxn+1 + αn

2xn

−(1 + αn)bnRyn − (1 + αn)cnTxn

= (1 + αn)[(xn+1 − p)− αn

1+αn
(I −R− kI)(xn+1 − p)]

− αn(I − kI)(xn+1 − p) + [αn
2xn − (1 + αn)cnTxn]

+ [αnRxn+1 − (1 + αn)bnRyn]
≥ (1 + αn)‖(xn+1 − p)− αn

1+αn
(I −R− kI)(xn+1 − p)‖

− αn(I − kI)‖xn+1 − p‖ − ‖αn
2xn − (1 + αn)cnTxn‖

− ‖αnRxn+1 − (1 + αn)bnRyn]‖
≥ (1 + αn)‖xn+1 − p‖ − αn(I − kI)‖xn+1 − p‖
− ‖αn

2xn − (1 + αn)cnTxn‖ − ‖αnRxn+1 − (1 + αn)bnRyn‖

(3.15)

But bn ≤ 1 and cn ≤ 1. Therefore

‖xn − p‖ ≥ (1 + αn)‖xn+1 − p‖ − αn(I − kI)‖xn+1 − p‖
− ‖αn

2xn − (1 + αn)Txn‖ − ‖αnRxn+1 − (1 + αn)Ryn‖
= (1 + αnk)‖xn+1 − p‖ − ‖αn

2xn − (1 + αn)Txn‖
− ‖αnRxn+1 − (1 + αn)Ryn‖

(4.4)

This implies that,

(1 + αnk)‖xn+1 − p‖ ≤ ‖xn − p‖+ ‖αn
2xn − (1 + αn)Txn‖

+‖αnRxn+1 − (1 + αn)Ryn‖

Therefore,

‖xn+1 − p‖ ≤ 1
1+αnk

‖xn − p‖+ 1
1+αnk

[‖αn
2xn − (1 + αn)Txn‖

+‖αnRxn+1 − (1 + αn)Ryn‖] (4.5)
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Now, let δn = 1
1+αnk

. Observe that the continuity of R and T on the bounded set K

implies that there exists a real numbers M < ∞ such that,

‖αn
2xn − (1 + αn)Txn‖ ≤ M and ‖αnRxn+1 − (1 + αn)Ryn‖ ≤ M .

Substituting into (4.5) gives

‖xn+1 − p‖ ≤ δn‖xn − p‖+ 2δnM (4.6)

Put ρn = ‖xn − p‖ and σn = 2δnM in (4.6), we have

ρn+1 ≤ δnρn + σn

It is clear that 0 ≤ δn ≤ 1 and σn = o(δn).

Also, lim
n→∞σn = 0, since lim

n→∞ δn = 0.

Hence, by Lemma 3.1, we have

lim
n→∞ ρn = 0

which implies that the sequence {xn} converges strongly to p, the unique solution of

the operator equation Tx = f . This completes the proof.

Remark 4.2 Theorem 4.1 is clearly an extension of the related results of Chidume

[3], Chidume and Osilike [5], Liu [11], and Xu [16] to the more general Ishikawa type

iteration sheme with errors. Furthermore, this result is also valid for the iteration

scheme (3.6) above.

5. GENERALIZED MANN ITERATION SCHEME IN BANACH SPACES

Consider the following iteration procedure for two nonlinear operators in Banach

spaces.

Definition 5.1 Let K be a nonempty compact convex subset of an arbitrary

Banach space and suppose T : K → K and S : K → K are uniformly continuous,

nonlinear operators. Define sequence {xn} for arbitrary x1 ∈ K by

xn+1 = anxn + bnTxn + cnSxn, n ≥ 1 (5.1)

where {an}, {bn}, {cn} are real sequences in [0,1] satisfying

an + bn + cn = 1 and
∑

bn = ∞.
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The sequence {xn} generated by (5.1) is called the generalized Mann type iteration

procedure.

Considering the generalized Mann iteration scheme, we have the following results.

Theorem 5.2 Let K be a nonempty closed bounded convex subset of an arbi-

trary real Banach space B and T a uniformly continuous strongly pseudocontractive

selfmapping of K. Define sequence {xn} iteratively for arbitrary x1 ∈ K by

xn+1 = anxn + bnTxn + cnSxn. n ≥ 1 (5.2)

where S is uniformly continuous selfmapping of K, {an}, {bn}, {cn} are real se-

quences in [0,1] satisfying

(i) an + bn + cn = 1 and
∑

bn = ∞
(ii) αn := bn + cn and lim

n→∞
1

1+kαn
= 0, for all k ∈ (0, 1)

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. The proof follows directly by replacing un with Sxn in the proof of The-

orem 3.2.

Theorem 5.3 Let K,B, S be as in Theorem 5.2 above. Define a mapping R :

K → K by

Rx = x− Tx + f

for a given f ∈ B, where T is a uniformly continuous strongly accretive selfmapping

of K. Define sequence {xn}, defined iteratively for arbitrary x1 ∈ K, by

xn+1 = anxn + bnRxn + cnSxn. n ≥ 1 (5.2)

where {an}, {bn}, {cn} are real sequences in [0,1] satisfying

(i) an + bn + cn = 1 and
∑

bn = ∞
(ii) αn := bn + cn and lim

n→∞
1

1+kαn
= 0, for all k ∈ (0, 1)

Then the sequence {xn} converges strongly to the solution of the equation Tx = f .
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Proof. The proof follows directly by replacing Txn with Sxn in the proof of

Theorem 4.1.

Remark 5.4 It is clear that Theorem 2.5.2 is a generalization of the results of

Chidume [2] and Schu [15] on fixed points of pseudocontractive operators in Banach

spaces. Also, Theorem 5.3 is also a generalization of previous results on solutions of

accretive operator equations by Mann iteration procedures.
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