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Abstract. In this paper, the generalized logistic and the generalized log-logistic distribu-
tions are considered. Some theorems that characterize the generalized logistic distribution
are proved. Furthermore, a generalization of the log-logistic distribution is defined and its
moments are determined. It is pointed out that the t-approximation for the F-distribution
proposed in Ojo (1985) can be used to evaluate the cumulative distribution function of the
generalized log-logistic distribution. Finally, some relationships between the generalized
log-logistic and other distributions are established.

1. INTRODUCTION

The role of the logistic distribution, whose density function is defined as

fX(x) =
ex

(1 + ex)2
, −∞ < x < ∞ (1.1)

and its distribution function is given as

FX(x) =
ex

(1 + ex)
, −∞ < x < ∞ (1.2)

in modeling various stochastic phenomena is well known. Extensive research work has

been carried out by several authors investigating the properties and applications of
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the logistic model (see for example Berkson, (1944); Cox, (1970); Johnson and Kotz,

(1970)). A generalization of this distribution whose density function is defined as

fX(x; p, q) =
Γ(p + q)

Γ(p)Γ(q)

epx

(1 + ex)p+q
, −∞ < x < ∞, p > 0, q > 0 (1.3)

has earlier on been considered by George and Ojo (1980). They obtained the cu-

mulants of the distribution and demonstrated that the cumulative distribution func-

tion can be well approximated by the t-distribution. In the present paper, further

researches on the generalized logistic and related distribution are carried out. Specif-

ically, some theorems that characterize the generalized logistic distribution are stated

and proved. The importance of a related distribution namely the log-logistic distri-

bution was not noticed until recent times. Ali and Khan, (1987); Ali and Umbach,

(1990). The random variable X is said to have a log-logistic distribution if lnX is

logistic. That is Pr(lnX ≤ x) = (1 + e−x)−1.

That is Pr(X ≤ ex) = (1 + e−x)−1.

That is Pr(X ≤ y) = (1 + 1
y
)−1 and so the density function of the log-logistic

random variable X is given as

fX(x) =
1

(1 + x)2
, 0 < x < ∞. (1.4)

In this paper a generalization of log-logistic distribution is considered. The moments

of the distribution are obtained and some theorems relating this distribution to some

statistical distributions are proved.

2. CHARACTERIZATIONS OF THE GENERALIZED LOGISTIC

DISTRIBUTION

In this section, some theorems that characterize the generalized logistic distribu-

tion are stated and proved.

Theorem 2.1 Let X be a continuously distributed random variable with density

function fX(x). Then the random variable Y = ln(ex−1) is a generalized logistic ran-

dom variable with parameter (1, q) if and only if X follows an exponential distribution

with parameter q.
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Proof. Suppose X has exponential distribution with parameter q,

fX(x; q) = qe−qx, x > 0, q > 0 (2.1)

Let y = ln(ex − 1), by transformation of random variable, we found that

fY (y) =
qey

(1 + ey)1+q
, −∞ < y < ∞ (2.2)

which is the probability density function of a generalized logistic random variable Y

with parameter (1, q).

Conversely, if Y is a generalized logistic random variable with shape parameter(1, q),

then the characteristic function of Y is given as

φY (t) = E[eitY ]

that is
Γ(1 + it)Γ(q − it)

Γ(q)
=

∫
(ex − 1)itfX(x)dx. (2.3)

The only function fX(x) satisfying equation (2.3) is the fX(x) given in equation (2.1).

This proved the theorem.

Theorem 2.2 Suppose a continuously distributed random variable X has at-

distribution with k degrees of freedom. Then the random variable Y = ln(x2/k)

is distributed according to the generalized logistic distribution with parameters (p =

1
2
, q = k

2
).

Proof. A random variable X has a t-distribution with k degrees of freedom if

fX(x) =
Γ(k+1

2
)

Γ(k
2
)
√

(πk)
(1 +

x2

k
)−( k+1

2
), −∞ < x < ∞. (2.4)

Since y = ln(x2/k), then x = ±√(k)ey/2. Let g−1
1 (y) =

√
(k)ey/2 and g−1

2 (y) =

−√(k)ey/2. So, d[g−1
i (y)]/dy = ±1

2

√
(k)ey/2.

Therefore

fY (y) =
2∑

i=1

|d[g−1
i (y)]/dy|fX(g−1

i (y)). (2.5)
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After substitution and simplification, we have

fY (y) =
Γ(k

2
+ 1

2
)

Γ(k
2
)Γ(1

2
)

e
y
2

(1 + ey)
k
2
+ 1

2

, −∞ < y < ∞ (2.6)

which is the probability density function for generalized logistic random variables

with parameters (1
2
, k

2
). Conversely, if Y is a generalized logistic random variable,

then the characteristic function of Y is given as

φY (t) = E[eity] =
∫

eitln(x2/2)fX(x)dx =
∫ ∞

−∞
(
x2

k
)it Γ(k+1

2
)

Γ(k
2
)
√

(πk)
(1 +

x2

k
)−( k+1

2
)dx.

(2.7)

By suitable change of variable, we have

φY (t) =
Γ(k+1

2
)

Γ(k
2
)Γ(1

2
)

∫ ∞

0

zit− 1
2

(1 + z)
k+1
2

dz

=
Γ(k+1

2
)

Γ(k
2
)Γ(1

2
)
B(it +

1

2
,
k

2
− it) =

Γ(1
2

+ it)Γ(k
2
− it)

Γ(k
2
)Γ(1

2
)

(2.8)

which is the characteristic function of a generalized logistic distribution with param-

eters (1
2
, k

2
). By the uniqueness theorem, the proof is established.

Theorem 2.3 The random variable X is generalized logistic with distribution

functionF given by equation (1.2) if and only if F satisfies the homogeneous differ-

ential equation

(e2x − 1)F 2F ′ + e2xF ′′ = 0 (2.9)

for p = q = 1 (prime denotes differentiation).

Proof. Suppose X is a generalized logistic random variable with p = q = 1, its

distribution function is

F =
ex

(1 + ex)
.

It is easily shown that the F above satisfies equation (2.9).

Conversely, if we assume that F satisfies the equation (2.9). Separating the vari-

ables in (2.9) and integrating, we have F = (e−x − k)−1 where k is a constant. The

value of k that makes F a distribution function is k = −1.
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Possible Application of Theorem 2.3

From equation (2.9), we have

x =
1

2
ln(

F 2F ′

F 2F ′ + F ′′ ) (2.10)

where F is the distribution function as written above. Thus, the importance of

theorem (2.3) lies in the linearising transformation (2.10). The transformation (2.10)

can be regarded as another alternative to Berkson’s logit transform (Berkson, 1944)

and Ojo’s logit transform when p = q = 1 (Ojo, 1997) for the ordinary logistic model.

Thus in the analysis of bioassay and quantal response data, if model (1.1) is used,

what Berkson’s logit transform does for the ordinary logistic can be done for the

model (1.1) by the transformation (2.10).

3. ON GENERALIZED LOG-LOGISTIC DISTRIBUTION

3.1 The generalized log-logistic distribution and its moments

The random variable Y is said to have the generalized log-logistic distribution if

lnY is generalized logistic. That is

Pr(lnY ≤ y) =
1

B(p, q)

∫ y

−∞
epx

(1 + ex)p+q
dx.

That is

Pr(Y ≤ ey) =
1

B(p, q)

∫ y

−∞
epx

(1 + ex)p+q
dx.

That is

Pr(Y ≤ u) =
1

B(p, q)

∫ lnu

−∞
epx

(1 + ex)p+q
dx.

Thus, the density function of Y by differentiation under the integral is given as

g(y) =
1

B(p, q)

yp−1

(1 + y)p+q
, 0 < y < ∞. (3.3)

This generalized version of the log-logistic distribution has ealier on been used to

analyse some survival data in Mohammed et al (1992). The characteristic function

of Y is given as

φY (t) =
1

B(p, q)

∫ ∞

0

yp−1eity

(1 + y)p+q
dy =

∞∑

k=0

iktk

k!

Γ(p + k)Γ(q − k)

Γ(p)Γ(q)
. (3.4)
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By direct integration, the rth moment of Y is given as

µr =
1

B(p, q)

∫ ∞

0

yp+r−1

(1 + y)p+q
dy =

Γ(p + r)Γ(q − r)

Γ(p)Γ(q)

=
p(p + 1)(p + 2)...(p + r − 1)

(q − 1)(q − 2)(q − 3)...(q − r)
. (3.5)

In particular the first four central moments are given as

µ1 =
p

q − 1
,

µ2 =
p(p + 1)

(q − 1)(q − 2)
,

µ3 =
p(p + 1)(p + 2)

(q − 1)(q − 2)(q − 3)
,

µ4 =
p(p + 1)(p + 2)(p + 3)

(q − 1)(q − 2)(q − 3)(q − 4)
.

3.2 The cumulative distribution function of Y

The cumulative distribution function of Y can be evaluated by using the t-

approximation proposed in Ojo (1985) for the F-distribution (see theorem 4.2 of

this paper). For the purpose of this paper, we recall the t-approximation for the

F-distribution as contained in Ojo (1985). This approximation was given as

P [F (2q, 2p) ≥ p

q
e−(κ1+ tν

c
)] ∼ P [T ≤ tν ]

or equivalently interms of percentile

Fo(2q, 2p) ∼ p

q
e−(κ1+ tν

c
)

where Fo denotes the upper percentage point of the F distribution and tν denotes the

lower percentile of the t distribution with ν degrees of freedom.c = σt√
(κ2)

, σt being

the standard deviation of t distribution and κi the ith cumulant of the generalized

logistic distribution. Consequently, the approximation for the distribution function

of the generalized log-logistic can easily be obtained.
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3.3 Some theorems relating the generalized log-logistic to other distributions

Theorem 3.1 Let X be a continuously distributed random variable. Then the

random variable Y = X
1−X

has the generalized log-logistic distribution if X has beta

distribution with parameters (p, q).

Proof. If X is beta (p, q), then

Pr(Y ≤ y) = Pr[(
X

1−X
) ≤ y]

= Pr(X ≤ y

1 + y
) =

∫ y
1+y

0

1

B(p, q)
tp−1(1− t)q−1dt.

By differentiating under the integral, the density function of Y = X
1−X

is given as

g(y) =
1

B(p, q)
(

y

1 + y
)p−1(1− y

1 + y
)q−1 · ( 1

(1 + y)2
)

=
1

B(p, q)

yp−1

(1 + y)p+q
, 0 < y < ∞.

This completes the proof.

Theorem 3.2 Let F (2q, 2p) be an F-random variable which has an F-distribution

with (2q, 2p) degrees of freedom. The random variable Y = q
p
F (2q, 2p) has a general-

ized log-logistic distribution with parameter (p, q).

Proof. The density function of an F (2q, 2p) random variable can be written as

fX(x) = K
xq−1( q

p
)q−1

(1 + q
p
x)p+q

, 0 < x < ∞ (3.6)

where K is the normalizing constant. By omitting all constant, the density of Y can

be written as

g(y) ∝ yq−1

(1 + y)p+q
(3.7)

Since any density function proportional to the right hand side of (3.7) is that of

a generalized log-logistic random variable, the proof is complete.
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Theorem 3.3 Let X1, X2 be gamma random variables with density functions

h1(x1) =
1

Γ(p)
xp−1

1 e−x1 , x1 ≥ 0

h2(x2) =
1

Γ(q)
xq−1

2 e−x2 , x2 ≥ 0

Then, the random variable Y = X1

X2
has the generalized log-logistic distribution if X1

and X2 are independent.

Proof. The joint density function of X1 and X2 is

f(x1, x2) =
1

Γ(p)

1

Γ(q)
xp−1

1 xq−1
2 e−(x1+x2). (3.8)

Let y1 = x1

x2
and y2 = x2 so the density of Y1 is

g(y1) =
1

Γ(p)

1

Γ(q)

∫ ∞

0
(y1y2)

p−1yq−1
2 y2e

−y2(1+y1)dy2

=
Γ(p + q)

Γ(p)Γ(q)

yp−1
1

(1 + y1)p+q
. (3.9)

Thus the density of Y = X1

X2
is

g(y) =
1

B(p, q)

yp−1

(1 + y)p+q
, 0 < y < ∞

This proves the theorem.

Theorem 3.4 Let X be a generalized log-logistic random variable with parameters

(p, q). The random variable Y =
√

(νX) has a t distribution with ν degree of freedom

if p = 1
2

and q = ν
2
.

Proof. Let g(y) denote the density function of Y and let y =
√

(νx), the density

function of the generalized log-logistic is

fX(x) =
1

B(p, q)

xp−1

(1 + x)p+q
.

Then

g(y) ∝ y2p−2

(1 + y2

ν
)p+q

y =
y2p−1

(1 + y2

ν
)p+q

(3.10)
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If p = 1
2

and q = ν
2
, then

g(y) ∝ (1 +
y2

ν
)−

1
2
(1+ν)

Since any random variable whose density is proportional to (1 + y2

ν
)−

1
2
(1+ν) has a

t-distribution with ν degree of freedom, the theorem follows.
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