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Abstract. Let G(2, n) be a connected graph without multiple edges which has n vertices
and the minimum degree of vertices is 2. The Randić index is: χ =

∑
(uv)(δuδv)−1/2, where

δu is the degree of vertex u and the summation goes over all edges (uv) of G. In this paper
we offer another technique based on linear programming to find graphs on which the Randić
index attains minimum value. The extremal graphs have n − 2 vertices of degree 2 and 2
vertices of degree n− 1.

1. INTRODUCTION

Let G(k, n) be a connected graph without multiple edges which has n vertices and

the minimum degree of vertices is k. Denote by u its vertex and by δu the degree of the

vertex u, that is the number of edges of which u is an endpoint. Denote further by (uv)

the edge whose endpoints are the vertices u and v and by ni the number of vertices

of degree i. In 1975 Randić proposed a topological index, suitable for measuring

the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. The

Randić index defined in [10] is: χ =
∑

(uv)(δuδv)
−1/2, where the summation goes over
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all edges of G. Randić himself demonstrated [10] that his index is well correlated

with a variety of physico-chemical properties of alkanes. χ became one of the most

popular molecular descriptors to which two books are devoted ([7], [8]).

One of the mathematical questions asked in connection with χ is which graphs

with given class of graphs have maximum and minimum χ values ([1], [ 2], [ 4], [5]).

In [3] Fajtlowitcz mentions that Bollobás and Erdős asked for the minimum value

on the Randić index for the graphs G(k, n). The solution of such problems turned

out to be difficult, and only a few partial results have been achieved so far. In [1]

Bollobás and Erdős found the extremal graph when k = 1. It is the star. For k = 2

the problem is solved in [6] and the extremal graph is a ”double star”, that is, it has

to have n2 = n−2 and nn−1 = 2. In [1] and [6] is used a technic proposed by Bollobás

and Erdős. In [9] the problem is solved for k = 1 using linear programming. In this

paper we use linear programming to solve problem for k = 2. This technique is more

systematic and more promising for general case (k ≥ 3).

2. MATHEMATICAL DESCRIPTION OF THE PROBLEM

At first, we will give some linear equalities which describe better this problem.

Denote by xi,j, (xi,j ≥ 0), the number of edges joining the vertices of degrees i and j.

Mathematically description of the problem (P ) is:

min
∑

2≤i≤n−1
i≤j≤n−1

xi,j√
ij

under constraints:

2x2,2 + x2,3 + x2,4 + . . . + x2,n−1 = 2n2

x2,3 + 2x3,3 + x3,4 + . . . + x3,n−1 = 3n3

x2,4 + x3,4 + 2x4,4 + . . . + x4,n−1 = 4n4
...

x2,n−1 + x3,n−1 + x4,n−1 + . . . + 2xn−1,n−1 = (n− 1)nn−1

(A)

and

n2 + n3 + n4 + . . . + nn−1 = n (B)
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These constraints do not completely determine the problem. If we try to solve this

problem of linear programming, we will obtain solutions which are not graphical

(except for k = 1).To describe better this problem we have to add the next constraints:

xi,j ≤ ninj for 2 ≤ i ≤ n− 1, i < j ≤ n− 1 and xi,i ≤
(

ni

2

)
for 2 ≤ i ≤ n− 1, which

much more complicate the problem. It is now the problem of quadratic programming.

To avoid the complicacy of these quadratic inequalities we will give to nn−1 all possible

values and solve the upper problem using linear programming.

3. RESULTS

Theorem 1. Let G(2, n) be a connected graph without multiple edges which has

n vertices and the minimum degree of vertices is 2. The minimum value of the Randić

index is:

χ∗ =
2(n− 2)√
2(n− 1)

+
1

n− 1

This value is attained on the graph with n2 = n − 2, nn−1 = 2, n3 = n4 = . . . =

nn−2 = 0, x2,n−1 = 2(n− 2), xn−1,n−1 = 1 and all other xi,j and xi,i being equal to 0.

Proof. Since nn−1 ≤ 2, when the minimum degree of vertices is 2, we will consider

three cases: nn−1 = 2, nn−1 = 1 and nn−1 = 0. Denote by χi the value of the Randić

index when nn−1 = i, i = 0, 1, 2. We will use the next equalities: xi,n−1 = ninn−1 for

i = 2, 3, . . . , n− 2 and xn−1,n−1 =
(

nn−1

2

)
.

Case 1: nn−1 = 2. Since xi,n−1 = 2ni for i = 2, 3, . . . , n − 2 and xn−1,n−1 = 1,

constraints (A) become: x2,j + . . . + xj−1,j + 2xj,j + xj+1,j + . . . xj,n−2 = jnj − 2nj for

j = 2, 3, . . . , n− 2. We have:

χ2 =
∑

2≤i≤n−1
i≤j≤n−1

xi,j√
ij

=
n−2∑

j=2

2nj√
j(n− 1)

+
1

n− 1
+
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1

2

n−2∑

j=2

(
x2,j√

2j
+ . . . +

xj−1,j√
(j − 1)j

+ 2
xj,j√
jj

+
xj,j+1√
(j(j + 1)

+ . . . +
xj,n−2√
(j(n− 2)

) ≥

n−2∑

j=2

2nj√
j(n− 1)

+
1

n− 1
+

1

2

n−2∑

j=2

x2,j + . . . + xj−1,j + 2xj,j + xj+1,j + . . . xj,n−2√
j(n− 1)

=

n−2∑

j=2

2nj√
j(n− 1)

+
1

n− 1
+

1

2

n−2∑

j=2

jnj − 2nj√
j(n− 1)

=

1

2
√

n− 1

n−2∑

j=2

√
jnj +

1√
n− 1

n−2∑

j=2

nj√
j

+
1

n− 1

because 1√
i
≥ 1√

n−1
for 2 ≤ i ≤ n− 2. After substitution of n2 = n− 2− n3 − n4 −

. . .− nn−2 in the last equality, we have:

χ2 =
2(n− 2)√
2(n− 1)

+
1

n− 1
+

n−2∑

j=3

(
√

j −
√

2 + 2(
1√
j
− 1√

2
))

nj

2
√

n− 1

Since
√

j −√2 + 2( 1√
j
− 1√

2
) ≥ 0 for 3 ≤ j ≤ n − 2, this function attains minimum

for nj = 0, j = 3, 4, . . . , n − 2. When nn−1 = 2 the minimum value of the Randić

index is:

χ∗2 =
2(n− 2)√
2(n− 1)

+
1

n− 1

The extremal graph must have n2 = n − 2, n3 = n4 = . . . = nn−2 = 0, nn−1 = 2,

x2,n−1 = 2(n− 2), xn−1,n−1 = 1 and all other xi,j and xi,i are equal to 0.

Case 2: nn−1 = 1. After substitution of xi,n−1 = ni for i = 2, 3, . . . , n − 2 and

xn−1,n−1 = 0 in the constraints (A), they become (A′):

2x2,2 + x2,3 + x2,4 + . . . + x2,n−2 = n2

x2,3 + 2x3,3 + x3,4 + . . . + x3,n−2 = 2n3

x2,4 + x3,4 + 2x4,4 + . . . + x4,n−2 = 3n4
...

x2,n−2 + x3,n−2 + x4,n−2 + . . . + 2xn−2,n−2 = (n− 3)nn−2

(A′)
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Since nn−1 = 1, equality (B) becomes (B′):

n2 + n3 + n4 + . . . + nn−2 = n− 1 (B′)

We have the next problem of linear programming: min χ1 under constraints (A′)

and (B′). The basic variables are ni for i = 2, 3, . . . , n − 1, x2,n−2, xi,n−1 = ni for

i = 2, 3, . . . , n − 2 and xn−1,n−1 = 0. It is easy to find ni for i = 3, 4, . . . , n − 3 from

constraints (A′):

ni =
x2,i + . . . + xi−1,i + 2xi,i + xi,i+1 + . . . + xi,n−2

i− 1
(1)

Using the first and the last constraint of (A′) and constraint (B′) we find:

n2 =
(n− 1)(n− 3)

n− 2
+

2x2,2

n− 2
−

n−3∑

j=3

(n− j − 2)x2,j

(j − 1)(n− 2)
− ∑

3≤i≤n−2
i≤j≤n−2

(
n− 3

i− 1
+

n− 3

j − 1
)

xi,j

n− 2
, (2)

nn−2 =
n− 1

n− 2
− ∑

2≤i≤n−3
i≤j≤n−3

(
1

i− 1
+

1

j − 1
)

xi,j

n− 2
−

n−3∑

i=3

(
1

i− 1
− 1)

xi,n−2

n− 2
+

2xn−2,n−2

n− 2
, (3)

x2,n−2 =
(n− 1)(n− 3)

(n− 2)
−

n−3∑

j=2

(1 +
n− j − 2

(j − 1)(n− 2)
)x2,j −

∑
3≤i≤n−2
i≤j≤n−2

(
n− 3

i− 1
+

n− 3

j − 1
)

xi,j

n− 2

(4)

After substitution of x2,n−2 from (4), xi,n−1 = ni, i = 2, 3, . . . , n− 2 from (1), (2) and

(3) into χ1, we have:

χ1 = (
n− 3√
2(n− 2)

+
n− 3√
2(n− 1)

+
1√

(n− 2)(n− 1)
)
n− 1

n− 2
+

n−3∑

j=2

a2,jx2,j +
∑

3≤i≤n−2
i≤j≤n−2

ai,jxi,j

where

ai,j =
1√
ij
−

1
n−2

(n−3
i−1

+ n−3
j−1

)
√

2(n− 2)
−

1
n−2

(n−3
i−1

+ n−3
j−1

)
√

2(n− 1)
+

1
i−1√

i(n− 1)
+

1
j−1√

j(n− 1)
−

1
n−2

( 1
i−1

+ 1
j−1

)
√

(n− 2)(n− 1)
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We will prove that all functions ai,j are nonnegative for corresponding i and j.

Since

∂2

∂j2
((n− 2)(i− 1)(j − 1)ai,j) =

(n− 2)(i− 1)

4
√

j5
(

3√
n− 1

− j + 3√
i

) ≤

(n− 2)(i− 1)

4
√

j5
(

3√
n− 1

− i + 3√
i

) ≤ (n− 2)(i− 1)

4
√

j5
(

3√
n− 1

− 5√
2
) ≤ 0

for n ≥ 2, because j ≥ i ≥ 2, the function (n−2)(i−1)(j−1)ai,j is concave on j. We

have to check that ai,i and ai,n−2 are nonnegative in order to conclude that ai,j ≥ 0

for i ≤ j ≤ n− 2 and 2 ≤ i ≤ n− 2. We begin with ai,i. Since

∂

∂i
((n− 2)(i− 1)ai,i) =

n− 2√
i3

(
1√
i
− 1√

n− 1
) ≥ 0

because i ≤ n− 1, it holds (n− 2)(i− 1)ai,i ≥ (n− 2)a2,2. For n ≥ 6, holds:

(n− 2)a2,2 =
n− 2

2
− 2(n− 3)√

2(n− 2)
+

2√
n− 1

(
1√
2
− 1√

n− 2
) ≥ 0 (5)

because n−2
2

≥ 2(n−3)√
2(n−2)

for n ≥ 10 and 1√
2
≥ 1√

n−2
for n ≥ 4. We can see by

numerical checking that a2,2 ≥ 0 for n = 6, 7, 8, 9. This means that ai,i ≥ 0 for n ≥ 6

and for 2 ≤ i ≤ n− 2. As for ai,n−2, we have:

∂2

∂i2
((n− 2)(i− 1)ai,n−2) =

n− 2

4
√

i5
(

1√
n− 1

− i + 3√
n− 2

) ≤ 0

for i ≥ 2. This means again that the function (i − 1)ai,n−2 is concave on i. Since

a2,n−2 = 0 and an−2,n−2 ≥ 0, we conclude that ai,n−2 ≥ 0 for n ≥ 6 and 2 ≤ i ≤ n− 2.

Finally, we obtain that ai,j ≥ 0 for 2 ≤ i ≤ n− 2 and i ≤ j ≤ n− 2.

The function χ1 attains minimum if we put x2,j = 0 for j = 2, 3, . . . , n − 3 and

xi,j = 0 for 3 ≤ i ≤ n− 2, i ≤ j ≤ n− 2. This minimum value is:

χ̄1 = (
n− 3√
2(n− 2)

+
n− 3√
2(n− 1)

+
1√

(n− 2)(n− 1)
)
n− 1

n− 2

and n2 = n− 2− 1
n−2

, nn−2 = 1 + 1
n−2

, nn−1 = 1, ni = 0 for i = 3, 4, . . . , n− 3. This

solution does not correspond to any graph, but the real graphical solution χ∗1 ≥ χ̄1.
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Now we show that χ̄1 ≥ χ∗2.

χ̄1 − χ∗2 =
1

n− 2
(
n2 − 4n + 3√

2(n− 2)
− n2 − 4n + 5√

2(n− 1)
+

n− 1√
(n− 2)(n− 1)

− n− 2

n− 1
) ≥

1

n− 2
(
n2 − 4n + 3√

2(n− 2)
− n2 − 4n + 5√

2(n− 1)
+

1

n− 1
) ≥ 0

for n ≥ 6, because 1√
n−2

≥ 1√
n−1

and because (n2 − 4n + 3)
√

n− 1 ≥ (n2 − 4n +

5)
√

n− 2 for n ≥ 7. (After squaring, the last inequality becomes n4 − 12n3 + 46n2 −
72n + 41 ≥ 0 for n ≥ 7. For n = 6, χ̄1 − χ∗2 ≥ 0 is verified by numerical checking.)

Case 3: nn−1 = 0. In this case constraints (A) and (B) become:

2x2,2 + x2,3 + x2,4 + ... + x2,n−2 = 2n2

x2,3 + 2x3,3 + x3,4 + ... + x3,n−2 = 3n3

x2,4 + x3,4 + 2x4,4 + ... + x4,n−2 = 4n4
...

x2,n−2 + x3,n−2 + x4,n−2 + ... + 2xn−2,n−2 = (n− 2)nn−2

(A′′)

and

n2 + n3 + n4 + . . . + nn−2 = n (B′′)

Now we solve the next problem of linear programming: min χ0 under constraints (A′′)

and (B′′). The basic variables are ni for i = 2, 3, . . . , n− 2 and x2,n−2. We find ni for

i = 3, 4, . . . , n− 3 from constraints (A′′):

ni =
x2,i + . . . + xi−1,i + 2xi,i + xi,i+1 + . . . + xi,n−2

i
(6)

Using the first and the last constraint of (A′′) and constraint (B′′) we find:

n2 = n− 2 +
2x2,2

n
−

n−3∑

j=3

n− j − 2

nj
x2,n−3 −

∑
3≤i≤n−2
i≤j≤n−2

(
n− 2

i
+

n− 2

j
)
xi,j

n
, (7)

nn−2 = 2− ∑
2≤i≤n−3
i≤j≤n−3

(
2

i
+

2

j
)
xi,j

n
−

n−3∑

i=3

(
2

i
− 1)

xi,n−2

n
− 2xn−2,n−2

n
, (8)

x2,n−2 = 2(n− 2)−
n−3∑

j=2

(j + 2)(n− 2)

jn
x2,j − 2

∑
3≤i≤n−2
i≤j≤n−2

(
n− 2

i
+

n− 2

j
)
xi,j

n
(9)
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After substitution of x2,n−2 from (9) into χ0, we have:

χ0 =
2(n− 2)√
2(n− 2)

+
n−3∑

j=2

b2,jx2,j +
∑

3≤i≤n−2
i≤j≤n−2

bi,jxi,j

where

bi,j =
1√
ij
−

2(n−2)
n

(1
i
+ 1

j
)

√
2(n− 2)

We prove that all functions bi,j ≥ 0 for 2 ≤ i ≤ n− 2, i ≤ j ≤ n− 2. Since

∂bi,j

∂j
=

1

2
√

j3
(− 1√

i
+

√
8(n− 2)

n
√

j
) ≤ 1

2
√

ij3
(−1 +

√
8(n− 2)

n
) ≤ 0

because j ≥ i and −1 +

√
8(n−2)

n
≤ 0 for n ≥ 4, we have bi,j ≥ bi,n−2.

bi,n−2 =
1√

i(n− 2)
(1−

√
2(n− 2 + i)

n
√

i
) ≥ 0

because 1 ≥
√

2(n−2+i)

n
√

i
for 2 ≤ i ≤ n− 2. (After squaring, the last inequality becomes

equivalent to (i− 2)((n− 2)2 − 2i) ≥ 0.)

Since all ai,j ≥ 0, the function χ0 attains minimum if all x2,j = 0 for 2 ≤ j ≤ n−3,

xi,j = 0 for 3 ≤ i ≤ n− 2, i ≤ j ≤ n− 2 and:

χ∗0 =
2(n− 2)√
2(n− 2)

We show that χ∗0 ≥ χ∗2:

χ∗0 − χ∗2 =
1√

n− 1
(

√
2(n− 2)√

n− 2 +
√

n− 1
− 1√

n− 1
≥ 1

n− 1
(

√
2(n− 2)

2
− 1) ≥ 0

because 1√
n−2

≥ 1√
n−1

and
√

2(n− 2) ≥ 2 for n ≥ 4.

Finally we proved Theorem 1., that is, χ∗2 is minimum value of the Randić index

and the extremal graph must have n2 = n − 2, n3 = n4 = . . . = nn−2 = 0, nn−1 =

2, x2,n−1 = 2(n− 2), and all other xi,j = 0. We proved this Theorem for n ≥ 6, but

numerical checking shows that it is true also for n = 5. 2
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