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Abstract. Let G = (V, E) be a simple graph with n vertices, e edges, and vertex degrees
d1, d2, . . . , dn. Let d1, dn be the highest and the lowest degree of vertices of G and mi be
the average of the degrees of the vertices adjacent to vi ∈ V . We prove that

n∑

i=1

d2
i = e

[
2e

n− 1
+ n− 2

]

if and only if G is a star graph or a complete graph or a complete graph with one isolated
vertex. We establish the following upper bound for the sum of the squares of the degrees
of a graph G:

n∑

i=1

d2
i ≤ e

[
2e

n− 1
+ (n− 2)

]
− d1

[
4e

n− 1
− 2m1 − (n + 1)

(n− 1)
d1 + (n− 1)

]
,

with equality if and only if G is a star graph or a complete graph or a graph of isolated
vertices. Moreover, we present several upper and lower bounds for

∑n
i=1 d2

i and determine
the extremal graphs which achieve the bounds and apply the inequalities to obtain bounds
on the total number of triangles in a graph and its complement.
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1. INTRODUCTION

Throughout this paper G = (V, E) will denote a simple undirected graph with n

vertices and e edges. In order to avoid trivialities we always assume that n ≥ 2. Also

assume that the vertices are labeled such that d1 ≥ d2 ≥ . . . ≥ dn, where di is the degree

of the vertex vi for i = 1, 2, . . . , n . The average of the degrees of the vertices adjacent to

vi is denoted by mi .

We consider the following problem: find upper and lower bounds for
∑n

i=1 d2
i in terms

of n, e, d1 and dn . We would like the bounds to be sharp, that is, we would like to show

the existence of extremal graphs pertaining to the bounds.

We recall some known upper bounds for
∑n

i=1 d2
i .

1. Székely et al. [11]:

n∑

i=1

d2
i ≤ (

n∑

i=1

√
di)

2. (1)

2. D. de Caen [2]:
n∑

i=1

d2
i ≤ e(

2e

n− 1
+ n− 2). (2)

Caen pointed out that (1) and (2) are incomparable. He has also mentioned that the

bound (2) is perhaps a bit more useful than (1), since it depends only on n and e rather

than on the full-degree sequence.

The rest of the paper is structured as follows. In Section 2, we find out the lower bound

for the sum of squares of the degrees of a graph G in terms of n and e. In Section 3, we

characterize the graphs for which the equality holds in (2) and also obtain some upper

bounds for
n∑

i=1
d2

i in terms of n, e, d1 and dn. In Section 4, we relate the Laplacian graph

eigenvalues to the degree sequence of a graph G. In Section 5, we point out bounds on

t(G) + t(Gc) , where t(G) denotes the number of triangles in G and Gc is the complement

of G. Also we determine the extremal graphs which achieve the bounds on
n∑

i=1
d2

i .
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2. LOWER BOUND FOR
n∑

i=1
d2

i

In this section we present two lower bounds for
n∑

i=1
d2

i .

Theorem 2.1. Let G be a simple graph with n vertices, and e edges. Then

n∑

i=1

d2
i ≥ 2e(2p + 1)− pn(1 + p), where p = [2e

n
] , (3)

and the equality holds if and only if the difference of the degrees of any two vertices of

graph G is at most one. Here [x] denotes the greatest positive integer less than or equal

to x.

Proof. Consider two vertices, vi of degree di and vj of degree dj, where di ≥ dj. Also

let
∑n

i=1 d2
i be minimum.

If possible, let di − dj ≥ 2. Therefore there exists a vertex vk, which is adjacent to

vi, but not vj. If we remove the edge vkvi and add an edge between the vertices vk and

vj, then the degree sequence of the new graph is d1, d2, . . . , dn; where di = di − 1, dj =

dj + 1, dt = dt, t = 1, 2, . . . , n; t 6= i, j.

Therefore

n∑

i=1

d
2

i =
n∑

i=1

d2
i + (di − 1)2 − d2

i + (dj + 1)2 − d2
j

=
n∑

i=1

d2
i − 2(di − dj − 1)

<
n∑

i=1

d2
i , by di ≥ dj + 2,

which is a contradiction as
∑n

i=1 d2
i is minimum.

Since vi and vj are arbitrary, therefore the difference of any two vertex degrees is at

most one. So, some of the vertices have degree p and the remaining vertices (if any) have

degree p + 1, where p = [2e
n

]. Therefore (2e− pn) vertices have degree (p + 1). Hence

Min
n∑

i=1

d2
i = 2e(2p + 1)− pn(1 + p),
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i.e.,
n∑

i=1

d2
i ≥ 2e(2p + 1)− pn(1 + p), where p = [2e

n
].

Now suppose that the equality holds in (3). Therefore some of the vertices have degree

p and the remaining vertices (if any) have degree p+1, where p = [2e
n

]. Hence the difference

of the degrees of any two vertices of graph G is at most one.

Conversely, suppose that the difference of the degrees of any two vertices of the graph

G be at most one. Then we can easily see that the equality holds in (3).

Lemma 2.2. Let G be a simple graph with n vertices, e edges and let d1 be the

highest vertex degree. If di, i = 1, 2, . . . , n is the degree sequence of G, then

n∑

i=1

d2
i ≥ (2p + 1)(2e− d1) + d2

1 + 2(d1 − n + 1 + t)− p(n− 1)(p + 1)

if d1 > n− 1− t , and

n∑

i=1

d2
i ≥ (2p + 1)(2e− d1) + d2

1 − p(n− 1)(p + 1)

if d1 ≤ n− 1− t , where p = [2(e−d1)
(n−1)

] and t = 2(e− d1)− p(n− 1) .

Proof. Let v1 be a highest–degree vertex of the graph G. We remove the vertex v1 and

its corresponding edges and denote the resultant graph as G1. Let di, i = 1, 2, . . . , (n−1)

be the degree sequence of G1. From Theorem 2.1 we get that the minimum value of
∑n

i=1 d2
i is attained in terms of n, e if and only if the difference of the degrees of any two

vertices of graph G is at most one. Using this result we conclude that the value of
∑n−1

i=1 d
2

i

(in terms of the number of vertices and edges) will be minimum if the value of
∑n

i=1 d2
i

(in terms of n, e and d1) is minimum. We have to find the minimum value of
∑n

i=1 d2
i

in terms of n, e and d1. For this first we find the minimum value of
∑n−1

i=1 d
2

i in terms of

the number of vertices and edges. The graph G1 has (n− 1) vertices and (e− d1) edges.

Using the above Theorem 2.1, we get

n−1∑

i=1

d
2

i ≥ 2(e− d1)(2p + 1)− p(n− 1)(1 + p), where p = [2(e−d1)
n−1

],



35

where p is the greatest positive integer less than or equal to 2(e−d1)
n−1

, and the difference of

the degrees of any two vertices of graph G1 is at most one.

Let t = 2(e−d1)−p(n−1). Therefore G1 has t vertices of degree (p+1) and (n−1−t)

vertices of degree p.

Now we add the vertex v1 of degree d1 and join with edges to the vertices of graph

G1 such that
∑n

i=1 d2
i is minimum. So, the vertex v1 is connected to as many degree p

vertices as possible and then to the remaining degree (p + 1) vertices till the d1 degrees

are exhausted.

Two cases are (a) d1 > n− 1− t, (b) d1 ≤ n− 1− t .

Case (a) d1 > n− 1− t.

Min
n∑

i=1

d2
i = Min

n−1∑

i=1

d
2

i + d2
1 + 2p(n− 1− t) + (n− 1− t) + (d1 − n + 1 + t)

[(p + 2)2 − (p + 1)2],

i.e.,
n∑

i=1

d2
i ≥ (2p + 1)(2e− d1) + d2

1 + 2(d1 − n + 1 + t)− p(n− 1)(p + 1),

where p = [
2(e− d1)

(n− 1)
] and t = 2(e− d1)− p(n− 1).

Case (b) d1 ≤ n− 1− t.

Min
n∑

i=1

d2
i = Min

n−1∑

i=1

d
2

i + d2
1 + d1(2p + 1),

i.e.,
n∑

i=1

d2
i ≥ (2p + 1)(2e− d1) + d2

1 − p(n− 1)(p + 1),

where p = [
2(e− d1)

(n− 1)
].

Remark. The lower bounds obtained from Lemma 2.2 and (3) are the best possible

because we can construct a graph for which equality holds.

Theorem 2.3. Let G be a graph with n vertices and e edges. Then
n∑

i=1

d2
i ≥ d2

1 + d2
n +

(2e− d1 − dn)2

(n− 2)
. (4)
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Moreover, equality in (4) holds if and only if d2 = d3 = . . . = dn−1.

Proof. Let us take the degrees d2, d3, . . . , dn−1 with associated weights d2, d3, . . . , dn−1;

then applying A.M. ≥ H.M., we get

∑n−1
i=2 d2

i∑n−1
i=2 di

≥
∑n−1

i=2 di

(n− 2)
,

and equality holds if and only if d2 = d3 = . . . = dn−1.

Therefore

n−1∑

i=2

d2
i ≥

(
∑n−1

i=2 di)
2

(n− 2)
,

i.e.,
n∑

i=1

d2
i ≤ d2

1 + d2
n +

(2e− d1 − dn)2

(n− 2)
,

and equality holds if and only if d2 = d3 = . . . = dn−1.

3. UPPER BOUND FOR
n∑

i=1
d2

i

In this section we give some upper bounds for
∑n

i=1 d2
i in terms of n, e, d1, and dn.

Let Ni be the neighbor set of the vertex vi ∈ V and m1 be the average degree of the

highest–degree vertex.

Lemma 3.1. Let G be a graph with degree sequence di, i = 1, 2, . . . , n and
∑n

i=1 d2
i

be maximum. If a vertex v1 of maximum degree is not adjacent to some vertex v then

dv = 0.

Proof. If possible, let dv 6= 0. Now we insert an edge vv1 and drop an edge vv2, where

v2 is adjacent to v as dv 6= 0.

The new value of the sum of squares of the vertex degrees is
∑n

i=1 d2
i = [(d1 + 1)2 −

d2
1]− [d2

2 − (d2 − 1)2] = 2(d1 − d2 + 1) > 0, which is a contradiction because
∑n

i=1 d2
i was

supposed to be maximum.
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Hence the result.

Corollary 3.2. Let G be a connected graph with n vertices and e edges. Then the

highest degree of G is (n− 1) if
∑n

i=1 d2
i is maximum.

Theorem 3.3. Let G be a graph with n vertices, e edges and
∑n

i=1 d2
i be maximum.

Then

(i) Ni − {vj} = Nj − {vi} if and only if di = dj,

(ii) Ni − {vj} ⊃ Nj − {vi} if and only if di > dj,

(iii) dj < di if vi ∈ Nk and vj ∈ {Nk}c − {vk}.

where di and dj are the degrees of any two vertices vi and vj , respectively.

Proof. (i) Suppose that di = dj.

If possible, let Ni − {vj} 6= Nj − {vi}.
Since di = dj, there exists at least two vertices, vs, which is adjacent to vi but not vj

and vt, which is adjacent to vj but not vi. Let ds and dt be the degrees of the vertices vs

and vt , respectively.

Two cases are (a) ds ≥ dt, (b) ds < dt.

Case (a) ds ≥ dt.

We remove an edge vjvt and add an edge between the vertices vj and vs. Let the

degree sequence of the new graph be d1, d2, . . . , dn; where ds = ds + 1, dt = dt − 1, di =

di, i = 1, 2, . . . , n; i 6= s, t. Then

n∑

i=1

d
2

i =
n∑

i=1

d2
i + (ds + 1)2 − d2

s + (dt − 1)2 − d2
t

=
n∑

i=1

d2
i + 2(ds − dt + 1).

¿From the above relation we get
∑n

i=1 d
2

i >
∑n

i=1 d2
i , a contradiction.
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Case (b) ds < dt.

In this case we remove an edge vivs and add an edge between the vertices vi and vt.

Similarly, we arrive at a contradiction.

Therefore Ni − {vj} = Nj − {vi}.
Conversely, let Ni − {vj} = Nj − {vi}. Therefore di = dj.

(ii) Suppose that di > dj.

If possible, let Ni−{vj} 6⊃ Nj−{vi}. Therefore there exists a vertex vs, vs ∈ Nj−{vi}
but vs /∈ Ni − {vj}. We remove an edge vsvj and add an edge between the vertices vs

and vi. Then the degree sequence of the new graph is di = di + 1, dj = dj − 1, and

dt = dt, i = 1, 2, . . . , n; t 6= i, j. Then

n∑

i=1

d
2

i =
n∑

i=1

d2
i + (di + 1)2 − d2

i + (dj − 1)2 − d2
j

=
n∑

i=1

d2
i + 2(di − dj + 1).

>
n∑

i=1

d2
i , (since di > dj), a contradiction.

Therefore Ni − {vj} ⊃ Nj − {vi}.
Conversely, let Ni − {vj} ⊃ Nj − {vi}. Therefore di > dj.

(iii) If possible, let dj ≥ di. Using (i) and (ii), we get Ni − {vj} ⊆ Nj − {vi}.
Since vi ∈ Nk, vivk ∈ E. We have Nj − {vi} ⊇ Ni − {vj} ⊇ {vk}. Therefore vk ∈

Nj − {vi} implies that vjvk ∈ E.

Since vj ∈ {Nk}c − {vk}, then vjvk /∈ E, a contradiction.

Hence the Theorem.

Lemma 3.4. [2] Let G be a simple graph with n vertices and e edges. Then

n∑

i=1

d2
i ≤ e

[
2e

n− 1
+ n− 2

]
. (5)
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Theorem 3.5. Let G be a connected graph with n vertices and e edges. Then

n∑

i=1

d2
i = e

[
2e

n− 1
+ n− 2

]

if and only if G is a star graph or a complete graph.

Proof. If G is a star graph or a complete graph then the equality holds.

Conversely, let
n∑

i=1

d2
i = e

[
2e

n− 1
+ n− 2

]
.

When n = 2, G is a complete graph of order two as G is a connected graph. Now we are to

prove that G is a star graph or a complete graph for n > 2. By Lemma 3.4 and the above

result, we conclude that
∑n

i=1 d2
i is maximum. Using Corollary 3.2 we conclude that the

highest degree of G is n−1. Now we delete a highest–degree vertex and the corresponding

edges from G. Let the degree sequence of G be d1 = (n− 1), d2, d3,. . . ,dn. Therefore the

degree sequence of the new graph is d1 = d2 − 1, d2 = d3 − 1,. . . ,dn−1 = dn − 1.

Therefore

n∑

i=1

d2
i =

n−1∑

i=1

d
2

i + (n− 1)2 + 4(e− n + 1) + (n− 1)

=
n−1∑

i=1

d
2

i + n2 + 4e− 5n + 4,

i.e., e
[

2e

n− 1
+ n− 2

]
≤ (e− n + 1)

[
2(e− n + 1)

n− 2
+ n− 3

]
+ n2 + 4e− 5n + 4,

i.e.,
2e2

(n− 1)(n− 2)
≥ (n + 2)

(n− 2)
e− n(n− 1)

(n− 2)
,

i.e., 2e2 − (n− 1)(n + 2)e + n(n− 1)2 ≥ 0, by n > 2,

i.e., [e− (n− 1)][2e− n(n− 1)] ≥ 0. (6)
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From (6) we conclude that either e ≤ n − 1 or e ≥ n(n−1)
2

. Since G is a connected

graph, n− 1 ≤ e ≤ n(n−1)
2

. Therefore either e = n− 1 or e = n(n−1)
2

. When e = n− 1, G

is a star graph as d1 = n− 1. When e = n(n−1)
2

, G is a complete graph.

Theorem 3.6. Let G be a simple graph with n vertices and e (> 0) edges. Then

n∑

i=1

d2
i = e

[
2e

n− 1
+ n− 2

]

if and only if G is a star graph or a complete graph or a complete graph with one isolated

vertex.

Proof. If G is a star graph or a complete graph or a complete graph with one isolated

vertex, then the equality holds.

Conversely, let
n∑

i=1

d2
i = e

[
2e

n− 1
+ n− 2

]
.

We need to prove that G is a star graph or a complete graph or a complete graph with

one isolated vertex.

If G is a connected graph then the theorem is proved by the previous Theorem 3.5. It

remains to examine the case when G is a disconnected graph. For a disconnected graph

we have to prove that G is a complete graph with one isolated vertex.

Let G be a graph containing two connected components G1 and G2 with n1, n2 vertices

and e1(> 0), e2(> 0) edges, respectively. Also let d1i, i = 1, 2, . . . , n1 and d2i, i =

1, 2, . . . , n2 be the degree sequence of the graphs G1 and G2, respectively.

Therefore,

n1∑

i=1

d2
1i ≤ e1

[
2e1

n1 − 1
+ n1 − 2

]
(7)

and
n2∑

i=1

d2
2i ≤ e2

[
2e2

n2 − 1
+ n2 − 2

]
. (8)

We have 2e1/(n1−1) ≤ 2e1/(n1+n2−1)+n2 and 2e2/(n2−1) ≤ 2e2/(n1+n2−1)+n1.
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Therefore

n∑

i=1

d2
i =

n1∑

i=1

d2
1i +

n2∑

i=1

d2
2i

≤ 2e2
1

n1 + n2 − 1
+ e1n2 + (n1 − 2)e1 +

2e2
2

n1 + n2 − 1
+ e2n1 + (n2 − 2)e2

≤ 2(e1 + e2)
2

n1 + n2 − 1
+ (n1 + n2 − 2)(e1 + e2)− 4e1e2

n1 + n2 − 1

<
2(e1 + e2)

2

n1 + n2 − 1
+ (n1 + n2 − 2)(e1 + e2). (9)

For the disconnected graph G, there are three possibilities: (i) there are at least two

isolated vertices, (ii) no isolated vertex, (iii) exactly one isolated vertex.

Case (i): Let k (k ≥ 2) be the number of isolated vertices in G. Then

n∑

i=1

d2
i =

n−k∑

i=1

d2
i ≤ e

[
2e

n− k − 1
+ n− k − 2

]
, by (5). (10)

We have
n∑

i=1
d2

i = e[ 2e
n−1

+ n − 2]. From this result and (10), we get e ≥ (n − 1)(n −
k − 1)/2. But e ≤ (n− k)(n− k − 1)/2. From these two results k ≤ 1, a contradiction.

Case (ii): Let there are no isolated vertices in G. In this case let there be p connected

components in G. Therefore there is at least one edge in each component of G. Using (9)

we conclude that
n∑

i=1
d2

i < e[ 2e
n−1

+ (n− 2)], a contradiction.

Case (iii): Let G contain only one isolated vertex. Then

n∑

i=1

d2
i =

n−1∑

i=1

d2
i ≤ e

[
2e

n− 2
+ n− 3

]
, by (5). (11)

We have
n∑

i=1
d2

i = e[ 2e
n−1

+n−2]. Using this result and (11), we get e ≥ (n−1)(n−2)/2.

But e ≤ (n− 1)(n− 2)/2. Therefore e = (n− 1)(n− 2)/2, that is, G is a complete graph

with one isolated vertex.

Hence the theorem.
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Theorem 3.7. Let G be a simple graph with degree sequence d1, d2, . . . , dn. Then

n∑

i=1

d2
i ≤ e(e + 1). (12)

Proof. We show that if (12) holds for the graph G with n vertices and e edges then

it also holds for the new graph G1, constructed by joining any two non-adjacent vertices,

vr and vs, by an edge. Therefore

dr + ds ≤ e . (13)

G1 has n vertices and e + 1 edges with degree sequence d1, d2, . . . , dn. Therefore

dr = dr + 1, ds = ds + 1, and di = di, i = 1, 2, . . . , n; i 6= r, s.

We have

n∑

i=1

d
2

i =
n∑

i=1

d2
i + 2(dr + ds + 1)

≤ e(e + 1) + 2(e + 1), by (13)

= (e + 1)(e + 2).

Therefore (12) holds for graph G1. Also for the star graph S1,n−1 of order n, the

equality in (12) holds. The inequality in (12) also holds for the graph constructed by

adding an isolated vertex to the graph G. Any graph G can be constructed by starting

with the star graph S1,d1 (d1, the highest degree) and making required constructions

(addition of edges and vertices) at each step of which (12) holds true. Hence the theorem

is proved for any graph G.

Theorem 3.8. Let G be a connected graph with n vertices and e edges. Then

n∑

i=1

d2
i ≤ 2en− n(n− 1)dn + 2e(dn − 1), (14)

where dn is the lowest degree. Moreover, the equality holds if and only if G is a star graph

or a regular graph.
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Proof. We have
∑n

i=1 d2
i =

∑n
i=1 dimi, where mi is the average degree of the adjacent

vertices of the vertex vi ∈ V .

We have dimi ≤ 2e−di− (n−di−1)dn and the equality holds if and only if di = n−1

or vertex vi is not adjacent to the dn degree vertices. Using this result, we get

n∑

i=1

d2
i ≤

n∑

i=1

[2e− di − (n− di − 1)dn]

= 2en− n(n− 1)dn + 2e(dn − 1).

Suppose now that equality in (14) holds. Then either di = n − 1 or dj = dn, for all

vi ∈ V , vivj /∈ E, which implies that either (a) G is a star graph or (b) G is a regular

graph.

Conversely, it is easy to verify that equality in (14) holds for a star graph or a regular

graph.

Theorem 3.9 Let G be a graph with n vertices and e edges. Then

n∑

i=1

d2
i ≤ e

[
2e

n− 1
+ n− 2

]
− d1

[
4e

n− 1
− 2m1 − (n + 1)

(n− 1)
d1 + (n− 1)

]
, (15)

where d1 is the highest degree and m1 is the average degree of the vertices adjacent to the

highest degree vertex. Moreover, equality in (15) holds if and only if G is a star graph or

a complete graph or a graph of isolated vertices.

Proof. Let v1 be the highest–degree vertex of degree d1. Two cases are: (i) d1 = n−1,

(ii) d1 < n− 1.

Case (i): d1 = n− 1.

In this case m1 = 2e−n+1
n−1

. The inequality (15) reduces to

n∑

i=1

d2
i ≤ e

[
2e

n− 1
+ n− 2

]
, (16)

which is true by (5).
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Case (ii): d1 < n− 1.

In this case all the vertices those are not adjacent to the vertex v1 are adjacent to the

vertex v1. Denote the new graph by G1. Also let di, i = 1, 2, . . . , n be the degrees of G1.

By Lemma 3.4 on G1,

n∑

i=1

d
2

i ≤ (e + n− d1 − 1)

[
2(e + n− d1 − 1)

n− 1
+ n− 2

]
. (17)

Now,
n∑

i=1

d
2

i −
n∑

i=1

d2
i = (n− 1)2 − d2

1 + 2[2e− d1m1 − d1] + (n− d1 − 1),

i.e.,
n∑

i=1

d2
i ≤ e

[
2e

n− 1
+ n− 2

]
− d1

[
4e

n− 1
− 2m1 − (n + 1)

(n− 1)
d1 + (n− 1)

]
.

Suppose that equality in (15) holds. Then the equality holds in either (16) or (17).

Using Theorem 3.5 we conclude that G is either a star graph or a complete graph if the

equality holds in (16). Since the graph G1 is connected, using Theorem 3.5, G1 is a star

graph or a complete graph if the equality holds in (17). Since d1 < n − 1, G is a graph

of isolated vertices if the equality holds in (17). Hence G is a star graph or a complete

graph or a graph of isolated vertices.

Conversely, it is easy to verify that equality in (15) holds for a star graph, a complete

graph, and a graph of isolated vertices.

Corollary 3.10 Let G be a graph with n vertices and e edges. Then

n∑

i=1

d2
i ≤ e

[
2e

n− 1
+ n− 2

]
− d1

[
4e

n− 1
− 2d1 − (n + 1)

(n− 1)
d1 + (n− 1)

]
.

Moreover, equality holds if and only if G is a complete graph or a graph of isolated

vertices.

Remark. In the case of trees, the upper bound (15) is always better than D. Caen’s

bound, but it is not always so for any graph.
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4. LAPLACIAN EIGENVALUE WITH DEGREE SEQUENCE

Let A(G) be the adjacency matrix of G and let D(G) be the diagonal matrix of vertex

degrees. The Laplacian matrix of G is L(G) = D(G) − A(G). Clearly, L(G) is a real

symmetric matrix. From this fact and Geršgorin’s theorem, it follows that its eigenvalues

are non-negative real numbers. Moreover, since its rows sum to 0, 0 is the smallest

eigenvalue of L(G). The spectrum of G is

S(G) = (λ1(G), λ2(G), . . . , λn(G)),

where λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G) = 0 are the eigenvalues of L(G) arranged in non-

increasing order.

We have

n∑

i=1

(2e− di)di = 2
∑

i6=j

didj,

and
n∑

i=1

(2e− λi)λi = 2
∑

i6=j

λiλj.

Since
n∑

i=1

di =
n∑

i=1

λi ,

from the above two relations follows,

n∑

i=1

λ2
i −

n∑

i=1

d2
i = 2

∑

i6=j

didj − 2
∑

i6=j

λiλj .

From matrix theory is known that the sum of the product of two eigenvalues of L(G)

is given by
∑

i6=j λiλj =
∑

i6=j didj − e.

Therefore
n∑

i=1

λ2
i =

n∑

i=1

d2
i + 2e ,

that is,
n∑

i=1

λ2
i =

n∑

i=1

di(di + 1) .
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Lemma 4.1. Let G be a graph. If we remove an edge vivj then the maximum possible

drop in eigenvalue λk of L(G) is di+dj+2

λk
, where di and dj are the degrees of the vertices

vi and vj , respectively.

Proof. We have
n−1∑

i=1

λ2
i =

n∑

i=1

d2
i + 2e .

Also we know that if we remove an edge from the graph then the Laplacian eigenvalues

of the graph are non-increasing.

Let 4λk be the drop of the k-th eigenvalue λk of L(G). Then,
∑n−1

k=1(λk − 4λk)
2 =

∑n
k=1 d2

k − 2(di + dj) + 2e.

From these two results, we get
n−1∑

k=1

λ2
k −

n−1∑

k=1

(λk −4λk)
2 = 2(di + dj),

i.e., 2
n−1∑

k=1

λk4λk −
n−1∑

k=1

(4λk)
2 = 2(di + dj),

i.e.,
n−1∑

k=1

λk4λk ≤ di + dj + 2, by
∑n

k=1(4λk)
2 ≤ 4,

i.e., 4λk ≤ di + dj + 2

λk

, k = 1, 2, . . . , (n− 1).

Example 4.2. Consider a graph G depicted in the Fig. 1.

&%

'$

&%

'$
u uu u
vi vj

Kp Kp

G

Fig. 1

In G, vi and vj are two adjacent vertices connected by edges to one vertex each of

the two complete graphs of order p. Therefore the highest degree of G is p. If we remove
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an edge vivj then using Lemma 4.1 the largest eigenvalue can drop by a maximum of 6
λ1

,

where λ1 is the largest eigenvalue of G. Therefore

4λ1 ≤ 6

λ1

,

i.e., λ
′
1 = λ1 −4λ1 ≥ λ1 − 6

λ1

,

i.e., p + 1 ≥ λ1 − 6

λ1

, (since λ
′
1 = p + 1),

i.e., λ1 ≤
(p + 1) +

√
(p + 1)2 + 24

2
,

which is an upper bound for λ1 of the graph G. Also this bound gives a better result than

the other bounds (Section 1, [3]) for p > 4.

Lemma 4.3. [10] If G is a simple connected graph, then

λ1(G) ≤ dn +
1

2
+

√√√√(dn − 1

2
)2 +

n∑

i=1

di(di − dn) .

Equality holds if and only if G is a star graph [see [1], p. 283] or a regular bipartite graph.

In [7] is shown that for a connected graph G with n > 1, λ1 ≥ d1 + 1. Moreover,

equality holds if and only if d1 = n− 1.

Theorem 4.4. Let G be a simple connected graph with n vertices and e edges. Then

n∑

i=1

d2
i ≥ (d1 − dn)2 + d1 + dn(2e− dn), (18)

Euality in (18) holds if and only if G is a star graph.

Proof. We have λ1(G) ≥ d1 + 1, where d1 is the highest degree of G. From Lemma

4.3 and using this result, we get

n∑

i=1

d2
i ≥ (d1 − dn)2 + d1 + dn(2e− dn) .
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Moreover, we can easily determine that the equality holds in (18) if and only if G is a

star graph.

5. APPLICATION

Let t(G) denote the number of triangles in G. It was first observed by Goodman [4]

that t(G) + t(Gc), where Gc denotes the complement of G, is determined by the degree

sequence:

t(G) + t(Gc) =
1

2

∑

vi∈V

[di − (n− 1)

2
]2 +

n(n− 1)(n− 5)

24
. (19)

Goodman [5] raised the question of finding a best possible upper bound of the form

t(G)+ t(Gc) ≤ B(n, e), and he conjectured an expression for B(n, e). This conjecture was

proved recently by Olpp [8]. Moreover, the expression of B(n, e) is rather complicated.

We remark that two lower bounds and the four upper bounds on t(G) + t(Gc) follows

from (3), (4) and (12), (14), (15), (17), respectively.
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