
19

Kragujevac J. Math. 25 (2003) 19–29.

A GENERALIZATION OF THE GUMBEL

DISTRIBUTION

Shola Adeyemi and Mathew Oladejo Ojo

Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

(Received January 7, 2003)

Abstract. We propose as a generalization of the Gumbel distribution, the asymptotic dis-
tribution of m-th extremes obtained by (Gumbel,1934). Some of its properties are obtained.
A t-approximation to its cumulative ditsribution function is also proposed.

1. INTRODUCTION

The probability density function of the Gumbel random variable also called the extreme

value density Type I is given as

f(x) = e−x exp(−e−x), −∞ < x < ∞. (0)

The corresponding characteristic function is given as

Φx(t) = Γ(1− it). (1)
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Recently, (Ojo,2001) obtained a generalization of the Gumbel distribution with proba-

bility density function, p.d.f,

g(y) =
1

Γ(k)
e−ky exp(−e−y), −∞ < y < ∞ (2)

where k > 0 is the shape parameter; and its characteristic function is given as

ΦY (t) =
Γ(k − it)

Γ(k)
. (3)

The author claimed that the distribution is a first generalization of the Gumbel distribution.

In this paper, we propose as a generalization of the Gumbel distribution, the asymptotic

distribution of the m-th extremes obtained by (Gumbel,1934) with density function

g(y) =
mm

Γ(m)
e−my exp(−me−y), −∞ < y < ∞ (4)

For the purpose of this study, we shall deal with the distribution

f(y) =
λλ

Γ(λ)
e−λy exp(−λe−y), −∞ < y < ∞, λ > 0 (5)

where λ > 0 is the shape parameter and when λ = 1, it reduces to (1.1). The corresponding

characteristic function is given as

ΦY (t) = λit Γ(λ− it)
Γ(λ)

. (6)

In section 2, we derive the moments of the distribution for various values of λ. In section

3, three characterizing theorems are proved. In the last section a t-approximation to the

cumulative distribution function is proposed.

2. THE CUMULANTS

In what follows we derive the cumulants of the distribution. The cumulant generating

function is given by

lnM(t) = tlnλ + lnΓ(λ− t)− lnΓ(λ)
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The r-th cumulant is given by

κr =
dr

dtr
[t ln λ]t=o +

dr

dtr
[ln Γ(λ− t)]t=0

Using
∞∑

n=0

(n + m)−r =
∞∑

n=m

n−r =
∞∑

n=1

n−r −
m−1∑

n=1

n−r

Then the r-th cumulant becomes

κr =
dr

dtr
[t lnλ]t=o + (r − 1)![

∞∑

j=1

j−r −
λ−1∑

j=1

j−r

The above cumulants can be computed for positive integer values of λ only. In particular,

the first four cumulants which will be subsequently used are given as

κ1 = ln λ + γ −
λ−1∑

j=1

j−1 (7)

κ2 =
π2

6
−

λ−1∑

j=1

j−2 (8)

κ3 = 2[1.2021−
λ−1∑

j=1

j−3] (9)

κ4 = [
π4

15
−

λ−1∑

j=1

j−4] (10)

where γ is the Euler’s constant.

However, if λ = m + 1
2 , m being a positive integer, we can write the cumulants as

κr = (r − 1)![(2r − 1)
∞∑

n=1

n−r − 2r
m−1∑

n=0

(2n + 1)−r (11)

In particular, the first four cumulants for half plus positive integer are

κ1 =
∞∑

n=1

n−1 − 2
m−1∑

n=0

(2n + 1)−1 + ln(m +
1
2
) (12)

κ2 =
π2

6
− 4

m−1∑

n=0

(2n + 1)−2 (13)

κ3 = 14
∞∑

n=1

n−3 − 8
m−1∑

n=0

(2n + 1)−3 (14)
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κ4 = π4 − 16
m−1∑

n=0

(2n + 1)−4 (15)

The cumulants so far obtained can only be computed for positive integer and half plus

positive integer λ. We hereby obtain approximations to the cumulants for λ ∈ <+. By

applying the Stirling’s approximation to the gamma function and differentiating w.r.t t and

putting t = 0, we have approximations to the first four cumulants as

κ1 =
1
2λ

+
1

12λ2
(16)

κ2 =
1
λ

+
1

2λ2
+

1
6λ3

(17)

κ3 =
1
λ2

+
1
λ3

+
1

2λ4
(18)

κ4 =
2
λ3

+
3

2λ4
+

1
λ5

(19)

The approximation are quite close to the exact values as λ increases, as shown in the table

in the appendix and can be used for application purposes, particularly when the cumulants

are required for any positive value of λ.

3. CHARACTERIZATION

We prove three theorems that characterizes the generalized Gumbel distribution.

Theorem 3.1

The random variable Y = − ln X is generalized Gumbel with parameter λ if and only if X

is an Erlang random variable with parameter λ

Proof of Theorem 3.1

The ’if’ part is as follows. The density function of X is given as

f(x) =
λ(λx)λ−1

Γ(λ)
e−λx, x > 0, λ > 0

For Y = −ln X, therefore,

f(y) =
λλ

Γ(λ)
e−λye−λe−y
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Conversely, suppose − ln X has the generalized Gumbel distribution, but f(x) is unknown.

The moment generating function of y is given by

MY (t) =
λtΓ(λ− t)

Γ(λ)

that is

E(e− ln xt) =
λtΓ(λ− t)

Γ(λ)

That is

E(x−t) =
∫ ∞

−∞
x−tf(x)dx

but f(x) is unknown. The only function, f(x), satisfying the above is

f(x) =
λ(λx)λ−1

Γ(λ)
e−λx

which is the p.d.f of an Erlang random variable with parameter λ.

Theorem 3.2

Let X1 and X2 be independent random variables with a common density. Then the random

variable Y = X1 −X2 has the generalized logistic distribution with parameters α and β if

X1 and X2 each has the generalized Gumbel distribution.

Proof of Theorem 3.2

Suppose X1 and X2 are independent with density functions

h1(x1) =
αα

Γ(α)
e−αx1 exp(−αe−x1), −∞ < x1 < ∞, α > 0

and

h2(x2) =
ββ

Γ(β)
e−βx2 exp(−βe−x2), −∞ < x2 < ∞, β > 0

Then the characteristic function of X1 −X2 is given as

ΦX1−X2(t) = ΦX1 × ΦX2(−t)

=
Γ(α− it)Γ(β + it)

Γ(α)Γ(β)

This is the characteristic function of the generalized logistic distribution with parameters

α and β, and the theorem is proved.



24

Theorem 3.3

The random variable Y is generalized Gumbel with parameter λ if and only if the density

function f(y) satisfies the homogeneous differential equation

f ′ − λf(e−y − 1) = 0 (20)

Proof of Theorem 3.3

Suppose Y is generalized Gumbel with density function

f(y) =
λλ

Γ(λ)
e−λye−λe−y

(21)

Differentiating (21) w.r.t. y and subtituting into (20) gives the proof of the first part.

Conversely, suppose the density function (21) satisfies (20), by seperating variables and

integrating we have,

f = Ke−λye−λe−y

The normalising constant

K =
λλ

Γ(λ)

and thus the proof is complete.

4. THE T-APPROXIMATION TO THE PROBABILITY FUNCTION

We hereby propose a t-approximation to the cumulative distribution function,c.d.f, of

the generalized Gumbel distribution. The c.d.f of the generalized Gumbel distribution is

given by

F (y) =
λλ

Γ(λ)

∫ y

−∞
e−λx exp(−λe−x)dx

=
1

Γ(λ)

∫ ∞

λe−x
pλ−1ep dp

that is

F (y) = Iu(λ) (22)
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where I(.) is the incomplete gamma function and u = λe−y. Since (22) is not in closed form,

we propose a t-approximation to it by following the standard method used by (Ojo,1988).

To obtain the appropriate degree of freedom of the approximating t for given values of λ,

we equate the coefficents of kurtosis of the two distributions. That is β2(y) = β2(t). By

using equation (8) and (10), we have

β2(y) =
(π4

15 −
∑λ−1

j=1 j−4)

(π2

6 −∑λ−1
j=1 j−2)2

By equating β2(y) to 6
ν−4 , the coefficient of kurtosis of the t distribution with ν degrees of

freedom, we have the relation

ν =
6 + 4β2(y)

β2(y)

from where we obtain the regression line of ν on λ to be

ν = 2.93 + 3.12λ

Now if we let

Y∗ =
(Y − κ1)√

κ2

and

T =
t

σt

where σ2
t = ν

ν−2 be the standardized Gumbel and the t random variables respectively, we

propose the approximation

P (Y∗≤y)≈P (T ≤ t) = F (y)≈P (T≤c(y − κ1))

where

c =
σt√
κ2

Computations are carried out for Tail probabilities to show the quality of the approximation.

It turns out that the t-approximation gives a good result as λ increases. This is substantiated

by the error marging of the tail probabilities in the appendix.



26

References

[1] D. Alfers and H. Durges A Normal Approximation for the Beta and Gamma Tail

probabilities. Z. Wahr. Verw. Gebiete 65 (1984), 399-420.

[2] S. Adeyemi Properties and Applications of the Generalized Gumbel Distribution. Un-

published M.Sc. Thesis (2001).

[3] E.J. Gumbel Les valeurs extremes des distributions statistiques, Ann. Inst. H. Poincare,

5, (1934), 115

[4] M.O. Ojo A New Approximation to the Incomplete Beta function, Communications in

Statistical Theory, Methods,17(5) (1988), 1423-1435.

[5] M.O. Ojo Some relationships between the generalized Gumbel and other distributions,

Kragujevac J. of Maths 23 (2001), 101-106.



27

APPENDIX

TABLE OF ERROR OF APPROXIMATIONS TO CUMULANTS

λ κ1 Approximation Absolute Error
1 0.5772 0.5833 0.0061
2 0.2703 0.2708 0.0005
3 0.1758 0.1759 0.0001
4 0.1302 0.1302 0.0000
5 0.1039 0.1039 0.0000
10 0.0508 0.0508 0.0000

Table 1:

λ κ2 Approximation Absolute Error
1 1.6449 1.6667 0.0218
2 0.6449 0.6459 0.0010
3 0.3948 0.3951 0.0003
4 0.2838 0.2838 0.0000
5 0.2213 0.2213 0.0000
10 0.1052 0.1052 0.0000

Table 2:

λ κ3 Approximation Absolute Error
1 2.4859 2.5000 0.0141
2 0.4071 0.4063 0.0008
3 0.1544 0.1543 0.0001
4 0.2832 0.2832 0.0000
5 0.0488 0.0488 0.0000
10 0.0111 0.0111 0.0000

Table 3:

λ κ4 Approximation Absolute Error
1 6.4939 7.0000 0.5061
2 0.4939 0.5000 0.0061
3 0.1189 0.1193 0.0004
4 0.0448 0.0448 0.0000
5 0.0211 0.0211 0.0000
10 0.0022 0.0022 0.0000

Table 4:
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TABLE OF ERROR OF APPROXIMATIONS TO PROBABILITY FUNCTION

F (y) is the probability function of the generalized Gumbel distribution.
T (y) is the t approximation to the probability function.

y F (y) T (y) Absolute Error
2.365 0.9750 0.9577 0.0173
2.998 0.9900 0.9785 0.0115
3.499 0.9950 0.9874 0.0076
4.785 0.9990 0.9969 0.0021
5.408 0.9995 0.9984 0.0011

Table 5: λ = 1, ν = 7

y F (y) T (y) Absolute Error
2.262 0.9750 0.9654 0.0096
2.821 0.9900 0.9813 0.0087
3.257 0.9950 0.9895 0.0055
4.297 0.9990 0.9975 0.0015
4.781 0.9995 0.9987 0.0008

Table 6: λ = 2, ν = 9

y F (y) T (y) Absolute Error
2.179 0.9750 0.9674 0.0076
2.681 0.9900 0.9824 0.0076
3.055 0.9950 0.9900 0.0050
3.930 0.9990 0.9975 0.0015
4.318 0.9995 0.9987 0.0008

Table 7: λ = 3, ν = 12

y F (y) T (y) Absolute Error
2.131 0.9750 0.9644 0.0106
2.602 0.9900 0.9830 0.0070
2.947 0.9950 0.9904 0.0046
3.733 0.9990 0.9981 0.0009
4.073 0.9995 0.9987 0.0008

Table 8: λ = 4, ν = 15
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y F (y) T (y) Absolute Error
2.101 0.9750 0.9653 0.0097
2.552 0.9900 0.9835 0.0065
2.878 0.9950 0.9916 0.0034
3.610 0.9990 0.9976 0.0014
3.922 0.9995 0.9987 0.0001

Table 9: λ = 5, ν = 18


