Kragujevac J. Math. 25 (2003) 19–29.

A GENERALIZATION OF THE GUMBEL DISTRIBUTION

Shola Adeyemi and Mathew Oladejo Ojo

Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

(Received January 7, 2003)

Abstract. We propose as a generalization of the Gumbel distribution, the asymptotic distribution of m-th extremes obtained by *(Gumbel, 1934)*. Some of its properties are obtained. A t-approximation to its cumulative distribution function is also proposed.

1. INTRODUCTION

The probability density function of the Gumbel random variable also called the extreme value density Type I is given as

$$f(x) = e^{-x} \exp(-e^{-x}), \quad -\infty < x < \infty.$$
 (0)

The corresponding characteristic function is given as

$$\Phi_x(t) = \Gamma(1 - it). \tag{1}$$

Recently, (Ojo,2001) obtained a generalization of the Gumbel distribution with probability density function, p.d.f,

$$g(y) = \frac{1}{\Gamma(k)} e^{-ky} \exp(-e^{-y}), \quad -\infty < y < \infty$$
⁽²⁾

where k > 0 is the shape parameter; and its characteristic function is given as

.

$$\Phi_Y(t) = \frac{\Gamma(k-it)}{\Gamma(k)}.$$
(3)

The author claimed that the distribution is a first generalization of the Gumbel distribution. In this paper, we propose as a generalization of the Gumbel distribution, the asymptotic distribution of the m-th extremes obtained by (Gumbel, 1934) with density function

$$g(y) = \frac{m^m}{\Gamma(m)} e^{-my} \exp(-me^{-y}), \quad -\infty < y < \infty$$
(4)

For the purpose of this study, we shall deal with the distribution

$$f(y) = \frac{\lambda^{\lambda}}{\Gamma(\lambda)} e^{-\lambda y} \exp(-\lambda e^{-y}), \quad -\infty < y < \infty, \quad \lambda > 0$$
(5)

where $\lambda > 0$ is the shape parameter and when $\lambda = 1$, it reduces to (1.1). The corresponding characteristic function is given as

$$\Phi_{Y(t)} = \lambda^{it} \frac{\Gamma(\lambda - it)}{\Gamma(\lambda)}.$$
(6)

In section 2, we derive the moments of the distribution for various values of λ . In section 3, three characterizing theorems are proved. In the last section a t-approximation to the cumulative distribution function is proposed.

2. THE CUMULANTS

In what follows we derive the cumulants of the distribution. The cumulant generating function is given by

$$\ln M(t) = t \ln \lambda + \ln \Gamma(\lambda - t) - \ln \Gamma(\lambda)$$

The r-th cumulant is given by

$$\kappa_r = \frac{d^r}{dt^r} [t \ln \lambda]_{t=0} + \frac{d^r}{dt^r} [\ln \Gamma(\lambda - t)]_{t=0}$$

Using

$$\sum_{n=0}^{\infty} (n+m)^{-r} = \sum_{n=m}^{\infty} n^{-r} = \sum_{n=1}^{\infty} n^{-r} - \sum_{n=1}^{m-1} n^{-r}$$

Then the r-th cumulant becomes

$$\kappa_r = \frac{d^r}{dt^r} [t \ln \lambda]_{t=o} + (r-1)! [\sum_{j=1}^{\infty} j^{-r} - \sum_{j=1}^{\lambda-1} j^{-r}]$$

The above cumulants can be computed for positive integer values of λ only. In particular, the first four cumulants which will be subsequently used are given as

$$\kappa_1 = \ln \lambda + \gamma - \sum_{j=1}^{\lambda-1} j^{-1} \tag{7}$$

$$\kappa_2 = \frac{\pi^2}{6} - \sum_{j=1}^{\lambda-1} j^{-2} \tag{8}$$

$$\kappa_3 = 2[1.2021 - \sum_{j=1}^{\lambda-1} j^{-3}] \tag{9}$$

$$\kappa_4 = \left[\frac{\pi^4}{15} - \sum_{j=1}^{\lambda-1} j^{-4}\right] \tag{10}$$

where γ is the Euler's constant.

However, if $\lambda = m + \frac{1}{2}$, m being a positive integer, we can write the cumulants as

$$\kappa_r = (r-1)![(2^r-1)\sum_{n=1}^{\infty} n^{-r} - 2^r \sum_{n=0}^{m-1} (2n+1)^{-r}$$
(11)

In particular, the first four cumulants for half plus positive integer are

$$\kappa_1 = \sum_{n=1}^{\infty} n^{-1} - 2\sum_{n=0}^{m-1} (2n+1)^{-1} + \ln(m+\frac{1}{2})$$
(12)

$$\kappa_2 = \frac{\pi^2}{6} - 4 \sum_{n=0}^{m-1} (2n+1)^{-2} \tag{13}$$

$$\kappa_3 = 14 \sum_{n=1}^{\infty} n^{-3} - 8 \sum_{n=0}^{m-1} (2n+1)^{-3}$$
(14)

$$\kappa_4 = \pi^4 - 16 \sum_{n=0}^{m-1} (2n+1)^{-4} \tag{15}$$

The cumulants so far obtained can only be computed for positive integer and half plus positive integer λ . We hereby obtain approximations to the cumulants for $\lambda \in \Re^+$. By applying the Stirling's approximation to the gamma function and differentiating w.r.t t and putting t = 0, we have approximations to the first four cumulants as

$$\kappa_1 = \frac{1}{2\lambda} + \frac{1}{12\lambda^2} \tag{16}$$

$$\kappa_2 = \frac{1}{\lambda} + \frac{1}{2\lambda^2} + \frac{1}{6\lambda^3} \tag{17}$$

$$\kappa_3 = \frac{1}{\lambda^2} + \frac{1}{\lambda^3} + \frac{1}{2\lambda^4} \tag{18}$$

$$\kappa_4 = \frac{2}{\lambda^3} + \frac{3}{2\lambda^4} + \frac{1}{\lambda^5} \tag{19}$$

The approximation are quite close to the exact values as λ increases, as shown in the table in the appendix and can be used for application purposes, particularly when the cumulants are required for any positive value of λ .

3. CHARACTERIZATION

We prove three theorems that characterizes the generalized Gumbel distribution.

Theorem 3.1

The random variable $Y = -\ln X$ is generalized Gumbel with parameter λ if and only if X is an Erlang random variable with parameter λ

Proof of Theorem 3.1

The 'if' part is as follows. The density function of X is given as

$$f(x) = \frac{\lambda(\lambda x)^{\lambda-1}}{\Gamma(\lambda)} e^{-\lambda x}, \quad x > 0, \quad \lambda > 0$$

For $Y = -\ln X$, therefore,

$$f(y) = \frac{\lambda^{\lambda}}{\Gamma(\lambda)} e^{-\lambda y} e^{-\lambda e^{-y}}$$

Conversely, suppose $-\ln X$ has the generalized Gumbel distribution, but f(x) is unknown. The moment generating function of y is given by

$$M_Y(t) = \frac{\lambda^t \Gamma(\lambda - t)}{\Gamma(\lambda)}$$

that is

$$E(e^{-\ln xt}) = \frac{\lambda^t \Gamma(\lambda - t)}{\Gamma(\lambda)}$$

That is

$$E(x^{-t}) = \int_{-\infty}^{\infty} x^{-t} f(x) dx$$

but f(x) is unknown. The only function, f(x), satisfying the above is

$$f(x) = \frac{\lambda(\lambda x)^{\lambda - 1}}{\Gamma(\lambda)} e^{-\lambda x}$$

which is the p.d.f of an Erlang random variable with parameter λ .

Theorem 3.2

Let X_1 and X_2 be independent random variables with a common density. Then the random variable $Y = X_1 - X_2$ has the generalized logistic distribution with parameters α and β if X_1 and X_2 each has the generalized Gumbel distribution.

Proof of Theorem 3.2

Suppose X_1 and X_2 are independent with density functions

$$h_1(x_1) = \frac{\alpha^{\alpha}}{\Gamma(\alpha)} e^{-\alpha x_1} \exp(-\alpha e^{-x_1}), \quad -\infty < x_1 < \infty, \quad \alpha > 0$$

and

$$h_2(x_2) = \frac{\beta^{\beta}}{\Gamma(\beta)} e^{-\beta x_2} \exp(-\beta e^{-x_2}), \quad -\infty < x_2 < \infty, \quad \beta > 0$$

Then the characteristic function of $X_1 - X_2$ is given as

$$\Phi_{X_1-X_2}(t) = \Phi_{X_1} \times \Phi_{X_2}(-t)$$
$$= \frac{\Gamma(\alpha - it)\Gamma(\beta + it)}{\Gamma(\alpha)\Gamma(\beta)}$$

This is the characteristic function of the generalized logistic distribution with parameters α and β , and the theorem is proved.

Theorem 3.3

The random variable Y is generalized Gumbel with parameter λ if and only if the density function f(y) satisfies the homogeneous differential equation

$$f' - \lambda f(e^{-y} - 1) = 0 \tag{20}$$

Proof of Theorem 3.3

Suppose Y is generalized Gumbel with density function

$$f(y) = \frac{\lambda^{\lambda}}{\Gamma(\lambda)} e^{-\lambda y} e^{-\lambda e^{-y}}$$
(21)

Differentiating (21) w.r.t. y and subtituting into (20) gives the proof of the first part. Conversely, suppose the density function (21) satisfies (20), by separating variables and integrating we have,

$$f = K e^{-\lambda y} e^{-\lambda e^{-y}}$$

The normalising constant

$$K = \frac{\lambda^{\lambda}}{\Gamma(\lambda)}$$

and thus the proof is complete.

4. THE T-APPROXIMATION TO THE PROBABILITY FUNCTION

We hereby propose a t-approximation to the cumulative distribution function,c.d.f, of the generalized Gumbel distribution. The c.d.f of the generalized Gumbel distribution is given by

$$F(y) = \frac{\lambda^{\lambda}}{\Gamma(\lambda)} \int_{-\infty}^{y} e^{-\lambda x} \exp(-\lambda e^{-x}) dx$$
$$= \frac{1}{\Gamma(\lambda)} \int_{\lambda e^{-x}}^{\infty} p^{\lambda - 1} e^{p} dp$$

that is

$$F(y) = I_u(\lambda) \tag{22}$$

where I(.) is the incomplete gamma function and $u = \lambda e^{-y}$. Since (22) is not in closed form, we propose a t-approximation to it by following the standard method used by *(Ojo,1988)*. To obtain the appropriate degree of freedom of the approximating t for given values of λ , we equate the coefficients of kurtosis of the two distributions. That is $\beta_2(y) = \beta_2(t)$. By using equation (8) and (10), we have

$$\beta_2(y) = \frac{\left(\frac{\pi^4}{15} - \sum_{j=1}^{\lambda-1} j^{-4}\right)}{\left(\frac{\pi^2}{6} - \sum_{j=1}^{\lambda-1} j^{-2}\right)^2}$$

By equating $\beta_2(y)$ to $\frac{6}{\nu-4}$, the coefficient of kurtosis of the t distribution with ν degrees of freedom, we have the relation

$$\nu = \frac{6 + 4\beta_2(y)}{\beta_2(y)}$$

from where we obtain the regression line of ν on λ to be

$$\nu = 2.93 + 3.12\lambda$$

Now if we let

$$Y_* = \frac{(Y - \kappa_1)}{\sqrt{\kappa_2}}$$

and

$$T = \frac{t}{\sigma_t}$$

where $\sigma_t^2 = \frac{\nu}{\nu-2}$ be the standardized Gumbel and the t random variables respectively, we propose the approximation

$$P(Y_* \le y) \approx P(T \le t) = F(y) \approx P(T \le c(y - \kappa_1))$$

where

$$c = \frac{\sigma_t}{\sqrt{\kappa}_2}$$

Computations are carried out for Tail probabilities to show the quality of the approximation. It turns out that the t-approximation gives a good result as λ increases. This is substantiated by the error marging of the tail probabilities in the appendix.

References

- D. Alfers and H. Durges A Normal Approximation for the Beta and Gamma Tail probabilities. Z. Wahr. Verw. Gebiete 65 (1984), 399-420.
- [2] S. Adeyemi Properties and Applications of the Generalized Gumbel Distribution. Unpublished M.Sc. Thesis (2001).
- [3] E.J. Gumbel Les valeurs extremes des distributions statistiques, Ann. Inst. H. Poincare, 5, (1934), 115
- [4] M.O. Ojo A New Approximation to the Incomplete Beta function, Communications in Statistical Theory, Methods, 17(5) (1988), 1423-1435.
- [5] M.O. Ojo Some relationships between the generalized Gumbel and other distributions, Kragujevac J. of Maths 23 (2001), 101-106.

APPENDIX

TABLE OF ERROR OF APPROXIMATIONS TO CUMULANTS

λ	κ_1	Approximation	Absolute Error
1	0.5772	0.5833	0.0061
2	0.2703	0.2708	0.0005
3	0.1758	0.1759	0.0001
4	0.1302	0.1302	0.0000
5	0.1039	0.1039	0.0000
10	0.0508	0.0508	0.0000

Table 1:

λ	κ_2	Approximation	Absolute Error
1	1.6449	1.6667	0.0218
2	0.6449	0.6459	0.0010
3	0.3948	0.3951	0.0003
4	0.2838	0.2838	0.0000
5	0.2213	0.2213	0.0000
10	0.1052	0.1052	0.0000

Table 2:

λ	κ_3	Approximation	Absolute Error
1	2.4859	2.5000	0.0141
2	0.4071	0.4063	0.0008
3	0.1544	0.1543	0.0001
4	0.2832	0.2832	0.0000
5	0.0488	0.0488	0.0000
10	0.0111	0.0111	0.0000

Table 3:

λ	κ_4	Approximation	Absolute Error
1	6.4939	7.0000	0.5061
2	0.4939	0.5000	0.0061
3	0.1189	0.1193	0.0004
4	0.0448	0.0448	0.0000
5	0.0211	0.0211	0.0000
10	0.0022	0.0022	0.0000

Table 4:

TABLE OF ERROR OF APPROXIMATIONS TO PROBABILITY FUNCTION

F(y) is the probability function of the generalized Gumbel distribution. T(y) is the t approximation to the probability function.

y	F(y)	T(y)	Absolute Error
2.365	0.9750	0.9577	0.0173
2.998	0.9900	0.9785	0.0115
3.499	0.9950	0.9874	0.0076
4.785	0.9990	0.9969	0.0021
5.408	0.9995	0.9984	0.0011

Table 5: $\lambda = 1, \nu = 7$

<i>y</i>	F(y)	T(y)	Absolute Error
2.262	0.9750	0.9654	0.0096
2.821	0.9900	0.9813	0.0087
3.257	0.9950	0.9895	0.0055
4.297	0.9990	0.9975	0.0015
4.781	0.9995	0.9987	0.0008

Table 6: $\lambda = 2, \nu = 9$

<i>y</i>	F(y)	T(y)	Absolute Error
2.179	0.9750	0.9674	0.0076
2.681	0.9900	0.9824	0.0076
3.055	0.9950	0.9900	0.0050
3.930	0.9990	0.9975	0.0015
4.318	0.9995	0.9987	0.0008

Table 7: $\lambda = 3, \nu = 12$

y	F(y)	T(y)	Absolute Error
2.131	0.9750	0.9644	0.0106
2.602	0.9900	0.9830	0.0070
2.947	0.9950	0.9904	0.0046
3.733	0.9990	0.9981	0.0009
4.073	0.9995	0.9987	0.0008

Table 8: $\lambda = 4, \nu = 15$

<i>y</i>	F(y)	T(y)	Absolute Error
2.101	0.9750	0.9653	0.0097
2.552	0.9900	0.9835	0.0065
2.878	0.9950	0.9916	0.0034
3.610	0.9990	0.9976	0.0014
3.922	0.9995	0.9987	0.0001

Table 9: $\lambda=5,\nu=18$