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Abstract. We propose as a generalization of the Gumbel distribution, the asymptotic dis-
tribution of m-th extremes obtained by (Gumbel,1934). Some of its properties are obtained.
A t-approximation to its cumulative ditsribution function is also proposed.

1. INTRODUCTION

The probability density function of the Gumbel random variable also called the extreme

value density Type I is given as
fx)=e"exp(—e™™), —o0 < z < 0. (0)
The corresponding characteristic function is given as

B, (t) = T(1 — it). 1)
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Recently, (0Ojo,2001) obtained a generalization of the Gumbel distribution with proba-
bility density function, p.d.f,

oly) = F(lk)ekyexm—ey), —o0 <y < oo (2)

where k > 0 is the shape parameter; and its characteristic function is given as

I'(k —it)

Py (t) = T(k) (3)

The author claimed that the distribution is a first generalization of the Gumbel distribution.
In this paper, we propose as a generalization of the Gumbel distribution, the asymptotic

distribution of the m-th extremes obtained by (Gumbel,193/) with density function

m

g(y) = ——e ™ exp(—me V), —o00 < y < o0 (4)

INGD)
For the purpose of this study, we shall deal with the distribution

)\)\
I'(A)

e Mexp(—Xe™V), —oco<y<oo, A> 0 (5)

fly) =

where A > 0 is the shape parameter and when A = 1, it reduces to (1.1). The corresponding

characteristic function is given as

S (N —at)
) =\t 6
In section 2, we derive the moments of the distribution for various values of A. In section
3, three characterizing theorems are proved. In the last section a t-approximation to the

cumulative distribution function is proposed.

2. THE CUMULANTS

In what follows we derive the cumulants of the distribution. The cumulant generating
function is given by

In M(t) = tlnA + InI'(A — ¢) — InI'(N)



The r-th cumulant is given by

Fr = o —[tIn A= + — e ~[InT'(A = t)]i=0
Using
[ee) 00 00 m—1
Zn—i—m - an Zn_T—Zn_r
n=0 n=1 n=1

Then the r-th cumulant becomes

e _
Ky = dtT[tlII)\]t —o+ (r—1)! Z] Zj—"

7j=1
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The above cumulants can be computed for positive integer values of A only. In particular,

the first four cumulants which will be subsequently used are given as

A—1
=InA4+~v- Z J
7=1
2 A—1
7T _
Ko = — — ZJ ?
6 &
j=1
A—1
k3 =2[1.2021 — ]
j=1
4 A—1
s -
k== 07
15 =

where v is the Euler’s constant.
However, if A\ =m + %, m being a positive integer, we can write the cumulants as

m—1

kr = (r=1)!(2" - 1) Zn”—ZTZ 2n+1)7"

n=0

In particular, the first four cumulants for half plus positive integer are

(e’ m—1
1
—1 —1
— ) om+1 ] -
;n g(n—i- ) +n(m+2)

7T2 m—1
=——4 2n+1)72
p) 6 7;](?1-1- )

o] m—1
k3=14) n 3 =8> (2n+1)7"
n=1 n=0

(10)

(11)
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m—1

ka=m"—16 > (2n+1)7* (15)
n=0

The cumulants so far obtained can only be computed for positive integer and half plus
positive integer \. We hereby obtain approximations to the cumulants for A € RT. By
applying the Stirling’s approximation to the gamma function and differentiating w.r.t t and

putting ¢ = 0, we have approximations to the first four cumulants as

1 1

Hl:ﬁ+12)\2 (16)
m2:§+2—;+6% (17)
ngéﬁ-%‘f'?; (18)
n4:%+27?;\4+% (19)

The approximation are quite close to the exact values as A increases, as shown in the table
in the appendix and can be used for application purposes, particularly when the cumulants

are required for any positive value of .

3. CHARACTERIZATION

We prove three theorems that characterizes the generalized Gumbel distribution.
Theorem 3.1
The random variable Y = —1In X is generalized Gumbel with parameter X\ if and only if X
1s an Erlang random variable with parameter A
Proof of Theorem 3.1

The ’if” part is as follows. The density function of X is given as

APy,

ey e x>0, A>0

fz) =

For Y = —In X, therefore,
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Conversely, suppose — In X has the generalized Gumbel distribution, but f(z) is unknown.

The moment generating function of y is given by

Mﬂﬂ:A?%;w
that is
E(e—ln:pt) — A FIE()‘)\)_ t)
That is

E(z™") :/ x f(x)dx
but f(x) is unknown. The only function, f(x), satisfying the above is

)‘(Ax))\il —Az

which is the p.d.f of an Erlang random variable with parameter .

Theorem 3.2
Let X1 and Xo be independent random variables with a common density. Then the random
variable Y = X1 — Xo has the generalized logistic distribution with parameters o and 3 if
X1 and Xo each has the generalized Gumbel distribution.

Proof of Theorem 3.2
Suppose X7 and X, are independent with density functions

«

hi(x1) = F(a)e_ml exp(—ae "), —oco<z; <00, a > 0
and
ho(ze) = i e P2 exp(—fe™®2), —oco<my<oo, B > 0
INE)

Then the characteristic function of X7 — X5 is given as

¢'X1—X2(t) =dy, X ¢'X2(_t)

T(a —it)D(B + it)
L(a)I'(B)

This is the characteristic function of the generalized logistic distribution with parameters

«a and 3, and the theorem is proved.
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Theorem 3.3
The random variable Y is generalized Gumbel with parameter X if and only if the density

function f(y) satisfies the homogeneous differential equation

ff=AfeV=1)=0 (20)

Proof of Theorem 3.3

Suppose Y is generalized Gumbel with density function

Fly) = 2o Mg (21)

Differentiating (21) w.r.t. y and subtituting into (20) gives the proof of the first part.
Conversely, suppose the density function (21) satisfies (20), by seperating variables and
integrating we have,
f=KeMe e
The normalising constant
)\)\
T

and thus the proof is complete.

4. THE T-APPROXIMATION TO THE PROBABILITY FUNCTION

We hereby propose a t-approximation to the cumulative distribution function,c.d.f, of

the generalized Gumbel distribution. The c.d.f of the generalized Gumbel distribution is

given by
F ARl LR e %)d
W) = gy ¢ (A )
1 o A—1_p
= e’ d
T(\) /Aefzp P
that is

F(y) = Iu(}) (22)
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where I(.) is the incomplete gamma function and u = Ae™¥. Since (22) is not in closed form,
we propose a t-approximation to it by following the standard method used by (Ojo,1988).
To obtain the appropriate degree of freedom of the approximating ¢ for given values of A,
we equate the coefficents of kurtosis of the two distributions. That is B2(y) = [a2(t). By

using equation (8) and (10), we have

4 A—1 . —
(71L5 - Zj:l J 4)
2 A—1 -
(% — X521 472)?

Ba(y) =

By equating (2(y) toﬁ, the coefficient of kurtosis of the t distribution with v degrees of

freedom, we have the relation
_ 6+40a(y)

B2(y)

from where we obtain the regression line of v on A to be
v =293+ 3.12)\

Now if we let

and

where 07 = -5 be the standardized Gumbel and the ¢ random variables respectively, we

propose the approximation
PYi<y)=P(T <t) = F(y)=P(T<c(y — r1))

where

VK

Computations are carried out for Tail probabilities to show the quality of the approximation.

C

It turns out that the t-approximation gives a good result as X increases. This is substantiated

by the error marging of the tail probabilities in the appendix.
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TABLE OF ERROR OF APPROXIMATIONS TO CUMULANTS

APPENDIX

A K1 Approximation | Absolute Error

1 |0.5772 0.5833 0.0061

2 |0.2703 0.2708 0.0005

3 | 0.1758 0.1759 0.0001

4 10.1302 0.1302 0.0000

5 | 0.1039 0.1039 0.0000

10 | 0.0508 0.0508 0.0000
Table 1:

A K9 Approximation | Absolute Error

1 | 1.6449 1.6667 0.0218

2 | 0.6449 0.6459 0.0010

3 | 0.3948 0.3951 0.0003

4 | 0.2838 0.2838 0.0000

5 |0.2213 0.2213 0.0000

10 | 0.1052 0.1052 0.0000
Table 2:

A K3 Approximation | Absolute Error

1 | 2.4859 2.5000 0.0141

2 | 0.4071 0.4063 0.0008

3 | 0.1544 0.1543 0.0001

4 | 0.2832 0.2832 0.0000

5 | 0.0488 0.0488 0.0000

10 | 0.0111 0.0111 0.0000
Table 3:

A Ky Approximation | Absolute Error

1 | 6.4939 7.0000 0.5061

2 | 0.4939 0.5000 0.0061

3 10.1189 0.1193 0.0004

4 | 0.0448 0.0448 0.0000

5 | 0.0211 0.0211 0.0000

10 | 0.0022 0.0022 0.0000

Table 4:
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TABLE OF ERROR OF APPROXIMATIONS TO PROBABILITY FUNCTION

F(y) is the probability function of the generalized Gumbel distribution.
T'(y) is the t approximation to the probability function.

Y F(y) | T(y) | Absolute Error
2.365 | 0.9750 | 0.9577 0.0173
2.998 | 0.9900 | 0.9785 0.0115
3.499 | 0.9950 | 0.9874 0.0076
4.785 | 0.9990 | 0.9969 0.0021
5.408 | 0.9995 | 0.9984 0.0011
Table 5: A=1,v="7
Y F(y) | T(y) | Absolute Error
2.262 | 0.9750 | 0.9654 0.0096
2.821 | 0.9900 | 0.9813 0.0087
3.257 | 0.9950 | 0.9895 0.0055
4.297 | 0.9990 | 0.9975 0.0015
4.781 | 0.9995 | 0.9987 0.0008
Table 6: A=2,v=29
y F(y) | T(y) | Absolute Error
2.179 | 0.9750 | 0.9674 0.0076
2.681 | 0.9900 | 0.9824 0.0076
3.055 | 0.9950 | 0.9900 0.0050
3.930 | 0.9990 | 0.9975 0.0015
4.318 | 0.9995 | 0.9987 0.0008
Table 7: A =3,v =12
Yy F(y) | T(y) | Absolute Error
2.131 | 0.9750 | 0.9644 0.0106
2.602 | 0.9900 | 0.9830 0.0070
2.947 | 0.9950 | 0.9904 0.0046
3.733 | 0.9990 | 0.9981 0.0009
4.073 | 0.9995 | 0.9987 0.0008

Table 8: A=4,v =15



Yy F(y) | T(y) | Absolute Error
2.101 | 0.9750 | 0.9653 0.0097
2.552 | 0.9900 | 0.9835 0.0065
2.878 | 0.9950 | 0.9916 0.0034
3.610 | 0.9990 | 0.9976 0.0014
3.922 | 0.9995 | 0.9987 0.0001

Table 9: A =5v =18

29



