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Abstract. We consider a batch arrival queueing system M (i)/M/1/m/ of varying cluster
arrival sizes I. The arrival process thus constitutes an independent compound Poisson stream
of rate λr where

r =
∞∑

i=1

iαi, pr (I = i) = αi (i ≥ 1)

and pr (I ≥ i) = βi with βk = 0 for k ≤ 0.
Acceptance into system is further limited by available space m thus implying a trunca-

tion of an otherwise infinite domain.
With the aid of certain combinatoric analysis of partitions and compositions the steady

state distributions under various forms of arrival size pattern have been explicitly obtained
in terms of system specifications. It is demonstrated that the results can perfectly provide
one more class of truncated geometric distribution for a less idealistic modeling of the
complex natural process of aggregation, congregation and abundance for such animals as
soil microarthropods. A numerical illustration is provided using some copious data from
the biological literature.
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1. INTRODUCTION

Queueing system of the form M (i)/M/1/m/ where units arrive in compound but

truncated streams of various sizes (I), acceptances are limited by available space m as

units in excess of those to fill up space are allowed to overflow and units depart singly

are common in practice. Incidentally this may model the natural spatial and temporal

distribution of microorganisms in certain instances. Soil microarthropods may arrive

into an appropriate sampling unit of a discrete habitat in batches of various sizes.

The arrival sizes may be limited by the sampling unit and plan, and such other in-

herent differences in the ecology of the various species as represented by their average

ambit and reaction to biotic and abiotic factors in the environment. In other words

differences in spatial distribution may be attributed to the physiognomy and other soil

characteristics of the forest as well as other conditions as temperature and moisture

content in the different seasons. The species also die or disappear from the sampling

unit at specific rates depending on the share for the species or niche from a complex

resource apportioning mechanism in a community. The result is that one specie may

aggregate while another may not and the species that strongly aggregate under a mi-

croenvironmental condition may only weakly aggregate under a different latitudinal

pattern. The various conditions can be captured by the choice of birth or arrival rates

λ, the mean arrival size r, death or departure rates µ and the available space m for

the birth and death queueing model. We assume that pr {I = i} = αi, pr {I ≥ i} = βi

such that the mean bulk arrival size

r =
∞∑

i=1

iαi

We also define a somewhat truncated mean

rk =
k∑

i=1

βi =
k−1∑

i=1

iαi + kβk = r −
∞∑

i=k

(i− k) αi

Readily available in the literature are such relevant results as the Pollaczec-khinchin

P −K formula (Kleinrock,1975) for specific time- point steady -state distribution of
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queue size for M (x)/M/c, M (x)/M/c/c/loss system as well as such other generalisa-

tions as M (x)/G/1 with bulk arrival (Medhi,1991). Our contribution is to utilise a

simple combinatoric interpretation for solving for bulk systems of varying or fixed

cluster or batch sizes. This may also clearly bring out the relevance of the model

to biological and other population sytems. It is important to note that the P − K

mean value formula actually shows that the mean queue length for an M/G/1 grows

linearly with the squared coefficient variation of the service time distribution, and

that the coefficient of variation for any distribution is a measure of its aggregation.

Also this can generally be increased by sending a unit through a parallel arrangement

of queues. Our own results suggest a weighted combination of truncated geometric

distributions may be an appropriate alternative model for spatial distribution of such

animal populations as soil arthropods that have been poorly fit by a pure geometric

distribution ( Maguran,1988).

2. THE SYSTEM EQUATIONS

We denote as follows:

qj = The steady- state probability of j (0 ≤ j ≤ m) units in the queue at a random

time point.

Qj = The corresponding cumulative probability of j or less units in the queue.

G(j) = A function of system parameters λ , µ and β which is proportional to the

steady-state distribution of units in the system (as identified shortly).

The steady - state difference equations for our M (i)/M/1/m/ system are given by

λq0 = µq1

qj (λ + µ) = µqj+1 + λ
j−1∑

k=0

qkαj−k, 0 < j < m

qmµ = λ
∑m−1

k=0
qkβm−k

The system thus satisfies the equation

qj = ρ
∑j−1

k=0
qkβj−k, j = 1, 2, ..., m (0)
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where ρ = λ/µ, or

qj = q0G(j), j = 0, 1, ..., m (1)

where

G(j) = ρ
∑j

k=1
G(j − k)βk j = 1, 2, ...m (2)

with G(0) = 1, βk = 0 (k ≤ 0) so that

qj =
G(j)∑m

j=0 G(j)
j = 0, 1, ..., m (3)

and

q−1
0 =

m∑

j=0

G(j)

We note that the first few terms for G(j) are

G(0) = 1
G(1) = ρβ1

G(2) = ρβ2 + (ρβ1)
2

G(3) = ρβ3 + 2ρ2β1β2 + (ρβ1)
3

G(4) = ρβ4 + ρ2 (2β1β3 + β2
2) + 3ρ3β2

1β2 + (ρβ1)
4

G(5) = ρβ5 + 2ρ2 (β1β4 + β2β3) + 3ρ3 (β2
1β3 + β1β

2
2)

+4ρ4β3
1β2 + (ρβ1)

5

G(6) = ρβ6 + ρ2 (2β1β
5 + 2β2β4 + β2

3)
+ρ3 (6β1β2β3 + β3

2 + 3β2
1β4) + ρ4 (6β2

1β
2
2 + 4β3

1β3)

+5ρ5β4
1β2 + (ρβ1)

6

(4)

In general G(j) can be generated by the number of compositions for the composed

number j (for the different partitions) with the convention of using exponents for

repeated parts. Of course, the number of compositions of the composed number j into

k parts is given by
(

j−1
k−1

)
so that, for example, the number 5 has 6 compositions into 3

parts namely: 113, 131, 311, 122, 212, and 221 as simply identified by 3 (β2
1β3 + β1β

2
2)

in the expression for G(5). In short G(j) is given by

G(j) =
j∑

k=1

ρk
∑

Λ(j,k)

∏k

i=1
βni

i , j = 1, 2... (5)

where the inner summation is over the
(

j−1
k−1

)
compositions in Λ(j, k)=(compositions

such that
∑k

i=1ini = j) , ni = 0, 1, 2... and G(0) = 1.
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3. SPECIAL CASES OF FIXED ARRIVAL SIZE (l)

It is instructive to note that the general case of varying arrival is only some convex

combination of the special cases of fixed l sized system when arrivals are in batches

of fixed bulk size l(l = 1, 2, ..) when βi = 1 for i = 1, 2..l and βi = 0 for i > l.

We denote as follows:

qjl = (qj, for particular fixed l sized system)

Qjl = (Qj, for particular fixed l sized system)

Gl(j) = (G(j), for particular fixed l sized system), j = 0, 1, ...m

G(l, k, j, ) = number of compositions of j into exactly k (k < j) parts no part of

which exceeds l,

[x] =integral part of x

The function Gl(j) is given by inspection of equations (4) as

Gl(j) =
∑j

k=1
G(l, k, j)ρk, j = 1, 2, ...m; l = 1, 2, ... (6)

with G(0) = 1. The function G(l, k, j, ) can be identified as the number of options in

the classical problem of dividing a line of k elements to give j sections of interval but

with the maximum number of elements contained in a section being l.The functions

G(l,k,j) are given by the coefficient of xj in the expansion of (x+x2+ ..+xl)k. Further

more the functions G(l, k, j) are given by the recurrence

G(l, 0, 0) = 1, G(l, k, j) = 0, j ≥ k + 1 and

G(l + 1, k, j) =
∑j−k

r=0

(
k

r

)
G(l, r, j − k) (7)

so that G(l, k, j, ) is explicitly given (see Barton and David,1959) by

G(l, k, j) =
∑a

i=0

(
k

i

)
(−1)i

(
j − li− 1

k − 1

)
(8)

with a = min (k, [(j − k)/l]) and j − k + 1 ≥ l ≥ [(j + k − 1)/k]. We note in passing

that

(i) Recurrence relation (7) follows from the identity

(x + x2 + ... + xl+1)k = xk
∑k

r=0

(
k

r

)
(x + x2 + .. + xl)r
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(ii) Equation (8) follows from a recursive application of relation (7)

(iii) Equation (8) is easy to evaluate for small j and k, and it is also widely

tabulated in the literature (Smart,1976) for various l, j and k. For l = 3, for example,

the relevant points are

G(3, 1, 5) = G(3, 2, 5) = 0, G(3, 3, 5) = 6, G(3, 4, 5) = 4 and G(3, 5, 5) = 1.

(iv) For the some what extreme cases of l = 1 and l = m in particular a quick

inspection of the pattern in equations (4) or (5) gives

G(1, j, j) = 1, G(1, k, j) = 0 (9)

for k 6= j and G(m, k, j) =
(

j−1
k−1

)
giving straight away (following equations(3))

G1(j) = ρj so that qj1 = (1−ρ)ρj

1−ρm+1 = q01ρ
j, j ≥ 1 and

Gm(j) = ρ (1 + ρ)j−1 (10)

so that qjm = ρ (1 + ρ)j−1−m = qomρ (1 + ρ)j−1 , j ≥ 1 where q01 = (1− ρ) / (1− ρm+1)

and qom = 1/ (1 + ρ)m

(v) A direct application of equations (7) and (9) (or alternatively (8)) gives, for

the next case of l = 2, the function

G(2, k, j) =
(

k
j−k

)
and subsequently by equation(3) and (6)

G2(j) =
∑j

k=[(j+1)/2]

(
k

j−k

)
ρk so that

qj2 = q02

∑j

k=[(j+1)/2]

(
k

j − k

)
ρk, j ≥ 1 (11)

where

q02
−1 =

∑m

k=0

(
2k −∑m

j=m−k+1

(
k

j

))
ρk

A typical value for q02, when m = 5 , is q02 = (1 + 2ρ + 4ρ2 + 7ρ3 + 5ρ4 + ρ5)
−1

with

q12 = ρq02 and other points given by the identity

qj2 = ρ (qj−2,2 + qj−1,2) , j ≥ 2 (12)

(vi) A handy way of obtaining Gl(j) and consequently qjl for small m or l close to

m is to use some set of recursive relationships. A particularly useful set is

Gl+1(j) = Gl(j), j ≥ l
Gl+1(l + 1) = Gl(l + 1) + ρ
Gl+2(l + 2) = Gl(l + 2) + 2ρ2

(13)
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(vii) In any case the nested equation (0) gives, for the queue size distribution, in

the general l case, the nested result

qjl = ρ
j′∑

s=1

qj−s,l, j ≥ 1

or

Gl(j) = ρ
j′∑

s=1

Gl(j − s), j ≥ 1

where j′ = min(j, l) , or equivalently,

qjl =
{

ρ′(1 + ρ)Qjl, 1 ≤ j ≤ l
ρ(1 + ρ)(Qjl −Qj − l − 1), j > 1

(14)

Equation (14) connects the probability distribution qjl and the cummulative proba-

bility distribution Qjl so that a graph of qjl against Qjl, for j = 1 to l, is a straight

line of gradient ρ/(1 + ρ). It thus provides a basis for a graphical estimation or any

other estimation of ρ.

Furthermore, we claim that equation (14) indicates that the steady state queue

size distributions qjl for general l consists of a linear piece l for 1 ≤ j ≤ l and “out of

step” jumps at j = 0, l+1, l+2, ...., m−1,m. This is essentially a truncated geometric

distribution . For l = m there is only one jump at j = 0, there is one additional jump

at j = m for l = m − 1 and two additional jumps at j = m and j = m − 1 for

l = m− 2.

4. DERIVATIONS OF QUEUEING MEASURES FOR (l) CLOSE TO (m)

Three measures of interest for ecological appliations for each fixed batch size l

are the empty state probability qol ,the kth moment E
[
Xk

l

]
for the number Xl of

units in the queue and the information entropy H(Xl). The measures are completely

determined by the combinatoric functions Gl(j) as follows:

qol =
(∑m

j=1
G(j)

)−1

, E
[
Xk

l

]
= qol

m∑

j=0

jkGl(j)

H(Xl) = −lnqol − qol

∑m

j=0
Gl(j) ln Gl(j) (15)
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To examine the effect of the closeness of l to m we establish connections between the

different measures for l = m−2, l = m−1, l = m. Incidentally the results for general

l are derivable from those of l = m with a little algebra. From equation (10)

Gm(j) =
{

1, j = 0
ρ(1 + ρ)j−1, 1 ≤ j ≤ m

Putting l = m− 1 or l = m− 2 in equation (13), we have

Gm−1(j) =
{

Gm(j), 0 ≤ j ≤ m− 1
Gm(m)− ρ, j = m

while

Gm−2(j) =





Gm(j), 0 ≤ j < m− 2
Gm(m− 1)− ρ, j = m− 1
Gm(m)− 2ρ2, j = m

(16)

It follows by equations (3) and (16) that

q−1
om−1 = q−1

om − ρ, q−1
om−2 = q−1

om − ρ− 2ρ2

so that by equation (10), we obtain the empty state probabilities as;

qom = (1 + ρ)−m

qom−1 = ((1 + ρ)m − ρ)−1

qom−2 = ((1 + ρ)m − ρ(1 + 2ρ))−1
(17)

The result is that we have as members of a class of truncated piecewise geometric

distributions:For l = m,

qjm =

{
(1 + ρ)−m, j = 0
q0mρ(1 + ρ)j−1, 1 ≤ j ≤ m

(18)

Also for l = m− 1,

qjm−1 =

qom(1− ρqom)−1 = 1
(1+ρ)m−ρ

j = 0

qom−1Gm(j) = qjm(1− ρqom) = ρ(1+ρ)j−1

(1+ρ)m−ρ
1 ≤ j ≤ m− 1

qom−1(Gm(m)− ρ) = qmm−ρqom

1−ρqom
= ρ(1+ρ)m−1−1

(1+ρ)m−ρ
j = m

(19)

and for l = m− 2

qjm−2 =





qom(1− ρqom(1 + 2ρ))−1, j=0
qom−2Gm(j) = qjm(1− ρqom(1 + 2ρ))−1, 1 ≤ j ≤ m− 2
qom−2(Gm(m− 1)− ρ) = (qm−1m − ρqom)(1− ρqom(1 + 2ρ))−1, j=m-1
qom−2(Gm(m)− 2ρ2) = (qmm − 2ρ2qom)(1− ρqom(1 + 2ρ))−1, j=m

(20)
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Equations (18), (19) and (20) give three options for distributions that can be used

to fit data once the value of m is settled. Apparently the closer l is to m the lower

the value of qol for the same ρ. The less batchy an animal is the higher the chance of

finding a quadrat of sampling without the animal, all other things (λ, µ) balancing

out.

The kth moment for the steady state number in the queue at random time point

is given for l = m by

E
[
Xk

m

]
= qomρ

m∑

j=1

(1 + ρ)j−1 jk

= qomρ


1 +

m−1∑

j=1

(1 + ρ)j
k∑

r=0

(
k

r

)
jr


 (21)

= −qom + (1 + ρ)
k∑

r=0

(
k

r

) (
E [Xr

m]−mrρ(1 + ρ)m−1
)

so that

E [Xo
m] = 1, E [Xm] = m− 1

ρ
+

1

ρ(1 + ρ)m

and

E
[
Xk

m

]
= (m + 1)k − (1 + ρ)

ρ

∑k−1

r=0
E [Xr

m]

(
k

r

)
+

1

ρ(1 + ρ)m
, k ≥ 1 (22)

Similarly, E
[
Xk

m−1

]
is obtainable from

E
[
Xk

m−1

]
=

∑m
j=1j

kqjm−1, which by relations (19) gives

E
[
Xk

m−1

]
=

1

1− ρqom

(
E

[
Xk

m

]
− ρqommk

)
(23)

which combined with (22) gives

E
[
Xk

m−1

]
= (m + 1)k − 1 + ρ

ρ

∑k−1

r=0
E

[
Xr

m−1

] (
k

r

)
+

1/ρ + mk − (m + 1)k

(1 + ρ)m − ρ
(24)

with E [Xm−1] = m + 1/ρ− (1− ρ) /ρ ((1 + ρ)m − ρ)

In the same way relations (19) give, for l = m− 2,

E
[
Xk

m−2

]
= 1

1−ρqom(1+2ρ)

(
E

[
Xk

m

]
− ρqom(m− 1)k − 2ρ2qommk

)

= (m + 1)k − 1+ρ
ρ

∑k−1
r=0E

[
Xr

m−2

](
k
r

)
+

1
ρ
+((m−1)k−mk)+ρ(mk−(m+1)k)

(1+ρ)m−ρ(1+2ρ)

(25)
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with

E [Xm−2] = m− 1

ρ
+

1− ρ− ρ2

ρ((1 + ρ)m − ρ(1 + 2ρ))

Equations (22), (23), (24), and (25) explicitly give all moments (including means

and variances) for the number Xi in the queue at random time points for l = m− 2,

m− 1, and m. To estabish relations between information entropy as batch size l gets

closer to maximum available space m, we note from (14) that

H (Xl) + ln qol + qol

∑m

j=0
Gl (j) ln Gl (j) = 0 for all l (26)

Equating relation (26) for l = m and l = m − 1 and applying the relations (16), we

obtain the connection

H (Xm) + ln qom + qmm ln Gm (m)

qom

=
H (Xm−1) + ln qom−1 + qmm−1 ln Gm−1(m)

qom−1

(27)

Similarly by equating relation (26) for l = m and l = m − 2 and applying relations

(16), we obtain the connection

H (Xm) + ln qom + qm−1m ln Gm−2 (m− 1) + qmm ln Gm (m)

qom

=
H (Xm−2) + ln qom − 2 + qm−1,m−2 ln Gm−2 (m− 1) + qmm−2 ln Gm−2 (m)

qom−2

(28)

Equations (27) and (28) provide a basis for studying the effect of natural processes

that may manifest as increasing the batch size l toward m on such natural phenomena

as aggregation.

5. DERIVATION OF MOMENTS FOR LOW (l)

In anticipation of the requirements for a numerical illustration in Section 6 we give

the kth moments for the queue size X1 and X2 corresponding to systems for l = 1

and l = 2. The kth moment E
[
Xk

1

]
for X1 is given simply from equations (9) and

(15) by

E
[
Xk

1

]
=

1− ρ

1− ρm+1

∑m

j=1
jkρj
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With a little algebra, this gives

E
[
Xk

1

]
=

ρ

1− ρ

∑k−1

j=0

(
k

j

)
E

[
Xj

1

]
− ρm+1

1− ρm+1
(m + 1)k , k ≥ 1 (29)

so that, for example, the mean E [X1] and variance var[X1] are given by (as well

known)

E [X1] =
ρ

1− ρ
− (m + 1)ρm+1

1− ρm+1
(30)

Var
[
Xk

1

]
=

ρ

1− ρ
+

(
ρ

1− ρ

)2

− (m + 1)2ρm+1

(1− ρm+1)2
(31)

The kth moment E
[
Xk

2

]
for queue size X2 is similarly given by

E
[
Xk

2

]
= qoρ

(
1 +

∑m
j=2 jk(G2(j − 1) + G2(j − 2)

)

= ρ
1−2ρ

(∑k−1
r=0E [Xr

2 ] (1 + 2k−r)
(

k
r

)
− Ak(m)−Bk(m)

) (32)

where Ak (m) = qm2

(
(m + 2)k + (m + 1)k

)
, Bk (m) = (m + 1)k qm−1,2 and with qm2

and qm−1,2 given by equation (11).

In particular the first two moments for X2 give

E [X2] = ρ
1−2ρ

(3− A1(m)−B1(m)) and

Var [X2] = ρ
1−2ρ

(5− A2(m)−B2(m)) + ( ρ
1−2ρ

)2(9− (A1(m) + B1(m))2)
(33)

6. NUMERICAL ILLUSTRATION

In Table 1 we reproduce for a revisit the frequency data on two cohabiting rare ani-

mals namely Centipede Lithobius Crassipes (L. koch)and the large wood louse Philos-

cia muscorum (scopoli) as collected from thirty-seven contigous hexagonal quadrats

(each of area .08m2 ) of beech litter at Wythamwoods, near Oxford and reported by

Lloyd(1967). We demostrate the potential in fitting steady state queue size denoted

X(l,m) to both sets of data. It is required that we estimate fixed arrival size l, am-

bit (or sample unit) m and ρ. Our distribution is amenable to various methods of

estimation. We have adopted here the technique of constraining on the observed xol
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L.Koch L.Koch Fitted Scopoli Scopoli Fitted
Count per quadrat observed X(1,3)ρ = .5621 observed X(2,5)ρ = .3372

0 18 18.000 15 15.0000
1 10 10.1172 5 5.0581
2 7 5.6866 9 6.7638
3 2 3.1962 4 3.9864
4 0 0.0000 2 3.6250
5 0 0.0000 2 2.5667

X2with .00290 1.2061
df 2 3

Table 1: Goodness of fit of the proposed distributionsX(1, 3) for L. Koch and X(2,
5) for Scopoli.

of empty quadrats and using the Newton’s iterative scheme. Thus for the centipede

(L.koch) we fix l = 1 and m = 3 and use the iterative equation

ρn+1 = ρn − (1− ρn)/(1− ρm+1
n )− xoi/

∑
xi1)(1− ρm+1

n )2

(m + 1)(1− ρn)ρm
n − (1− ρn)m+1

with the starting value ρm
0 =xm1/x01 where xj1 is the observed frequency of species of

size j. For the wood louse(scopoli) data we fix l = 2 and m = 5 and use the iterative

equation

ρn+1 = ρn + (c−1(ρn)− x02/
∑

xi2)/c
−2(ρn)c′(ρn)

where c(ρ)=1+2ρ+4ρ2+7ρ3+5ρ4+ρ5 and with the starting value ρ0 = x12/x02 . The choice

of l and m is informed by the dynamics of the data and graphical application of

equation (14). Both algorithms converge very smoothly and fastly (as early as step

2 in some cases). It would certainly appear that our proposed distribution perfectly

fits L Koch data based on arrival in singles while it fits Scopoli data on arrival in

pairs. We note that the larger the fitted value of l the higher the tendency for the

specie s to crowd around itself. Our values of l = 1 for L. Koch and l = 2 for Scopoli

also appear to be in the same line with Lloyd’s (1967) observation that L. Koch is

more locally random and less crowded than the Scopoli. The centipede is essentially

a more lonely animal than the woodlouse. Further more our results (formula and

fitting ) give measures µ = .840 , σ2 = .960 compared with sample values
−
x= .811,

s2 = .856 for the centipede as well as µ = 1.564, σ2 = 2.692 compared with sample
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values x̄ = 1.432 and s2 = 2.245 for the woodlouse. To the extent that we are dealing

with small sizes these results recommend our model for favourable consideration for

fitting purposes.

7. CONCLUSIONS

In this paper we have (a) provided a solution to the system equations for the

M (i)/M/1/m system in situations of varying or fixed batch sizes in terms of our

Gl(j) functions (b) demonstrated the extent to which spatial distribution for animals

can be fitted by the model subject to some system parameters and (c) suggested

that in the likelihood that l can be chosen very close to m it may be reasonable to

consider using a weighted combination of a class of truncated geometric distribution.

This is an important step in the unending quest for models that provide less idealis-

tic explanations for the complex natural processes of aggregation, congregation and

abundance on soil microathropods.
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