
Kragujevac J. Math. 24 (2002) 179–192.

A PROLOG PROGRAM FOR ANALYSIS AND

SYNTHESIS OF TYPICAL SENTENCES TAKEN FROM

ADVERTISEMENTS

Mirjana M. Lazić

Department of Mathematics, Faculty of Science, University of Kragujevac, P. O.

Box 60, 34000 Kragujevac, Yugoslavia.

(Received March 8, 2002)

Abstract. This paper is about a PROLOG program for analysis and synthesis of typical

sentences taken from advertisements. That program checks grammatical accuracy of a

sentence, i.e. it is used as a syntactic analyzer of a chosen fragment of natural language.

On the other hand, the same program is used as a generator of the fragment of language.

1. INTRODUCTION

Having in mind that some demands of grammar can be simply expressed by means

of arguments of the structures which appear in them, it is clear that PROLOG is a very

convenient program for the development of syntactic analyzers, as well as syntactic

generators of natural language (see [2], [3], [4]). The realization of the program

must be preceded by the formalization of grammar [1], which is a very complex and

180

opened problem. The chosen advertisements are written in a form of complete and

grammatically correct sentences. After their detailed grammatical analysis, according

to the groups they belong to, the formal grammar is made for a chosen fragment of

language (see [5]).

2. DESCRIPTION OF PROGRAM

The main characteristics of the program, and the definitions of the most important

predicates are described. In order to be more comprehensible, the program can be

divided into four parts. The ”translation” of both the grammatical rules and the

dictionary that defines the fragment of natural language in the PROLOG program is

given in the first two parts .

The third part refers to semantics, i.e. to the semantic accuracy of the sentences

of the chosen fragment, and in the last part of the program some auxiliary predicates

are defined.

2.1 RULES OF GRAMMAR

The initial part of the program represents ”the translation” of the grammatical

rules, i.e. it consists of the definitions of the predicates sentence, predp, vp, advp, np,

cnp, modp, which are used for the formation of some complex categories (sentence,

predicate phrase, verb phrase, adverbial phrase, noun phrase, common noun phrase

and modifier phrase).

Predicate sentence is assigned in the following way:

sentence(X,Y,sentence(I,G)): - np(nom,3,Num,X,Z,I),predp(nom,3,Num,Z,Y,G).

sentence(X,Y,sentence(I,G)): - np(nom,Gender, ,X,Z,I),predp(nom,3,pl,Z,Y,G).

sentence(X,Y,sentence(G)): - predp(nom,1,Num,X,Y,G).

sentence(X,Y,sentence(I,G)): - np(dat, , ,X,Z,I),predp(dat,Z,Y,G).

sentence(X,Y,sentence(G)): - predp(dat,X,Y,G).

181

Regarding the rules for the description of this predicate, the line of words represent-

ing the difference between the list X and the list Y forms a sentence if the beginning

of that line is a noun phrase (np) and the rest of it a predicate phrase (predp), while

the noun phrase can be omitted, because it is possible to omit subject in sentences.

The demands for the congruence of noun and predicate phrases in case, person and

number are realized by means of equality or congruence of appropriate arguments of

the predicates.

In these sentences the verb is transitive, so the verb phrase (vp) is not sufficient

for the formation of the predicate phrase (predp), but its obligatory part is a direct

object and very often there is also an indirect object. This means that a verb phrase

(vp), and one or two noun phrases (np) in appropriate cases and in certain places,

take part in the formation of the predicate phrase. This predicate has four or six

arguments. The first one indicates the case of a noun phrase which stands (or should

stand) next to the predicate phrase, which is being discussed, the last three are usual

and the remaining two, which appear in case of need, represent the mark for person

(the first or the third) or number (singular or plural) of the subject which does the

action of the verb.

Here are the rules for the description of the predicate vp (verb phrase), which also

has four or six arguments. When there are six of them, the first two are used for

marking person and number of the subject, which stands next to this phrase. The

important argument, which exists in all predicates, vp is a list of cases of the nouns,

which they connect. A verb has to take part in the formation of verb phrase, and

an adverbial phrase (advp) can stand in front of or behind it. When using passive

voice, for example ”is needed”, there is also a past participle ”needed” (adjp) beside

the verb form ”is”.

The predicate advp (adverbial phrase) is described by two rules. According to the

first rule, an adverbial phrase consists of one adverb (adv) only, and according to the

second one it consists of conjunction of two different adverbs.

For the description of the predicate np several rules can be used. If there is only a

common noun phrase, it is defined in the following way:

182

np(K,A,B,X,Y,np(I)): - cnp(K,A,B,X,Y,I), elem(K,[nom,dat,acc,za acc]).

If there is a common noun preceded by a mark of number, than the following rule

is used:

np(K,Gender, ,X,Y,np(D,I)): - det(K,Gender,X,Z,D), cn(gen,Gender,Z,Y,I),

elem(K,[nom,za acc]), elem(Gender,[m,f]).

np(dat,Gender, ,X,Y,np(D,I)): - det(dat,Gender,X,Z,D), cn(dat,Gender,Z,Y,I),

elem(Gender,[m,f]).

And finally, if there is a common noun or a new noun phrase preceded by a prepo-

sition, the following rules are introduced:

np(K,X,Y,np(P,I)): - prep(K,X,Z,P), cn(K, , ,Z,Y,I), not (K = za acc).

np(za acc,X,Y,np(P,I)): - prep(acc,X,Z,P),np(za acc,A,B,Z,Y,I).

Regarding the predicate, there are four obligatory arguments. The first one is the

one that marks the case and the last three have in common all the predicates of the

first two parts of program. The remaining two are sometimes, if it is necessary, used

for marking both person and number, and sometimes the first one marks gender and

the second one is anonymous.

There are also the rules, in the program, used to describe the predicate cnp (com-

mon noun phrase), which can either be a common noun (cn) alone, or a common noun

with one or two modifier phrases (modp) either in front of or behind the noun. It is

possible, of course, to add more modifier phrases, but it would considerably expand

the part of the program concerning semantics. The arguments of this predicate are

the same as those of the preceding one. The first one is the mark of the case, while

the second and the third one are used if necessary, and the last three are the same as

those of the other predicates of this part of the program.

Modp (modifier phrase) is a predicate described at the end of this part of program:

modp(K,A,B,X,Y,modp(M)): - adj(K,A,B,X,Y,M).

modp(K, , ,X,Y,modp(M)): - np(L,X,Y,M), elem(K,[nom,acc]),not L=za acc.

183

That is either an adjective (adj) or the description of the location of object realized

by means of noun phrase (np), where a common noun is preceded by a preposition

(prep). In this case, it is important that every preposition stands next to the nouns

in the particular case. All those demands are realized by using the arguments. Here,

it is possible to expand the program, because if something is ”on the coast” it can

be on the coast of a lake, river or sea or if something is ”in the center”, that is, for

example, in the center of a city, etc. Then, it is possible to specify the name of the

street, city, lake, etc., which is very often present in chosen sentences.

2.2 DICTIONARY

For the second part of the program it can be said that it is the ”translation” of

the dictionary into PROLOG program, because here are definitions of the predicates

verb, adv, cn, adj, det, prep, cnj, adj p by means of which groups of words, which

belong to the appropriate lexical categories (verb, adverb, common noun, adjective

number, preposition, conjunction and past participle) are assigned. The auxiliary

predicate elem has been used everywhere.

The rules for the description of the predicate verb are given at the beginning, and

depending on them, the verbs are assigned. The verbs in the present tense, the first

or the third person singular or plural have been used. The arguments of this predi-

cate are the same as those of the corresponding predicate phrase, since the verb is its

integral part. The important characteristic is the argument, which represents the list

of cases of the nouns, which the verb links, because some verbs can have an indirect

object, and some cannot. Therefore, the verbs kupiti (to buy) and prodati (to sell)

appear without an indirect object in the first person singular and plural:

verb(1,sng,[nom,acc],[LX],X,verb(L)): -

elem(L,[izdajem,iznajmljujem,kupujem,prodajem,tražim]).

verb(1,pl,[nom,acc],[LX],X,verb(L)):-

elem(L,[izdajemo,iznajmljujemo,kupujemo,prodajemo,tražimo]).

184

in contrast to verbs izdavati (to rent out) and iznajmljivati (to let out) which can be

used with or without an indirect object (in singular and plural):

verb(1,sng,[nom,acc,dat],[LX],X,verb(L)): - elem(L,[izdajem,iznajmljujem]).

verb(1,pl,[nom,acc,dat],[LX],X,verb(L)): - elem(L,[izdajemo,iznajmljujemo]).

verb(1,sng,[nom,acc,p acc],[LX],X,verb(L)): - elem(L,[izdajem,iznajmljujem,tražim]).

verb(1,pl,[nom,acc,p acc],[LX],X,verb(L)): - elem(L,[izdajemo,iznajmljujemo,tražimo]).

Then, the rule for the description of the predicate adv is given, and the set of

adverbs is assigned.

Common nouns are assigned by predicate cn and divided into groups according to

the cases they appear in, and, where it is necessary, according to the gender, i.e.,

person and number. In the cases where they appear with a preposition, it is also

stated before the case so that they could distinguish from those which appear alone

in the same case (gen and pored gen, acc and za acc), i.e., with different prepositions

(u loc, na loc). So, for example, we have:

cn(acc, , ,[LX],X,cn(L)): - elem(L,[. . .]). i

cn(za acc, , ,[LX],X,cn(L)): - elem(L,[. . .]).

i.e.:

cn(u loc, , ,[LX],X,cn(L)): - elem(L,[. . .]). i

cn(na loc, , ,[LX],X,cn(L)): - elem(L,[. . .]).

Then, the rules for the description of the predicate adj (adjective) are given. In

that sense, adjectives are assigned and divided into groups according to cases, i.e.

either according to gender or to person and number, if necessary. Since they appear

next to nouns, their arguments are the same.

Besides the singular, plural number is also introduced (two is the most probable to

be met in the chosen sentences). Predicate det with the four rules defining it, gives

particular forms of that number in three cases (nom, dat, za acc) and two genders

(m and f). Here, as well as in the previous part of the program, an expansion on the

new cases (numbers) is possible.

185

In the chosen fragment of language there are several prepositions, which are as-

signed by predicate prep. The first argument of this predicate is the case of the nouns

they stand by. In most cases the preposition is also cited for the reasons mentioned

above.

The predicate conj introduces only one conjunction, which appears in these sen-

tences, and which could be introduced into some other places.

And, finally, at the end of this part of the program, there are rules for the description

of the predicate adj p, by means of which the three genders of the past participle

needed are assigned.

2.3 SEMANTICS

The following, third part of the program, as it has already been said, is made

to control semantical accuracy of the sentences. It is not related to the problems

of grammatical nature, but to the meaning of the words that appear in a chosen

dictionary and to their relations. Namely, there are sentences that are grammatically

correct, but they are clumsy, they are not it the nature of language, etc. In this

part of the program only two predicates appear,sen and sentence 2. While for the

description of the first one a great number of rules are used, the second one is assigned

by only one rule.

For the list X applies sen(X), if it consists of the elements that cannot stand

together. Thus, first we set rule that next to a noun in a particular case only one of

the adjectives from the given group in the same case can stand. In other words, a

sentence presented as a list of words is not correct if the adjective related to a given

noun does not belong to the given group. For example, the noun garsonjera (a studio)

can appear with the following adjectives: prazna (empty), nameštena (furnished) and

polunameštena (semi-furnished). In the program it has been solved in the following

way:

sen(X): - je adj(L,garsonjera,X),not elem(L,[prazna,nameštena,polunameštena]).

186

For the nouns that can be used separately, i.e. without an adjective, that set is

empty, so the appropriate rule for them is:

sen(X): - je adj(L,K,X),not elem(L,[]),

elem(K,[stranac,stranci,učenik,učenica,učenici,učenice, nepušač,nepušači]).

Regarding the possibility that a noun can have two adjectives, not only do the

adjectives have to be different, but there are those which can not stand together (for

example:prazna, nameštena soba (empty, furnished room), or dvosoban, trosoban stan

(two room, three

room flat). Those cases are eliminated from the set of correct sentences by several

rules for defining the predicate sen. One of them is:

sen(X): - elem(prazna,X),elem(K,X),elem(K,[nameštena,polunameštena]).

Beside the adjectives, nouns can appear with modifier phrases in order to be more

comprehensible. They also have to have some limitations because, for example, plac

(a building site) cannot have an attic or it cannot be in a house. In other words,

apartman (a suite) already has electricity and water so it does not have to be empha-

sized. So, there are the rules for the defining the predicate sen which prevent those

combinations from appearing. For example:

sen(X): - elem(plac,X),elem(L,X), elem(L,[grejanjem,telefonom,

kupatilom,kuhinjom, inventarom,placem,potkrovljem,kući]).

And, finally, we should notice that students, single men, etc. do not need a building

site, stand or cultivated field but a room, flat, house, etc. A two-bed room is for two

persons so it is not necessary to repeat that. The elimination of those semantically

incorrect sentences is done by several rules for the defining of the predicate Sen.

The predicate sentence2 is used for the formation, i.e. identification of the syn-

tactically and semantically correct sentences of the fragment. Namely, a sentence

written in the form of a list of words (X) is syntactically and semantically correct

(sentence2(X,[],)) if it does not consist of the elements (words) which cannot stand

together (not sen(X)).

187

Simply, using this predicate, from the group of syntactically correct sentences only

these which are also semantically correct are isolated.

2.4 AUXILIARY PREDICATES

Finally, in the last part of the program, the definitions of the auxiliary predicates

have been given. The first group of them helps the realization of the grammar de-

mands by using the PROLOG language (elem, je lista, razlglava, je adj). The second

group is used for the transformation of a sentence into a list of words (form list,

formiraj, rec, promeni), and the third group is used for writing the parse tree (ispis).

The predicate elem checks if an element is in the list and, in the other hand, it

generates the elements from the list one by one. The first one is used in the analysis,

and the second one is used in the synthesis of sentences. It has been given recursively,

so that something is an element of the list if it is a ”head” of the list, or if it is an

element of the list’s ”tail”.

The predicate je lista has also been given in a recursive way. A list is je lista if

it has different elements. So, je lista is an empty list, and je lista is a list where a

head is not an element of a ”tail” je lista. Due to the specificity of the problem, a

list where the same prepositions appear several times next to different nouns is also

je lista.

In some cases, it was necessary for the lists to have different ”heads”, and that was

simply solved by means of a predicate razlglava.

The congruence of an adjective L and a noun K, next to which the adjective

stands in the list (in the sentence), in case, gender and number, enables the predi-

cateje adj(L,K,X).

Different predicates in this part of the program are used in the analysis of sen-

tences. Namely, the program, which acts as a generator of the natural language’s

fragment, generates the sentences as lists of words separated by commas. Regarding

the program which deals with a syntactical analysis, there is a problem concerning

an appropriate structure for the presentation of the natural language’s sentence, as

188

well as the possibility of its input into system, because the sentences of the natural

language are not the terms of the PROLOG language.

The first way of the transformation is to write a sentence as a list of its words,

where the words with initial capitals should be quoted with single quotation marks,

so that they could become constants. Otherwise, those words would be variables and

their meaning would be lost from the natural language consequently. The demand for

manual transformation of a sentence into a list of words, before uploading the data,

is a basic disadvantage of this method.

The second way of the sentence transformation into a term of PROLOG language,

would be to quote it with a double quotation marks. Thus, it is transformed into the

codes list of the signs, that make it, so that it is, then, the structure of PROLOG.

This solution is simpler than the previous one, but this way cannot enable the access

to a single word of a sentence, and that is exactly what a syntactical analysis is based

on.

The procedure form list enter firstly the natural language’s sentence without double

quotation marks. Since that sentence is not the term of the PROLOG language, its

entering by the predicate read is not possible. So, the entering is realized by the

predicate get0, by means of which the sentence is uploaded sign by sign (exactly, code

by code) until the sign for the end has been found (i.e. sign ”.” whose code is 46).

The use of the predicate get0 makes this part of the program specific.

The procedures formiraj and rec are always called with an entering sign, which

should be processed. At first, the processing of a sign with a chosen constituent is

tried, and if it does not work, the processing of the same sign with the next constituent

is tried. So the failure of a chosen constituent does not mean the loss of that sign.

However, if the next sign was read in a body of a chosen constituent the failure of

the processing and selection of the next constituent would simultaneously mean the

loss of an entered sign. Actually, returning by the target get0 means the loss of the

entered sign.

During the formation of a word list for a given sentence, it is convenient (because of

using the dictionary) that the capitals from the entrance sentence should be replaced

189

by corresponding small letters. Since the ASCII codes of the capital letters range

from 65 to 90 and the codes of small letters from 97 to 122 the replacement of the

capital letters’ codes by the codes of the corresponding small letters can be simply

realized using the procedure promeni. The replacement of the codes is realized in the

procedure rec.

The transformation of the codes list into the list of words is done by the procedure

formiraj. Let’s see the third constituent of that procedure. From the given list of

codes, the list of codes for a single word is formed by the procedure rec. Than, the

formed list of codes is transformed into a word by the systematic predicate name.

Finally, from the rest of the given list of the codes, the list of the remaining words is

formed recursively. The transformation is finished when the sign for the termination

has been found (i.e. the sign ”.” with code 46). There is a cut in the first constituent of

the procedure that proves that it is the only result of the transformation. The second

constituent of the procedure formiraj executes the omission of the blanks (code 32)

which appear within some words.

The formation of the codes list for a particular word is done in the procedure rec.

The third argument of this procedure is used for returning the unused part of a given

list of codes into a procedure formiraj, where the recursive formation of the remaining

words is being continued. The list of codes for a single word is formed when the full

stop (code 46) or the blank (code 32) has been found and this is emphasized by the

cut in the first and the second constituent.

During the analysis of a sentence, yes/no answers i.e., the sentence is/is not syn-

tactically correct, are not informative enough. In order to correct that, the third

argument on which the generation of the parse tree is based, has been introduced

into all non-terminal symbols of the grammar. Let’s see the first constituent of the

procedure sentence. The third argument of that constituent’s head is structure sen-

tence (I, G). The first argument of that structure gets the value by the fulfillment

of the target predp. The way those values are got can be seen from the arguments

of the procedures they belong to, as well as from their past procedures, according

to the dictionary. The omission of some optional parts of a sentence is marked by a

190

constant ’**’. For example:

?-sentence([devojci,potrebna,soba],[],S).

S = sentence(np(cnp(cn(devojci))),predp(vp(verb(**),adj p(potrebna)),

np(cnp(cn(soba))))) →;

S = sentence(np(cnp(cn(devojci))),predp(adj p(potrebna),np(cnp(cn(soba))))) →;

No

The sentences similar to the previous one have two parse trees, because the gram-

mar rules concerning the formation of the verb phrase (pred) say that the passive

voice is formed either by a verb and past participle or only by past participle.

The parse tree derived in this way is very clumsy for longer sentences. Its more

simple realization is defined by the procedure ispis.

The last predicate in this part of the program is analiziraj. It uses the procedure

for entry of a sentence (form list), its analysis (sentence2), and the generation of the

parse tree and its writing (ispis). Let’s illustrate that, using the target:

?-analiziraj.

Student hitno traži prazan stan u centru.

(A student needs an empty flat in the centre urgently)

sentence

np

cnp

cn: student

predp

vp

advp

adv: hitno

verb: traži

np

cnp

modp

191

adj: prazan

cn: stan

modp

prep: u

cn: centru

yes

The second argument of the target sentence2 from the body of the procedure anal-

iziraj is an empty list. Namely, if a line of words, which, in the list Lwords formed a

given entry, really represents a sentence of a language then all the words from that

list have to be used during the fulfillment of that target. So, a sentence is formed

by a line of words, which represents a difference between the first list Lwords, and

the empty list. The second argument of the target is an empty list even in the cases

when PROLOG program works as a generator of syntactically correct sentences of a

given language. Then, the target is set in this way:

?-sentence(A,[],),write(A),fail.

if we want to get all the ”fruits” of the grammar. If we want to get both syntactically

and semantically correct sentences then we set the target:

?-sentence2(A,[],),write(A),fail.

Setting the target:

?-sentence2(A,[],).

we can also get all the sentences but one by one, using the sign ”;” (and then using

the sign for the end of a line [Return]). Thus, the system has been asked to find a

new way of fulfillment of the same target and also to find an answer to a question

which has been asked by that target. Then, the system ”forests” the previous answer

and tries to fulfill the target differently, so the second answer can be found.

By putting ”S” instead of anonymous third argument in the targets mentioned

above, we would get words separated by commas but we would also get a parse tree

for that sentence (in the clumsy form).

192

This PROLOG program can be applied for:

• Control of the belonging of sentence to a chosen fragment

• Analysis of the chosen fragment’s sentence

• Synthesis of a chosen fragment’s sentences

References

[1] M. Prešić, Zasnivanje prirodnih jezika – formalne gramatike, unpublished mono-

graph.

[2] M. Prešić, A PROLOG Program for Generating a Fragment of Serbo-Croation,

The Prague Bulletin of Mathematical Linguistics 54, 1990.

[3] S. Prešić, PROLOG, relacijcki jezik, Matematički fakultet, Beograd, Nauka, Beograd,

1996.

[4] M. Radovan, Programiranje u Prologu, Informator, Zagreb, 1990.

[5] M. Lazić, Formal grammar for a fragment of Serbian language, Kragujevac J.

Math. 24 (2002), 147–178.

