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Abstract. In this paper, mixture approximations are proposed for the distribution function
of the sum of the generalized logistic random variables. These approximations are quite
comparable with the existing t-approximation and are indeed simpler to evaluate. Moreover,
an added advantage of the new approximations is that statistical tables may not be required
for their implementation.

1. INTRODUCTION

The use of the logistic distribution for modelling stochastic phenomena has for

long been recognized and its uses in various statistical studies have been documented

by several authors. A Generalization of this distribution, whose density function is

given as

f(x) =
Γ(p + q)

Γ(p)Γ(q)

epx

(1 + ex)p+q , −∞ < x < ∞ (1.1)

has earlier on appeared in George and Ojo (1980) where the moments were obtained

and an approximation proposed for its distribution function. The distribution of
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the sum of independent and identically distributed random variables from the same

distribution has been determined by Ojo and Adeyemi (1989). It is observed that a

lot of computational efforts is required to evaluate this distribution function. Since

the t-distribution is not extensively tabulated, the proposed t-approximation cannot

be adequate for many purposes. In view of this, the present author has decided

to provide various alternative approximations to the distribution of the sum. The

approximations which are provided for probabilities and percentiles are comparable in

accuracy to thet-approximation and are much simpler to evaluate. More importantly,

the use of statistical table may not be necessary for implementation.

2. APPROXIMATION USING THE NORMAL, THE LOGISTIC AND THE

DOUBLE EXPONENTIAL DISTRIBUTIONS

Let x1, x2, ..., xn be n independent and identically distributed random variables

each distributed according to (1.1). Let Y =
∑n

i=1 Xi. The distribution function of Y

has been determined and a t-approximation provided for it. Because the t-distribution

is moderately tabulated, the proposed t-approximation may not be adequate. In

this section we present appromations based on the normal, the logistic, the double

exponential distributions and the mixture of these distributions. For the purpose of

this paper, we recall from Ojo and Adeyemi (1989) distribution of Y as

Fn(y) =
n∑

l=0

n−m−1∑

r=0

n−1∑

m=0

(
n

l

) p+q−1∏

j=1

An,m

×(−1)r+l+m+1[Γ(p) · Γ(q)]−nepy

×l![(n−m− r − 1)!(l + r − n + m + 1)!]−1

×
r∑

s=0

(−1)syr−s

(p− κ)s+1(r − s)!

l+r+m+2−n∑

κ=1

Sl+r+m+2,κ(κ− 1)!e−κy/(1− e−y)κ (2.1)

when n is even and

Fn(y) =
n∑

l=0

n−m−1∑

r=0

n−1∑

m=0

(
n

l

) p+q−1∑

j=1

An,m
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×(−1)r+l+m+1[Γ(p) · Γ(q)]−nepy

×l![(n−m− r − 1)!(l + r − n + m + 1)!]−1

×
r∑

s=0

(−1)syr−s

(p− κ)s+1(r − s)!

l+r+m+2−n∑

κ=1

Sl+r+m+2,κ(κ− 1)!e−κy/(1 + e−y)κ

when n is odd, (Sn,k) denoting the stirling’s number of the second kind. Also for the

subsequent use in this paper, we write down the first four cumulants of Y as

κ1 = n




p−1∑

j=1

j−1 −
q−1∑

j=1

j−1


 (2.2)

κ2 =
nπ2

3
− n




p−1∑

j=1

j−2 +
q−1∑

j=1

j−2


 (2.3)

κ3 = 2n




p−1∑

j=1

j−3 −
q−1∑

j=1

j−3


 (2.4)

κ4 =
2nπ4

15
− 6n




p−1∑

j=1

j−4 +
q−1∑

j=1

j−4


 (2.5)

where p and q are positive integers.

2.1 THE NORMAL APPROXIMATION

Let Y ∗ denote the standardized version of Y . Then

Pr(Y ∗ ≤ y) = Pr(Y ≤ µ + σy)

Thus the proposed normal approximation is given as

Pr(Y ≤ y) ∼ Φ(
y − µ

σ
),

where Φ(.) is the cumulative standard normal, µ = κ1 and σ =
√

κ2 , κi being the ith

cumulant of Y .
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2.2 THE LOGISTIC APPROXIMATION

The distribution function L(x) and the upper α−percentile XL(α) of the logistic

distribution with standard deviation σ are given respectively as

L(x) = [1 + exp− (πx/σ
√

3)]−1

and

XL(α) =
σ
√

3

π
log[(1− α)/α]

The proposed logistic approximation is given as

P (Y ≤ y) ∼ L(x− µ).

2.3 APPROXIMATION USING THE DOUBLE EXPONENTIAL DISTRIBUTION

The distribution function and the upper α−percentile of the double exponential

distribution function are given as

D(x) = 1− 1

2
exp− (x/σ

√
2)

and

XD(α) = (−1

2
)log2α.

The approximation based on the duoble exponential is given as

P (Y ≤ y) ∼ D(x− µ).

2.4 APPROXIMATION BASED ON MIXTURE OF LOGISTIC AND NORMAL

Let λ1L(µ, σ) + λ̄1N(µ, σ) denote a mixture of the Logistic and normal distribu-

tions with a common standard deviation of Y given as σ =
√

κ2 and with the mixing
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probabilities λ1 and λ̄1 where λ̄1 = 1 − λ1. Clearly thestandard deviation of the

mixture is also σ. Equating the coefficient of kurtosis of the mixture to that of Y , we

get 2λ1 + 3λ̄1 = β2, where β2 = κ4

κ2
2
, κi being the ith cumulant of Y .

Since λ̄1 = 1− λ1 we obtain

λ1 =
5

6
(β2 − 3)andλ̄1 =

1

6
(21− 5β2)

Hence the distribution function of Y may be approximated by the mixture of the

logistic and normal as

Pr(Y ≤ y) ∼ λ1L(x− µ) + λ̄1Φ(
x− µ

σ
).

2.5 APPROXIMATION BASED ON THE MIXTURE OF NORMAL AND

DOUBLE EXPONENTIAL

We can also mix the normal with the double exponential to produce another

approximation. By matching kurtosis we have

3λ2 + 6λ̄2 = β2.

so that λ2 = 1
3
(6−β2), and λ̄2 = 1

3
(β2− 3) The corresponding approximation is given

as

Pr(Y ≤ y) ∼ λ2Φ(
x− µ

σ
) + λ̄2D(x− µ).

2.6 APPROXIMATION BASED ON THE MIXTURE OF LOGISTIC AND

DOUBLE EXPONENTIAL

By matching kurtosis, we also get

2λ3 + 6λ̄3 = β2.
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Solving gives λ3 = 5
9
(6 − β2), and λ̄3 = 1

9
(5β2 − 21). The resulting mixture approxi-

mation is given as

Pr(Y ≤ y) ∼ λ3L(x− µ) + λ̄3D(x− µ).

Note that all the distribution used have the same standard deviation σ which is that

of Y .

3. PERCENTILE APPROXIMATION USING MIXTURES

The Percentage point of the distribution of Y can be approximated by the weighted

average of the percentile of one distribution with the percentile of another where the

weights are the same as the mixing probabilities of the mixtures in the previous sec-

tion. Thus, if XN(α), XL(α) and XD(α) denote respectively the upper α−percentiles

of the normal, the logistic and the double exponential distributions, we have the

following approximations of percentiles of Y using mixtures as

(i)The normal and logistic λ1XN(α) + λ̄1XL(α).

(ii)The normal and double exponential λ2XN(α) + λ̄2XD(α).

(iii)The Logistic and the double exponential λ3XL(α) + λ̄3XD(α).

4. DISCUSSION

Tables I and II provide illustrations for the approximations. Table I gives the

errors of the various approximations to the probabilities while table II compares

approximations to the percentiles. The values of F (z) and the associated errors of

the t-approximaton in table I, are taken from Ojo and Adeyemi(1989). It Is clear from

table I that the t-approximation is superior to the approximations based on either the

normal, the logistic or the double exponential disribution and that the approximations

based on the mixtures compare favourably well with t-approximation. Also in table

II, it is obsevered that the mixture approximations to the percentiles are superior to
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the approximations based on single distributions. It may be oberserved that the use

of one of the approximations for Φ(.) listed in Section 5, Chapter 13 of Johnson and

Kotz(1970)will set all the approximations involving Φ(.) free from necessity of any

tables. In general, any of the newly proposed approximations can be a good subtitute

for the t-approximation in the sense that statistical table may not be necessary for

implementation. We observe that no table is provided for the approximation of the

distribution of Y for the case p 6= q corresponding to the non-symmetric version of

the distribution. It has been discovered that the approximations corresponding to

p 6= q are not as good as the approximation corresponding to the symmetric version

of the distribution of Y . This is to be expected since the normal, the logistic, the

double exponential distributions and the distribution of Y for p = q are all unimodal

and symmeric about the origin.

Acknowledgements: Research Supported by the University Research Council,

Obafemi Awolowo University, Ile-Ife, Nigeria.
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Table I: Errors (10−4) of approximation for the probabilities

x F(z) t N L DE M1 M2 M3

p=q=1 n=2

0.05 0.5238 3 14 11 17 5 6 15

0.25 0.6298 7 11 9 15 9 11 12

0.75 0.8263 8 9 7 21 10 9 10

1.00 0.8914 5 7 4 9 6 12 7

1.45 0.9585 1 5 13 11 3 8 8

2.00 0.9894 3 6 5 8 3 7 9

2.50 0.9972 4 10 7 7 5 6 13

3.00 0.9995 3 4 4 6 4 5 7

3.50 0.9996 2 3 2 5 3 4 6

4.00 0.9997 2 2 2 4 2 3 4

x p=q=2n = 3

0.05 0.5193 3 12 10 11 9 12 17

0.25 0.6000 2 8 8 12 10 11 13

0.75 0.8102 7 9 1 9 7 6 9

1.00 0.8452 4 5 4 3 3 5 7

1.45 0.9283 6 7 6 2 2 3 8

2.00 0.9788 5 6 5 7 4 4 6

2.50 0.9934 3 5 4 4 4 6 3

3.00 0.9967 1 3 3 3 3 4 4

3.50 0.9988 2 6 1 4 2 3 4

4.00 0.9998 0 5 4 3 1 2 3
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x F(z) t N L DE M1 M2 M3

x p=q=2 n=5

0.05 0.5186 1.6 9 7.0 11 5.9 6.5 10

0.25 0.5879 3.9 4.5 3.5 10 7.1 5.9 6

0.75 0.7956 1.3 2.4 2.9 12 8.5 9.2 11

1.00 0.8409 1.7 2.1 1.8 9 7.0 8.6 9.6

1.45 0.9167 1.9 3.0 3.0 6 6.8 4.6 7.7

2.00 0.9693 0.5 2.0 1.5 7 7.5 3.9 4.5

2.50 0.9929 0.4 1.5 1.0 5 4.0 4.0 4.5

3.00 0.9971 0.2 1.1 1.0 4 2.5 3.7 5.2

3.50 0.9979 0.1 1.0 1.2 3.5 3.0 4.5 5.6

4.00 0.9997 0.1 1.0 1.0 2.0 2.0 2.5 3.8

x p=q=1 n=10

0.05 0.5199 0.5 1.4 1.3 4.6 3 4 5

0.25 0.5982 0.4 2.0 2.0 4.0 2 1.5 2.7

0.75 0.7816 0.3 3.3 2.4 5.0 1 2.7 3.6

1.00 0.8437 0.5 1.8 1.7 3.0 3 3.8 2.9

1.45 0.9203 0.3 1.6 1.9 2.0 1 1.9 2.1

2.00 0.9787 0.2 1.2 1 2.0 2 3.1 2.4

2.50 0.9931 0.1 1.0 1 1.0 1.2 2.5 3.2

3.00 0.9983 0 1.0 0 1.0 1 2.1 3.6

3.50 0.9996 0 1.4 1.2 2.0 1 1.9 2.4

4.00 0.9999 0.9 1.2 1.0 2.0 2 2.3 2.4
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t: student t-distribution, M1 : λ1N + λ̄1L

N: normal, M2 : λ2L + λ̄2DE

L: logistic M3 : λ3N + λ̄3DE

DE: double exponential, Z = x−µ
σ

, µ = κ1, σ =
√

κ2

Table II: Comparison of approximation for the percentiles.

1−α

(i)
Exact

(ii)
N

(iii)
L

(iv)
DE

(v)
λ1N+λ̄1L

(vi)
λ2L+λ̄2DE

(vii)
λ3N+λ̄3DE

(viii)

p=q=1, n=2

.60 0.535 0.400 0.376 0.286 0.378 0.368 0.341

.90 3.272 3.228 3.106 2.064 3.298 2.145 2.321

.95 4.366 4.221 4.162 3.953 4.276 4.168 4.415

.975 5.112 5.025 5.179 4.843 5.102 4.989 4.717

.995 6.987 6.620 7.483 6.906 7.052 6.965 7.112

p=q=2.n=3

.60 0.487 0.552 0.440 0.420 0.479 0.467 0.492

.90 2.487 2.530 2.384 2.585 2.513 2.479 2.677

.95 3.362 3.239 3.195 3.267 3.300 3.412 3.613

.975 4.014 3.839 3.976 3.950 4.129 4.226 5.112

.995 5.446 5.080 5.744 4.534 5.281 4.976
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1−α

(i)
Exact

(ii)
N

(iii)
L

(iv)
DE

(v)
λ1N+λ̄1L

(vi)
λ2L+λ̄2DE

(vii)
λ3N+λ̄3DE

(viii)

p=q=2, n=5

.60 0.610 0.674 0.568 0.584 0.654 0.671 0.593

.90 3.193 3.267 3.098 3.046 3.179 3.018 3.321

.95 4.561 4.182 4.521 3.927 4.611 4.720 4.102

.975 4.987 4.983 5.133 4.808 5.021 5.234 5.611

.995 7.103 6.559 7.416 6.854 7.232 6.897 6.991

p=q=1, n=10

.60 1.462 1.521 1.262 1.640 1.511 1.498 1.553

.90 6.887 7.374 9.946 6.618 6.593 6.990 7.422

.95 9.576 9.411 9.311 8.606 9.473 10.021 10.323

.975 10.892 11.347 11.588 10.595 11.001 10.894 11.214

.995 14.697 14.804 14.739 14.213 14.578 14.237 15.102

N: normal

L: logistic

DE: double exponential

All distributions have standard deviation σ =
√

nκ2, where κ2 is the second

cumulant of X
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