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Abstract. A generalization is obtained for a non-negative weight function w for which
there is a non-negative weight function v < oo p-almost everywhere such that T maps
LP(v) to Li(w), i.e.

[/X(Tf)qwdu} v <C [/X fpydu} 1/P for all f >0 (1.1)

and C is a constant depending on K, p, g but independent of f. Furthermore, for T" sub-
linear operator generalization is obtained for weight functions for which 7" is bounded from
LY R™ wdz) to LP(R", v dx) for some nontrivial w.

1. INTRODUCTION

Let (X, A, 1) be a o-finite measure space and let K (x,y) be a non-negative and
measurable on X x X. Set Tf(z) = [y K(z,y)f(y)dy and it’s dual T*f(y) =
Jx K(y,z)f(y) dy for non-negative function f.

For 1 < p < oo, we shall consider the weighted norm inequality

/ (TF)Pwdp < 0/ frudp  forall f>0, (1.2)
X JX
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where w and v are non-negative measurable weight functions on X.
In [4], R. Kerman and E. Sawyer proved the following theorem on weighted norm

inequalities for positive linear operators.

Theorem 1.1. Let 1 < p < oo and suppose w is a weight on X. Then there is
a weight v, finite p-almost everywhere on X, such that the weighted norm inequality

(1.2) holds if and only if there exists a positive function ® on X with
/ (TP)Pwdp < 0o or equaivalently (1.3)
X

plrT™ ((Td))p_lw) < 00 pu—almost everywhere. (1.4)

This theorem is known to have extended some earlier results of B. Muchenhoupt
in [5]. The main objective of the present paper is to prove a result which is more
general than Theorem 1.1.

Throughout this paper, p’ denotes the conjugate index of p, p # 0 and is defined
by % + z% with p’ = oo if p = 1, the conjugate of ¢ is defined in the same way.

2. MAIN RESULTS

We state our main result.

Theorem 2.1. Let 1 < p < oo and suppose w is a weight on X. Define the

sublinear operator T by

T(f+9)@) = [ K@y)(f + ) duly). (2.1

Then, there exists a weight function v, finite p-almost everywhere on X such that
J AT +g)yrwdn < CUp) [ (57 + v du (22)
holds, for all f,g > 0, if and only if there is a positive function ® and 0 on X with

/ (TP)Pwdp < 0o and (2.3a)
X



/ (TO)Pwdp < oo or equivalently (2.3b)
X

O PT ((T®)"'w) < oo and (2.4a)
o-PT* ((T@)p_lw) < 00 p—almost everywhere, —and (2.4b)

C(K,p) = max{Ci(K,p),Co(K,p)}

1s a constant independent of f and g.

Indeed, the weighted inequality (2.2) holds with v, and v equal to the weight in
(2.4a) and (2.4b) respectively.

Proof. Let
1= [ (T(f + ) wn.

Then

1= [ A K@+ g du)) win
- /x{/x(K(fL‘ YY) + Kz, y)g9(y)) du(y)}pwdu

< LA Remsaaa vans | {] stsiomn) v

by Minkowski’s inequality

/(/sz (y)P® /" dp(y) >(/Kwy<1>dﬂ( )),,/p/de
+ /(/Kwy (y)P0""" du(y) )(/Kwy@du( ))p/p/wd/ub

by Holder’s inequality

= /X{/ny (y)P®' P du(y) }(/Kmyq)d,u( )>p1wdu
+ /X{/ny (y)PO' P du(y }(/ny@du())plwdu

_ /X (1 fre'»)(To) " w d,u-i—/ (120" 7)(T0)" w] du
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= [ e reytwdu+ [ o T (0w d
X X

< Cl(K,p)/XfpvlduﬂLCz(K,p)/Xg”wdu

_ K p p
C(K.p) [ (f"+ g an,

where v = max{v;,1»} and C(K,p) = max{C,Cy} which yields (2.2) with v equal
to the weight in (2.4a) and (2.4b).
Conversely, assume (2.2) holds for some v < co p-almost everywhere. Using the

o-finiteness of p. One can easily construct a positive functions ¢ and ¢ such that
/ (PP +607)vdp < oo
X
and hence such that (2.3) holds. Finally, suppose (2.3) holds and let v denotes the
weight in (2.4a) and (2.4b). Then
/ (PP + 0P )vdp = / OPvy dp + 0Py dp
b X
= [ o (@ [(Toytwl) du [ or (0T [(Toy ) a
foo @ [weyu]) dus [ o (00 [0y ul) du
_ / OT" (1O~ w]| dyu + / 07" [(T0)"w] dy
D' D'
— / TO(TDYPwdy + / TO(TOP “w dy
X X
= /(T(I))pwdu+/ (T0)Pw dp
X X
= / T(®+0)Pwdp < oo by (2.3).
X

Since ® > 0,60 > 0, we conclude v < oo, p-almost everywhere and this completes

the proof of the Theorem.

Remark 2.1. When g =0 on X. Theorem (2.1) reduces to Kerman and Sawyer
result [4].

Theorem 2.2. Let 1 < p < oo and suppose w is a weight on X. Define the

sublinear operator T™ by

T'(f +9)(@) = | K(y.2)(f +9)(y) duly). (26)
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Then, there exists a weight function v, finite p-almost everywhere on X such that

J AT+ 9P wdp < CUp) [ (57 +g7) v 2.7

holds, for all f,g > 0, if and only if there is a positive function ® and 6 on X with

/ (T*®)Pwdp < 0o (2.8a)
b
/ (T*0)Pwdp < oo or equivalently (2.8b)
X
O PT ((T°®)"'w) < oo and (2.9q)
or-rT ((T*H)p’lw) < 00 pu—almost everywhere, and (2.9b)
C(K,p) = max{C,(K,p),Co(K,p)} (2.10)

15 a constant independent of f and g.

Indeed, the weighted inequality (2.7) holds with 1 and v, equal to the weight in
(2.9a) and (2.9b) respectively.

Proof. The proof is immediate from the proof of Theorem 2.1. by defining 7™ as
(T f) (@) = [x K(y, =) f(y) dy.

3. THE CASE 1 <p<¢g< >

In this section, we shall obtain some weighted norm inequalities for mixed norm

under more restricted condition on v and w. See [1], [2], and [3] for related work.

Theorem 3.1. Let 1 < p < g = 0o and suppose u = w'/? is a weight on X, then
there is a weight v, finite p-almost everywhere on X such that the weighted norm

inequality:
1/q 1/p
[/ (T f)*w du} <C [/ U d,u] for all f >0, (3.1)
X X
holds, if and only if there is a positive function ® on X satisfying

Oy <v (3.2)
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and C = C(K,p,q) is a constant independent of f.

I'= {/X(Tf)qw du}l/q

Proof. Let

Then

1= arpran” < s {u) [ K@os) i)

<00

= sup {ule) [ K(.y) f)K(w.y)' dy

<00

< supess K(z,2) u(@) [ K (@) f(y) dy

z<x

= supess K(z,2) u(x) [ (o) 0(y)" fy)0(y) dy

z<x

1/p

IA

swpess Kz, 2utr) | [ K)ot ag) " { [ rwpaty ay)

z<x
by Holder’s inequality.
The integral

{/X K (z,y) PP o (y) P dy}l/p/ <C {supess K(t,x)ﬁu(t)}_l

t>x

since u(z) and ®(z) depend on p and ¢ with constant C.

Hence,

I1<C SUp ess K(z,2) u(z) {igg ess K(t,x)’gu(t)}_ {/f(y)p@(y)p dy}l/p
Now
supess K (z,z) u(x) {sup ess K(t, x)ﬂu(t)}

z<x t>x

< supess K(x,2)%u(t) {sup ess K(t, ,z)ﬁu(zf)}_1 =1

2<x 2>
since K (t,-) is not-decreasing.

Therefore,

r=c ([ swrowrar)” <c{[ rwrvanm)”
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This completes the proof.

Remark 3.1. If ¢ = p, the above Theorem reduces to the result obtained by

Kerman and Sawyer [4].

Theorem 3.2. Let 1 < p < g = 0o and suppose u = w/? is a weight on X. Then
there is a weight v, finite p-almost everywhere on X such that the weighted norm

inequality:

1/q 1/p
[/ (T* f)tw dﬂ} <C U fpydp] for all f >0, (3.3)
s X
holds, if and only if there is a positive function ® on X satisfying

O(z)P <, (3.4)

and C = C(K,p,q) is a constant independent of f.

Proof. Follows directly from the prove of Theorem 3.1. by defining 7™ as
(1) (@) = [x K(y, =) f(y) dy.

Theorem 3.3. Let 1 < p < g < oo and suppose u = w'/9 is a weight on X. Then
there is a weight v, finite p-almost everywhere on X such that the weighted norm

mequality:

1/q 1/p
[/ (T f)ow du} <C [/ U d,u] for all f >0, (3.5)
X X
holds, if and only if there is a positive function ® on X satisfying

O(z)P <, (3.6)

with s
s(x) < (/X K(y,2)®(z)P dz) ’

and C' = C(K,p,q) is a constant independent of f.

Y

Proof. Let
1= [ [Tf)wdp().



102

Then

1= [l@Tardp) = [ fut@) [ K@) )] i)
= [ [([ K@) fews) K ) o) )™ ) duty)] duta)
< [uter |(f, K Cwemsn) an)"

< (e a0t dut) | auto

by Holder’s inequality.

q/p

= [ wtor |(f, Kwan) G000 )
< ([, ot st dut)" | dute)

< (p+1)" /x

o ([, 5w (1020500 )" s ] duto

by definition of s(x)

<0 (f KeuGersta aute))
by Minkowski’s integral inequality.
= Gy { ([ Kt (K200 )77 o))
< (f()@(y)s(y))” dp(y)}”

p/q

But,

' e < OF q
/XK(x,y)q)(:c) de < C {/X K(z,y)u(z) dz}
Since u(z) and ®(z) depend on p and ¢ with constant C
S —1/(p'+1) P/e
< () { [ ([ wwmtor ([ sGateras) ™ auo)
x \Jx X

X (f(y)®(y)s(y))” dﬂ(y)}wp
(' 1y eey (Z/—i:l)p/q {/X (/X K(z,y)u(z)? dz)pp'/(q(p’ﬂ))

P
< (f(y)@(y)s(y))” du(y)}" .

IN
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But, since u(x) and ®(z) depend on p and ¢ with constant C'

st (PN o /(' +1)
S - L O

X (f(y)®(y)s(y))” d”(y)}Q/p

/q
/ / pl + 1 P / / _ q/p
_ (p' + 1)q/p ¢/ (@' +1) (p/) C'p)/(p'+1) (/X s(y) ps(y)pf(y)pcl)(y)p dﬂ@))
Therefore,
Ve — | @ p/q Caw’+D ( +1) y)Pd e
= (@ +1) < (p) atv S 1(y)

2+/

, q2p/p / 1/p
< (p —|-1)qp (p quq(pH) (/X pydlu ) .

This completes the proof.

Theorem 3.4. Let 1 < p < g < 0o and suppose u = w/? is a weight on X. Then
there is a weight v, finite p-almost everywhere on X such that the weighted norm

inequality:

1/q 1/p
[/ (T* f)tw d,u} <C [/ fpvdu] for all f >0, (3.7)
X X
holds, if and only if there is a positive function ® on X satisfying:

O(z)P <v (3.8)

with s(z) (fx K(y, 2)®(2)7? dz)l/(pH) and C = C(K,p,q) is a constant independent
of f.

Proof. Follows directly from the proof of Theorem 3.2. by defining 7™ as

(T ) = [ K(y.2)f(y) dy.

Remark 3.2. If we put ¢ = p we obtain Kerman and Sawyer result [4]. Hence,

our result gives a better bound than Theorem 1.1.
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4. CONSEQUENCES OF OUR MAIN RESULTS

Corollary 4.1. Suppose that ®,w > 0 are locally integrable with respect to

Lebesgue measure on R" and that ®(x) = ®(|x|) is non-increasing as a function
of |x|.

Define the convolution operator T by

n

(Th)(@) = (@ f)@) = [ ®(e~y) () dy (4.1)

for a fized p € (1,00) and a constant C, depending on p and q. Then there exists

v(x) < oo almost everywhere and C > 0 such that

{/n(Tf)qw dx] v < [C’ /Rn fPu dx] o for all f <0 (4.2)

holds if and only if for all y € R": ®(y)? < v, u = w7 and C = C(K,p,q) is a

constant independent of f.

Proof. The proof is immediate from Theorem 3.1. and Theorem 3.2, if we set

K(z,y) = ®(z —y).

Corollary 4.2. Suppose that w > 0 is locally integrable with respect to Lebesque
measure on Ry = (0,00). Denote the Laplace transform (L) of f on Ry by

(LH@ = [Ty, ver,

for a fized p € (1,00). Then there exists v(z) < oo almost everywhere and C' > 0

such that
1/p

Un(Lf)qwdx v < [C/Rn fPvdx

holds if and only if (Lw)(z) < 0o,z € Ry.

for all f <0

Comment. There is a similar result for the dual operator as defined in [1].
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