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Abstract. In this paper we study the univariate Shepard-Lagrange interpolation operator

SL,m
n,µ (Y ; f ; x) := SL,m

n,µ (f ;x) =

n∑
k=0

|x− yn,k|−µ(Lmf)(x; yn,k)

n∑
k=0

|x− yn,k|−µ

where (yn,k) are the interpolation nodes and (Lmf)(x; yn,k) is the Lagrange interpolation
polynomial with nodes yn,k, yn,k+1, . . . , yn,k+m. Then we give error estimations for various
distribution of interpolation nodes.

1. INTRODUCTION

Let Y = (yn,i ∈ I, i = 0, n, n ∈ N) be an infinite matrix where each row is a set

of distinct nodes in I = [−1, 1]. For f ∈ Cr(I) the Shepard-Taylor operator is defined

by

Sr
n,µ(Y ; f ; x) =

n∑

k=0


|x− yn,k|−µ

r∑

j=0

f (j)(yn,k)/j!(x− yn,k)
j




n∑

k=0

|x− yn,k|−µ

,
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where µ = r + α, and α > 1 fixed.

The operator Sr
n,µ was introduced by Shepard in [9]. The operator Sr

n,µ and his

properties were studied in [4, 6, 2, 5].

We put yn,n+k = yn,n−m+k−1 for k = 1, n.

The aim of this paper is to study the univariate Shepard-Lagrage operator

SL,m
n,µ (Y ; f ; x) := SL,m

n,µ (f ; x) =

n∑

k=0

|x− yn,k|−µ(Lmf)(x; yn,k)

n∑

k=0

|x− yn,k|−µ

(1)

where m ∈ N, m < n is prescribed and (Lmf)(x; yn,k) is the Lagrange interpolation

polynomial with the nodes yn,k, yn,k+1, . . . , yn,k+m.

A bivariate variant of this operator was treated in [1].

The Shepard-Lagrange operator has the following properties

(
SL,m

n,µ

)
(f ; yn,k) = f(yn,k), k = 0, n,

(
SL,m

n,µ

)
(ei; x) = ei(x),

where ei(x) = xi, for i = 0,m.

Gopengauz proved in [7], that for |a| < 1 there exists a continuous function on I

for which there are no algebraic polynomial Pn of degree less than or equal n such

that

|f(x)− Pn(x)| = O

{
ω

(
f ;

√
1− x2

n
ε

(
1− x2

)
+

δ(n−1)

n2

)}
(2)

and

|f(x)− Pn(x)| = O

{
ω

(
f ;

ε (|x− a|) + δ(n−1)

n

)}
(3)

∀n ∈ N, ∀x ∈ I, where ε(u) ↓ 0 and δ(u) ↓ 0, when u → 0.

Della Vechia and Mastroianni have obtained in [4] estimations of above type for

Shepard-Taylor operators. We shall prove such estimations hold for Shepard-Lagrange

operators.
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2. ERROR ESTIMATION FOR SHEPARD-LAGRANGE OPERATOR

If f ∈ Cp[a, b], p ∈ N, p < n, and (Lnf) is the n-th degree Lagrange interpolation

polynomial with nodes x0, . . . , xn, and x, x0, . . . , xn ∈ [a, b], we have the following

estimation of the interpolation error (see [3])

|f(x)− (Lnf)(x)| ≤ Mp+1(1 + Λn)
(b− a)p

n(n− 1) . . . (n− p + 1)
ω

(
f (p);

b− a

n− p

)
, (4)

where ω(f ; .) is the usual modulus of continuity for f , and Λn is the Lebesgue constant

associated to the points xk and to the interval [a, b].

Let yn,d be the closest point to x. We have from (1) and (4)

∣∣∣f(x)− SL,m
n,µ (f ; x)

∣∣∣ ≤
n∑

k=0

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|f(x)− (Lmf)(x; yn,k)|

≤ Mp+1(1 + Λm)

m(m− 1) . . . (m− p + 1)

(
d−m∑

k=0

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|x− yn,k|pω
(
f (p);

|x− yn,k|
m− p

)
+

d∑

k=d−m+1

∣∣∣∣∣
x−yn,d

x−yn,k

∣∣∣∣∣
µ

|yn,k+m−yn,k|pω
(
f (p);

|yn,k+m−yn,k|
m−p

)
+

n∑

k=d+1

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|x− yn,k+m|pω
(
f (p);

|x− yn,k+m|
m− p

)


≤ Mp+1(1 + Λm)

m(m− 1) . . . (m− p + 1)
(S1 + S2 + S3).

(5)

Remark 1. Since m is fixed, Λm is bounded.

In the sequel one gives estimations of the approximation error for various distri-

bution of knots.

2.1. THE CASE OF ZEROS OF ORTHOGONAL POLYNOMIALS

This case is treated for the simple Shepard operator S0
n,µ in [2], and the proof

follows the ideas from that paper.
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Let (pn(w, .)) be the sequence of orthogonal polynomials on I with respect to the

weight w defined by

w(x) = ψ(x)
s+1∏

k=0

|x− tk|γk , x ∈ I,

where −1 = t0 < t1 < . . . < ts < ts+1 = 1, γk > −1, k = 0, s + 1, and the function

ψ is such that
∫ 1
0 ω(ψ, δ)δ−1 < ∞. Let xn,i = xn,i(w) be the zeros of pn(w, .) and we

suppose xn,1 < xn,2 < . . . < xn,n. We set xn,i = cos θn,i, i = 0, n + 1, where xn,0 = −1,

xn,n+1 = 1 and θn,i ∈ [0, π]. We shall use a result of Nevai [8, page 166]

θn,i − θn,i+1 ∼
1

n
. (6)

The matrix Y has on his rows the zeros of (1− x2)pn(w; x).

Theorem 2. If f ∈ Cp(I) and µ > p + 1, we have

∣∣∣f −
(
SL,m

n,µ

)
(f ; x)

∣∣∣ ≤ (1− x2)p

nµ−1

1∫

1/n

ω(f (p), t
√

1− x2)

tµ−p
dt. (7)

Proof. The relation (6) implies

|x− yn,d| ≤ const

n

√
1− x2,

|x− yn,k| ≥ const

n
|k − d|

√
1− x2.

Also, for δ2 ≥ δ1, we have
ω(f ; δ2)

δ2

≤ 2
ω(f ; δ1)

δ1

.

Now it follows estimations for S1, S2 and S3(introduced in (5)).

S1 ≤ C
(
1 +

1

m

) (√
1− x2

n

)p d−m∑

k=0

1

|k − d|µ−p
ω

(
f (p);

|k − d|
n

√
1− x2

)
(8)

S2 ≤ Cmp(m− 1)

(√
1− x2

n

)p

ω

(
f (p);

√
1− x2

n

)
. (9)

Since |x− yn,k+m| ≤ |x− yn,k|+ c
m

n
and

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|x− yn,k+m|p ≤
p∑

l=0

(
p

l

) (
m
n

√
1− x2

)l+µ

( |k − d|
n

√
1− x2

)µ−p+l
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≤
(√

1− x2

n

)p

mp (p + 1)

|k − d− 1|µ−p
,

we have

S3 ≤
(√

1− x2

n

)p

mp(p + 1)
n∑

k=d+1

1

|k − d− 1|µ−p

((
1 +

1

m

)
ω(f (p); |x− yn,k|

)

+ω

(
f (p);

√
1− x2

n

)
.

But, for µ− p > 1,
∑n

k=d+1 |k − d− 1|p−µ is bounded and we obtain

S3 ≤
(√

1− x2

n

)p

C1

n∑

k=d+1

1

|k − d− 1|µ−p

(
ω(f (p); |x− yn,k|

)
+

C2ω

(
f (p);

√
1− x2

n

))
. (10)

Since

ω

(
f (p);

√
1− x2

n

)
≤ 1

nµ−p−1

1∫

1/n

ω(f (p); t
√

1− x2)

tµ−p
dt

and

S1 + S2 + S2 ≤
(√

1− x2

n

)p [
C1ω

(
f (p);

√
1− x5

n

)
+

C2

n∑

k=2

1

|k − d|µ ω

(
f (p);

|k − d|
n

√
1− h2

)]
,

(7) follows.

2.2. OTHER DISTRIBUTIONS

We consider the distribution given by x = xp : [0, 1] 7→ [−1, 1]

x = x(θ) =

{
(2θ)2p+1 − 1, θ ∈ [0, 1

2
]

−(2− 2θ)2p+1 + 9, θ ∈ [1
2
, 1]

, (11)

and X =
(
yn,k = x(k/n), k = 0, n, n ∈ N

)
.

This distribution is considered in [4] and we follow the ideas from that paper.
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Theorem 3. If f ∈ Cq(I) and µ > q + α, α > 1, then

∣∣∣f −
(
SL,m

n,µ

)
(f ; x)

∣∣∣ ≤ A

[
(1− x2)2p/(2p+1)

]q

nµ−1

1∫

1/n

ω(f (q), t(1− x2)2p/(6p+1))

tµ−q
dt. (12)

where A is a constant depending on p, q, µ, m and α.

Proof. The function x given by (11) is increasing on [0,1] and x′ is convex

increasing on [0, 1/2] and convex decreasing on [1/2, 0]. It holds

x′(θ) ≤ 2(2p + 1)(1− x2)2p/(2p+1). (13)

Because the points are symmetric with respect to the origin, we need to prove the

theorem only for x > 0 and x 6= yn,k, k = 0, n. Thus, x = x(θ), θ ∈ [1
2
, 1] and we shall

suppose yn,d−1 < x < yn,d, yn,d being the closest point to x. Also,

|x− yn,d| =
∣∣∣∣∣
∫ d

n

0
x′(u)du

∣∣∣∣∣ ≤
x′(θ)

n
. (14)

Let us estimate now the error.

∣∣∣f(x)− SL,m
n,µ (X; f ; x)

∣∣∣ ≤ M q+1(1 + Λm)

m(m− 1) . . . (m− q + 1)
(S1 + S3 + S3 + S4),

where

S1 =
∑

0<yn,k≤yn,d−m−1

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|x− yn,k|qω
(
f (q);

|x− yn,k|
m− q

)
,

S2 =
∑

yn,d−m−1<yn,k≤yn,d−1

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|yn,k+m − yn,k|qω
(
f (q);

|yn,k+m − yn,k|
m− q

)
,(15)

S3 =
∑

yn,d<yn,k≤yn,n

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|x− yn,k+m|qω
(
f (q);

|x− yn,k+m|
m− q

)

and

S4 =
∑

yn,k≤0

∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|x− yn,k|qω
(
f (q);

|x− yn,k|
m− q

)
.

When 0 < xk ≤ xd−m−1 we have

|x− yn,k| =
∫ θ

k
n

x′(u) ≥ x′(θ)
d− 1− k

n
(16)
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and
ω

(
f (q);

|x−yn,k|
m−p

)

|x− yn,k| ≤ 2

(
1 +

1

m− p

)
ω

(
f (q); x′(θ)(d−k−1)

n

)

x′(θ)(d−k−1)
n

and thus

S1 ≤ C1

d−m−1∑

k=[n/2]+1

(
x′(θ)

n

)q ω
(
f (q); x′(θ)(d−k−1)

n

)

(d− k − 1)µ−q
, (17)

where C1 is a constant which depends on p, q, µ, m and α.

To estimate S2 we note that

|yn,k+m − yn,k| =
∫ k+m

n

k
n

x′(u)du ≤ m

n
x′

(
k

n

)
≤ m

n
x′(θ)

and

ω

(
f (q);

|yn,k+m − yn,k|
m− 1

)
≤ 2

(
1 +

1

m− p

)
ω

(
f (q);

x′(θ)
n

)
.

These inequalities lead us to

S2 ≤
(

x′(θ)
n

)q

C2(m− 1)ω

(
f (q);

x′(θ)
n

)
. (18)

For S3 we have yn,k ≥ yn,d and

|x− xk| =

∣∣∣∣∣
∫ k/n

θ
x′(u)du

∣∣∣∣∣ >
∫ (θ+k/n)/2

θ
x′(u)du

=
k/n− θ

2
x′

(
k/n + θ

2

)
>

k/n− θ

2
x′

(
θ + 1

2

)

=

(
k

n
− θ

)
2−2p−1x′(θ)

(see also [4] for this estimation).

Hence

|x− xk| > k − d

n
2−2p−1x′(θ).

But
∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ

|x− yn,k+m| ≤
∣∣∣∣∣
x− yn,d

x− yn,k

∣∣∣∣∣
µ q∑

l=0

(
q

l

)
|x− yn,k|q−l|yn,k − yn,k+m|l

≤
(

x′(θ)
n

)µ q∑

l=0

(
q

l

) (
m
n
x′(θ)

)

∣∣∣k−d
n

x′(θ)
∣∣∣
µ−q+l

≤ C3

(
x′(θ)

n

)q
1∣∣∣k−d

n

∣∣∣
µ−q

;
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so

S3 ≤
(

x′(θ)
n

)q

C3

n∑

k=d

ω
(
f (q); |k−d|

n
x′(θ)

)

|k − d|µ−q

+C4ω

(
f (q);

x′(θ)
n

)
n∑

k=d

1

|k − d|µ−q

)
.

Because µ− q = α > 1,
∑n

k=d |k − d|µ−q is bounded and

S3 ≤
(

x′(θ)
n

)q

C3

n∑

k=d

ω
(
f (q); |k−d|

n
x′(θ)

)

|k − d|µ−q
+ Kω

(
f (q);

x′(θ)
n

)
 .

We can estimate S4 as we do for S1, S2 and S3 (because of symmetry reason).

Finally, because

S1 + S2 + S3 + S4 ≤
(

x′(θ)
n

)q

K1

n∑

k=2

ω
(
f (q); k

n
x′(θ)

)

(
k
n

)µ−q

+K2ω

(
f (q);

x′(θ)
n

) )

and

ω

(
f (q);

x′(θ)
n

)
≤

∫ 1

1/n

ω
(
f (q); x′(θ)

n

)

tµ−q
dt,

the conclusion of Theorem results immediately using (13).

For Shepard-Lagrange operators there is also an analogous of (12) for some interior

points. Della Vechia and Mastroianni have shown in [4] such a result for Shepard-

Taylor operators. Let be now the distribution given by

z(θ) = (2θ − 1)2p+1, p ∈ N, k = 0, n, n even,

and the matrix

Z = (zn,k = z(k/n)). (19)

We have

Theorem 4. If f ∈ Cq(I) then

∣∣∣f(x)− SL,q
n,µ(Z; f ; x)

∣∣∣ ≤ A

[
|x|2p/(2p+1)

]q

nµ−1

∫ 1

1/n

ω(f (q); t|x|2p/(2p+1))

tµ−q
dt.
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Proof. z is increasing on [0, 1] and z′ is convex decreasing on [0, 1
2
] and convex

increasing on [1
2
, 1]. For symmetry reason we need to prove the theorem for x < 0,

x 6= zn,k, k = 0, n.

We have

|x− zn,d| =
∣∣∣∣∣
∫ d/n

θ
z′(u)du

∣∣∣∣∣ ≤
z′(θ)

n
,

and (13) is replaced by

z′(θ) ≤ 2(2p + 1)|x|2p/(2p+1);

the proof proceeds as for the previous theorem.

In [5] the authors give more general matrix of nodes. Using (4) and techniques

from the last-cited paper we can prove analogous of Theorem for those matrices.

Remark 5. In (19), for p = 0, we obtain equispaced nodes.
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