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Abstract. In this paper we study the univariate Shepard-Lagrange interpolation operator

5 |2 = gk Lo f) (5 )

Sui (Vi fi2) i= Sii(fre) = 50

n
Z "r - yn,k’_u
k=0
where (yn ) are the interpolation nodes and (L, f)(x;yn k) is the Lagrange interpolation

polynomial with nodes ¥, i, Yn k+1,- - -, Yn,k+m- Then we give error estimations for various
distribution of interpolation nodes.

1. INTRODUCTION

Let Y = (yn; € I, i = 0,n, n € N) be an infinite matrix where each row is a set
of distinct nodes in I = [—1, 1]. For f € C"(I) the Shepard-Taylor operator is defined
by

Z (|JJ — Ynk| " Z f(j)(yn,k>/j!($ - yn,k>j)
SpuYi i) = = ,

Z |ZE - yn,k’_u

k=0
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where = r + «a, and a > 1 fixed.

The operator S}, , was introduced by Shepard in [9]. The operator S}, , and his

properties were studied in [4, 6, 2, 5].

We put Yn,nt+k = Ynn—m+k—1 for k = 17 n.

The aim of this paper is to study the univariate Shepard-Lagrage operator

Z |l’ - yn,k|_M(me)(x; yn,k)
m . r. L my( . _ k=0
Srf,u (Yv f,fL’) T Srf,u (fax) - n
Z |CL’ - yn,k|_u
k=0

(1)

where m € N, m < n is prescribed and (L, f)(x; ynx) is the Lagrange interpolation
polynomial with the nodes y,, &, Yn k+1s - - - > Un ktm-
A bivariate variant of this operator was treated in [1].

The Shepard-Lagrange operator has the following properties

(SEm) (Fump) = fan), k=0,
(SEm) (esnz) = ei(x),

where ¢;(z) = 2¢, for i = 0, m.
Gopengauz proved in [7], that for |a| < 1 there exists a continuous function on I
for which there are no algebraic polynomial P, of degree less than or equal n such

that

=Pl = ofu (R - DL

n2

and

(3)

1) = P = 0 {o (2 0E= D)

Vn € N, Vz € I, where (u) | 0 and §(u) | 0, when u — 0.
Della Vechia and Mastroianni have obtained in [4] estimations of above type for
Shepard-Taylor operators. We shall prove such estimations hold for Shepard-Lagrange

operators.
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2. ERROR ESTIMATION FOR SHEPARD-LAGRANGE OPERATOR
If f € CPla,b], peN, p<n,and (L,f) is the n-th degree Lagrange interpolation

polynomial with nodes x,...,z,, and z,xg,...,z, € |a,b], we have the following

estimation of the interpolation error (see [3])

)= L@ < 4 ) O (50220

where w(f;.) is the usual modulus of continuity for f, and A,, is the Lebesgue constant
associated to the points xj and to the interval [a, b].

Let y, 4 be the closest point to . We have from (1) and (4)

ynd
T = Ynk

(@) - SEn(fi0)| < i

[f (@) = (Lon ) (25 Y )|

MPTH1+ Ay, & ¥is — Yn
m(m —1).. (m p+1) T = Yk m—p
d
Tr— ynd Yn,k+m —Yn,k

Z |yn,k+m_yn,k‘|pw (f 2 ) | - |>+ (5)
k=d—m+1T " Ynk m—p

n K

xr — n,k+m

L T s

k=d+1 % — Ynk m-—p

MP+1(1 + Ay

i —1) . (m—p 1) Tt o)

Remark 1. Since m is fixed, A,, is bounded.

In the sequel one gives estimations of the approximation error for various distri-

bution of knots.

2.1. THE CASE OF ZEROS OF ORTHOGONAL POLYNOMIALS

This case is treated for the simple Shepard operator S° , in [2], and the proof

follows the ideas from that paper.
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Let (pn(w,.)) be the sequence of orthogonal polynomials on [ with respect to the
weight w defined by
x)sﬁ |z —t|"*, xe€l,
where —1 =ty <t; < ... <ty <ty =1, % > —1, k=0,s+1, and the function
¢ is such that fy w(t, )(5 ! < oo. Let z,; = xpi(w) be the zeros of p,(w,.) and we
SUPPOSE T 1 < Tpo < ... < Tpy,. We set z,; = cosb,;, i =0,n+ 1, where z,,0 = —1,
Tpnt1 = 1 and 6,,; € [0, 7]. We shall use a result of Nevai [8, page 166]

1
Qni _'eni ~ 6
i~ (6)

The matrix Y has on his rows the zeros of (1 — z?)p, (w; ).

Theorem 2. If f € CP(I) and u > p+ 1, we have

1—a: w( p),t\/l—xQ)dt

tH—p

= (Stm) (fi)] <

Proof. The relation (6) implies
t
15— godl L const —mp el
t
&= Yol = [k — dVT — 2.
n

Also, for d9 > 67, we have

w(/f; 52) (f o1)
by &
Now it follows estimations for Sy, S2 and S3(introduced in (5)).

s, §C<1+1) <m>pdi"1w <f<p>;|kn_d|m> (8)

o)\ ) A
S < CmP(m 1) (”7) (1 ”7) )

. m
Since |2 — Ynktm| < |2 — Yn | + cg and

o HEy

o
T = Ynd
T = Ynk

p=p+l
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- <m>pmp (p+1)

n |k —d—1|p—p’
we have
V1—22\" n 1 1
5 < o1 (14 1)1 - e
b= () o0 > s (14 ) Uil =
+w<f(p); 1n—;1:2>‘

But, for p—p > 1,3 44|k —d—1""" is bounded and we obtain

vI—z2\’ n 1
< C ®). . _ .
5= (V5 S e (Ui )+
V1 = 22
Cow (f@); v )) (10)
n
Since )
1T = 2 (P)-$1/1 — 72
n nr—p—1 th—p
1/n
and
J1 — 22\? V1 — 25
S+ S+ 85y < ( nx> leJ(f(p); nx>+
" 1 |k — d
C (®). 1— A2
=T (o AT |
(7) follows.
2.2. OTHER DISTRIBUTIONS
We consider the distribution given by = =z, : [0,1] — [—1, 1]
_ _ (29)2p+1 - 17 0 e [07 %]
7 =o(0) = { —(2- 20+ 49, 9e[L1]’ 1

and X = (yn,k =xz(k/n), k=0,n, n € N).

This distribution is considered in [4] and we follow the ideas from that paper.
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Theorem 3. If f € CI(I) and > q+ a, a > 1, then

= (Sem) (f52)] < de.  (12)

A [(1 — %)%/ 2p+1 w( t(1 — )2/ (Ep+D))
// th—a
1/n

where A is a constant depending on p,q, i, m and a.

Proof. The function x given by (11) is increasing on [0,1] and 2’ is convex

increasing on [0,1/2] and convex decreasing on [1/2,0]. It holds
2'(0) < 2(2p +1)(1 — %)%/ D), (13)

Because the points are symmetric with respect to the origin, we need to prove the
theorem only for z > 0 and z # Y, k = 0,n. Thus, z = z(6), 6 € [1,1] and we shall

SUppose Ynd—1 < T < Yn.d, Yn.a being the closest point to x. Also,

|x_ynd| ‘/

Let us estimate now the error.

| < 7O (14)

n

MTH 1+ A,)
m(m—1)...(m—q+1)

|£(2) = S (X fr2)| < (S1+ S5+ S5 + Si),

where

S5 = %

O<yn,k§yn,d—m—l

S, = 3

X' — Yn,d
T — Yn,k

I
2 — gt [ 0 ]
, ) m—q )

I
T = Ynd

|yn’k+m . yn7k|qw (f(q), |yn,k+m - yn,k|> ’(15>

yn,d—m—1<yn,kt§yn,d—1 - yn:k m—q
o
T~ Ynd [T — Yn k]
S3 = > — % |2 — Y| <f(q); jm>
Yn,d<Un,k<Yn,n x yn,k‘ m q
and .
xr — T —
Si= > = —tnd T — Y| "w (f(q); ’ynk‘) .

When 0 < z, < 24-m—1 We have

d—1—-k

o sl = [} a') 2 (0) T (16)

n



and

u}(f“”;kéfﬁﬁﬂ) 1 ) a;(fﬁ);ilﬁl%;ﬁ:ﬁ)

| = Yn.pl §2<1+m—p ZO)d—k-1)

ssa B () e
1 = 1 — ,
k=fn/2+1 \ T (d—Fk— 1)

and thus

where (' is a constant which depends on p, ¢, 1, m and «a.

To estimate Sy we note that
ktm

n m
|yn,k+m - yn,k:l = /& IE/(U)CZU < EQZ’/ () <

n

and

W (f(Q); ’yn,k+m — yn,k’> <9 (1 n 1) y (f(q); I/(6)> |
m—1 m-—p n

These inequalities lead us to
For S5 we have y,, 1 > y,.q and
/ak/n o' (u)du| > /;Hk/n)/z o' (u)du

_ kﬁp—9ﬁ<kﬂ1+0>:>kﬁp—qﬂ<9+1>

[z — | =

2 2 2 2

= (i - 9) 27214/ (9)

(see also [4] for this estimation).

Hence
k—d
|z — x| > — 272712/ (9).
But

1 ©oq
T — Yn,d T — Yn,d _
- |$—yn,k+m| < Z ( >|x_ynk|q l|yn7k_yn’k+m|z
€T — yn,k xr — yn k =0

(V5 )z,

2'(0)\? 1
<%<n>%wm

n Y
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(17)

(18)
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SO

Sy < (fv’((?))q(cgz":w(f(q);’“nd'x'(e))

n = |k — d|#—a
(6 " 1
C (q).x( .
_I_ 4w (f ) n ];“C—d‘“*q

Because p —q=a > 1, >p_, |k — d|* 7 is bounded and

g < (:c’f))q (Cgiw(f(qxlkndlx’(@)) 1 Ko <f(q);$/(9)>) .

= |k — d|r—a n

We can estimate Sy as we do for S;,Ss and S5 (because of symmetry reason).

Finally, because

/ q n o (Q)-Ex/
S+ 8+ S3+85; < (x(9)> (KIZ <f S (9))

p—q
n b (E)
n

+Kow (f(q); xl?) )

w (f(q); 37,(@) < /1 w(f(q);x/’(f))dt’

n —Ji/n th—a

and

the conclusion of Theorem results immediately using (13).

For Shepard-Lagrange operators there is also an analogous of (12) for some interior
points. Della Vechia and Mastroianni have shown in [4] such a result for Shepard-

Taylor operators. Let be now the distribution given by
2(0) = (20 — D)*™' peN,k=0,n, n even,
and the matrix
Z = (zng = 2(k/n)). (19)
We have

Theorem 4. If f € CU(I) then

(22! @D p@), g f2p/ o)

nt—1 1/n th—a

dt.

M

f(x) = Sii(Z; f0)| < A
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1

Proof. z is increasing on [0,1] and 2z’ is convex decreasing on [0, 5] and convex

1
27

T # Zng, k=0,n.
We have

increasing on |5, 1]. For symmetry reason we need to prove the theorem for x < 0,

Z(0)

)

<
n

d/n
|z — 2p4] = ’/ 2 (u)du
0

and (13) is replaced by
2'(0) < 2(2p + 1)|x|?/ P+,

the proof proceeds as for the previous theorem.
In [5] the authors give more general matrix of nodes. Using (4) and techniques

from the last-cited paper we can prove analogous of Theorem for those matrices.

Remark 5. In (19), for p = 0, we obtain equispaced nodes.
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