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Abstract. In this note some bounds for the gamma function are given.

1. INTRODUCTION

The gamma function

Γ(x) =
∫ ∞

0
e−ttx−1 dt (x > 0)

is an extension of the factorial of a natural number. The gamma function is one of

the most important functions in analysis and its applications. There exists a rich

literature on inequalities for the gamma function. For instance, see H. Alzer [1] and

references therein.

In the paper [2] we find the following inequalities

n! nx

x(x + 1) · · · (x + n)
< Γ(x) <

n! nx

x(x + 1) · · · (x + n)
·n + x

n
·exp

1

2(n− 1)
(0 < x < 1).

Our aim is to give an upper and a lower power product estimate for the gamma

function on the interval [1,∞).
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2. RESULTS

Now, we can state and prove our result.

Theorem. The inequalities

n!

x(x + 1) · · · (x + n− 1)
·
(

x + n

n + 1

)x+n

· exp(H(n)− 1− C)(x− 1)

(1)

≤ Γ(x) ≤ (n + 1)!

x(x + 1) · · · (x + n)
·
(

x + n

n + 1

)x+n

· exp(H(n + 1)− 1− C)(x− 1)

(x ≥ 1, n = 1, 2, . . .) hold, where C = 0.57721... is the Euler constant and H(n) =

1 + 1/2 + . . . 1/n. Equality occurs if x = 1.

Proof. For the digamma function ψ(x) = (ln Γ(x))′ (x > 0), ψ(1) = −C, we have

ψ′(x) =
∞∑

i=0

1

(x + i)2
(x > 0)

that is

ψ′(x) =
n−1∑

i=0

1

(x + i)2
+

∞∑

i=0

1

(x + n + i)2
. (2)

It is well known that if g(t) is a strictly decreasing positive function with limt→∞ g(t) =

0, then ∫ ∞

0
g(t) dt <

∞∑

i=0

g(i) < g(0) +
∫ ∞

0
g(t) dt . (3)

Letting g(t) = 1/(x+n+ t)2 and using
∫∞
0 g(t) dt = 1/(x+n) by virtue of (3) the

equality (2) becomes

n−1∑

i=0

1

(x + i)2
+

1

x + n
< ψ′(x) <

n∑

i=0

1

(x + i)2
+

1

x + n
(x > 0) .

Integrating these inequalities from 1 to x we obtain

H(n) − C + ln
x + n

1 + n
−

n−1∑

i=0

1

x + i

≤ ψ(x) ≤ H(n + 1)− C + ln
x + n

1 + n
−

n∑

i=0

1

x + i
(x ≥ 1) .
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Finally, integrating the last inequalities from 1 to x, after simple calculations, we

obtain our inequalities.

Remark. A simple calculation shows that the left and the right side of (1) tend

to Γ(x) as n →∞.

We are going to mention three simple consequences of Theorem.

Corollary 1. In the case when n = 1 the inequalities (1) become

1

x

(
x + 1

2

)x+1

· exp C(1− x) ≤ Γ(x) ≤ 2

x(x + 1)
·
(

x + 1

2

)x+1

· exp
(
C − 1

2

)
(1− x),

where x ≥ 1.

Corollary 2. In the case when x = m + 1 the inequalities (1) become

n!

(m + 1)(m + 2) · · · (m + n)
·
(
1 +

m

n + 1

)m+n+1

· exp(H(n)− 1− C)m ≤ m!

≤ (n + 1)!

(m + 1)(m + 2) · · · (m + n + 1)
·
(
1 +

m

n + 1

)m+n+1

· exp(H(n + 1)− 1− C)m,

where m = 0, 1, . . ..

Corollary 3. In the case when x = 3/2 the inequalities (1) become

2n+1n!

3 · 5 · · · (2n + 1)
·
(

2n + 3

2(n + 1)

)3/2+n

· exp
1

2
(H(n)− 1− C) <

√
π

<
2n+2(n + 1)!

3 · 5 · · · (2n + 3)
·
(

2n + 3

2(n + 1)

)3/2+n

· exp
1

2
(H(n + 1)− 1− C),

where n = 1, 2, . . ..
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