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1. In [1] S. Banach solved the problem of the existence of a (non-unique) linear

shift-invariant functional on the space of all bounded functions defined on the semi-

axis t ≥ 0.

2. Let now a be sufficiently large (written a > a0 for some a0). Denote by Ω

the real vector space of all real-valued functions on [0,∞) and bounded on [a,∞).

This paper is organized as follows. First we will show the existence of a family of

functionals on the space Ω containing Banach shift-invariant functionals. Next, by

these functionals we shall define the limit of f(t) as t → ∞, f ∈ Ω, and show that

this definition is equivalent to the classical definition of this limit. Further, we show

some theorems characterizing the limit of a function f(t), t ≥ 0 as t → +∞. Each of

these theorems gives an answer to the question what (new) conditions must satisfy a

function f ∈ Ω such that the limit of f(t) as t → +∞ exists.
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A NEW FAMILY OF FUNCTIONALS

Again, let a be sufficiently large. Define the functional p on the space Ω by

p(f) = sup
n,ξk

{
lim sup

t→∞

1

n

∣∣∣∣∣
n−1∑

k=0

f(t + ξk)

∣∣∣∣∣

}
(f ∈ Ω), (1)

where the supremum is taken over all n and ξk (ξk ≥ 0, n = 1, 2, . . .). The functional

p is seen to be real-valued and it clearly satisfies the conditions

p(f) ≥ 0, p(af) = |a|p(f), p(f + g) ≤ p(f) + p(g), (a ∈ R; f, g ∈ Ω);

that is, p is a symmetric convex functional on the space Ω. According to a corollary

of Hahn-Banach theorem (see also [2], Exercise 11.2, p.187) there exists a nontrivial

linear functional L on the space Ω such that

|L(f)| ≤ p(f), f ∈ Ω. (2)

We next wish to show that the functional L satisfying the above conditions is not

unique. To do this, let Ω0 be the space of all functions f ∈ Ω having limt→∞. Then

clearly we have

p(f) = L(f) = 0, f ∈ Ω0. (3)

Take now a number s ∈ R (s 6= 0) and define the function g by g(t) = s, t ≥ 0. Then

g ∈ Ω \ Ω0 and p(g) = |s| > 0. To extend the functional L : Ω0 7→ R to the space

spanned by Ω0 and {g} (that is, the space Ω0 ∪ {g}), the value L(g) we can choose

arbitrarily in the segment

[−p(g), p(g)].

Thus, it is possible to extend the functional L such that it has distinct values at the

point g ∈ Ω. In other words, there are functionals on the space Ω satisfying the

above conditions with distinct values at point g; that is, the functional satisfying the

above conditions is not unique. Indeed, we can take the value L(g) arbitrarily in the

segment [k,K], where

k = sup
f∈Ω0

{−p(f + g)} , K = inf
f∈Ω0

{p(f + g)}
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since L(f) = 0, ∀f ∈ Ω0 (see, for example, [4], p. 222). Further, by (1), we have

p(f + g) = p(g) since f(t) + g(t) → s, as t → +∞. Consequently, we can take

arbitrarily L(g) in [−p(g), p(g)].

Now, we show the following lemma.

Lemma. Let X be a real linear space and p : X 7→ R a functional satisfying the

following conditions

q(x) ≥ 0, p(ax) = |a|p(x), p(x + y) ≤ p(x) + p(y) (a ∈ R; x, y ∈ X).

Then, for each x0 ∈ X, there exists a linear functional L on X such that

(∀x ∈ X) |L(x)| ≤ p(x), L(x0) = p(x0).

Proof. The set X0 = {αx0 : α ∈ R} clearly is a subspace of the space X, and

L0, defined by

L0(αx0) = αp(x0) (α ∈ R),

is a linear functional on the subspace X0 satisfying the condition

|L0(αx0)| = |αp(x0)| = |α|p(x0) = p(αx0) (α ∈ R).

By a version of Hahn-Banach theorem (see [3], theorem 11.2, p. 181) there exists a

linear functional L on the space X extending L0 and satisfying the conditions

(∀x ∈ X) |L(x)| ≤ p(x)

and

L(x0) = L0(x0) = 1 · p(x0) = p(x0).

Denoting now by Π the family of the functionals L obtained before, then for each

s ∈ R we have

(∀L ∈ Π)L(f − s) = 0 iff p(f − s) = 0 (f ∈ Ω).
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Indeed, p(f − s) = 0 clearly implies L(f − s) = 0, ∀L ∈ Π. Also, the implication

(∀L ∈ Π)L(f − s) = 0 ⇒ p(f − s) = 0

is equivalent to the implication

p(f − s) > 0 ⇒ (∃L ∈ Π)L(f − s) 6= 0

which, by the lemma proved before, is valid. So, (4) is true.

We now summarize the results obtained before as the following statement.

Theorem 1. There exists the family Π of functionals L defined on the space Ω

such that, for all a, b ∈ R, f, g ∈ Ω, s ∈ R, we have

10 L(af + bg) = aL(f) + bL(g),

20 |L(f)| ≤ p(f),

30 (∀L ∈ Π)L(f − s) = 0 iff p(f − s) = 0.

THE LIMIT OF A REAL-VALUED FUNCTION

In [3] was defined the almost convergence of a sequence by Banach shift-invariant

functionals. Analogously, we here define the limit of a function f ∈ Ω by the func-

tionals from the theorem 1.

Definition 1. Let f ∈ Ω. We will say that f(t) has limit s as t → +∞ (written,

as usual, limt→+∞ = s or f(t) → s as t → +∞) if

(∀L ∈ Π)L(f − s) = 0. (5)
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We now shall show that the limit of a function f ∈ Ω defined in such way is

uniquely determined. Indeed, for any two limits s′ and s′′ of a function f , define the

functions g and h by

g(t) = s′ and h(t) = s′′ (t ≥ 0).

Then, by (5), we have

(∀L ∈ Π)L(h− g) = L(f − g)− L(f − h) = L(f − s′)− L(f − s′′) = 0

which, by (4) and (1), implies

p(h− g) = |s′′ − s′| = 0 or s′ = s′′.

Now is arised the question is the definition 1. equivalent to the corresponding

classical definition. A positive answer gives the following statement.

Theorem 2. The definition 1 and the corresponding classical definition are equiv-

alent.

Proof. Let limt→+∞ f(t) = s in the sense of definition 1. Then, by (5), (4) and

(1), for all n (= 1, 2, . . .) and ξk ≥ 0, we have

lim sup
t→∞

1

n

∣∣∣∣∣
n−1∑

k=0

[f(t + ξk)− s]

∣∣∣∣∣ = 0.

Thence for n = 1 and ξ0 = 0

lim sup
t→+∞

|f(t)− s| = 0 or f(t) → s as t → +∞

in the sense of the corresponding classical definition.

Conversely, let limt→+∞ f(t) = s in the sense of the classical definition. Then, for

all n (= 1, 2, . . .) and ξk ≥ 0 (k = 0, 1, 2, . . .) we have

lim sup
t→∞

1

n

∣∣∣∣∣
n−1∑

k=0

[f(t + ξk)− s]

∣∣∣∣∣ = lim
t→∞

1

n

∣∣∣∣∣
n−1∑

k=0

[f(t + ξk)− s]

∣∣∣∣∣ = 0.

Hence

p(f − s) = sup
n,ξk

{
lim sup

t→∞

1

n

∣∣∣∣∣
n−1∑

k=0

[f(t + ξk)− s]

∣∣∣∣∣

}
= 0.
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This, by (4), implies (5); so, f(t) → s as t → +∞ in the sense of definition 1. which

completes the proof.

Notice. It is clear from expressions and results obtained before (up to theorem

3., inclusive), as in S. Banach, G.G. Lorentz and other’s papers, that it is possible to

obtain not only a generalization of usual limit of a function f(t), t ≥ 0 as t → +∞,

but usual limit of f(t), t ≥ 0 as t → +∞ itself, too.

We can now proceed to the following three statements whose sense is to addi-

tionally characterize the limit of a function f(t), t ≥ 0 by distinct conditions and

expressions which analogous to the expressions obtained before.

Theorem 3. For each function f(t), t ≥ 0 we have f(t) → s as t → +∞ iff

1

n

n−1∑

k=0

f(t + ξk) → s as t → +∞ (6)

uniformly in n and ξk (ξk ≥ 0, n = 1, 2, . . .).

Proof. Suppose the condition (6) is true. Then for n = 1 and ξ0 = 0 we have

f(t) → s as t → +∞. Conversely, let f(t) → s as t → +∞. Then for any ε > 0 there

exists a number t0 such that for all ξk ≥ 0 we have

|f(t + ξk)− s| < ε, t > t0.

Now, for all n (= 1, 2, . . .) and ξk ≥ 0 (k = 0, 1, 2, . . .) we have

∣∣∣∣∣
1

n

n−1∑

k=0

f(t + ξk)− s

∣∣∣∣∣ ≤
1

n

n−1∑

k=0

|f(t + ξk)− s| < ε, t > t0.

Since ε > 0 is arbitrary, this means that

1

n

n−1∑

k=0

f(t + ξk) → s as t → +∞

uniformly in n and ξk ≥ 0 which completes the proof

The following interesting theorem is a modification of the theorem 3.
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Theorem 4. For each function f(t), t ≥ 0 we have f(t) → s as t → +∞ iff

1

n

(i+1)n−1∑

k=in

f(t + ξk) → s as t → +∞ (7)

uniformly in n, i and ξk (ξk ≥ 0, k = 0, 1, 2, . . . , n; i = 0, 1, 2, . . .).

Proof. Suppose the condition (7) is true. Then for i = 0 (7) implies (6). Hence,

by the theorem 3, the condition (7) is sufficient.

Conversely, let f(t) → s as t → +∞. Then for each ε > 0 there exists a number

t0 such that

|f(t)− s| < ε, t > t0

which, for all n, i and ξk ≥ 0, implies

|f(t + ξk + in)− s| < ε, t > t0.

Hence, for all n, i and ξk ≥ 0, we have

∣∣∣∣∣∣
1

n

(i+1)n−1∑

k=in

f(t + ξk)− s

∣∣∣∣∣∣
≤ 1

n

n−1∑

k=0

|f(t + ξk + in)− s| < ε, t > t0.

Since ε > 0 is arbitrary, we have

1

n

(i+1)n−1∑

k=in

f(t + ξk) → s as t → +∞

uniformly in n, i and ξk ≥ 0 (k = 0, 1, 2, . . . ; n = 1, 2, . . . ; i = 0, 1, 2, . . .) which

completes the proof.

Now, we will show the following applicable theorem containing a new restrictive

condition.

Theorem 5. Let f ∈ Ω be a continuous function on [a, +∞), a > a0. Then

f(t) → s as t → +∞ iff

1

T

∫ a+T

a
f(t) dt → s itas a → +∞

uniformly in T (> 0).
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Proof. Suppose f(t) → s as t → +∞. Then for each ε > 0 there exists a number

t0 (> a0) such that

|f(t)− s| < ε, t > t0.

Hence, for all T (> 0) and all a > t0, we have
∣∣∣∣∣
1

T

∫ a+T

a
f(t) dt− s

∣∣∣∣∣ ≤
1

T

∫ a+T

a
|f(t)− s| dt < ε.

Since ε > 0 is arbitrary, this means that

1

T

∫ a+T

a
f(t) dt → s as a → +∞

uniformly in T (> 0), so the condition (8) is necessary.

Conversely, it is clear that the proof (8) implies f(t) → s as t → +∞ can be

reduced to the case s = 0. Accordingly, let us suppose that

1

T

∫ a+T

a
f(t) dt → 0 as a →∞ (9)

uniformly in T (> 0) holds and that

f(t) → 0 as t → +∞ (10)

does not. Then we have

λ = lim sup
t→+∞

f(t) > 0 or lim inf
t→+∞ f(t) < 0. (11)

We will consider only the first case in (11), because the second case is simply reducible

to the first one. From (10) follows the existence of an a0 > 0 such that we have

1

T

∫ a+T

a
f(t) dt <

1

2
λ, for a > a0, T > 0, (12)

and from (11) follows the existence of a b > a0 such that

f(b) >
1

2
λ. (13)

Then we have
1

T

∫ b+T

a
f(t) dt <

1

2
λ (T > 0)

and hence, on account of the continuity of f at the point b and by a known theorem,

f(b) = lim
T→+0

1

T

∫ b+T

a
f(t) dt ≤ 1

2
λ

contrary to (13). This contradiction proves our assertion and completes the proof.
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