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Abstract. It is shown that among all trees with a fixed number of vertices the path has
the smallest value of the greatest Laplacian eigenvalue.

INTRODUCTION

As in the preceding paper [3], by G is denoted a graph on n vertices, and by

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) = 0 its Laplacian eigenvalues. Further,

denote by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) the ordinary eigenvalues of G , i. e., the

eigenvalues of the adjacency matrix A(G) [1].

A tree is a connected acyclic graph. A tree with n vertices possesses n− 1 edges.

Recall that n− 1 is the smallest number of edges in a connected n-vertex graph.

For n ≥ 2 , the n-vertex path Pn is the tree possessing exactly two vertices of

degree one (and therefore n − 2 vertices of degree 2). For n = 1 , the path P1 is

defined as the graph consisting of one isolated vertex.

For additional details on the notation and terminology used here see the preceding

paper [3].
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Within certain recent investigations in theoretical chemistry [5, 6] the problem

has been encountered to characterize the tree on n vertices, having the smallest µ1-

value among all n-vertex trees. Literature search revealed that the solution of this

problem is not well known. In 1999 Li [7] claimed that the respective extremal tree

was the path, but instead of proving this, he referred to an unpublished work by H.

Yuan. This work by H. Yuan could not be recovered in 2002 in the richly supplied

mathematical library of the Bielefeld University.

In view of all this, we decided to communicate the proof of the following:

Theorem 1. Among all trees with a fixed number of vertices the path has the

smallest value of the greatest Laplacian eigenvalue.

PROOF OF THEOREM 1

The proof of Theorem 1 is easy, provided certain known results from the theory

of Laplacian and ordinary graph spectra are taken into account. In Lemmas 1 and 2

we re-state two well known graph–spectral properties [1, 9, 10, 11].

Lemma 1. Let G′ be a graph obtained by deleting an edge from the graph G .

Then for i = 1, 2, . . . , n− 1 , µi(G) ≥ µi(G
′) ≥ µi+1(G) .

Lemma 2. Let G′ be a graph obtained by deleting an edge from the graph G .

Then λ1(G
′) ≤ λ1(G) . If G and G′ are connected, then λ1(G

′) < λ1(G) .

Lemma 3 is a less well known result. It was first communicated in [4] (see also

[2]). Lemma 4 is due to Lovaśz and Pelikán [8].

Lemma 3. Let T be an n-vertex tree and L(T ) its line graph. Then, for i =

1, 2, . . . , n− 1 , µi(T ) = λi(L(T )) + 2 .

Lemma 4. Among n-vertex trees, the path Pn has the smallest greatest ordinary

eigenvalue.

From Lemma 1 follows that among connected graphs, some graph with minimum

number of edges, i. e., some tree, will have the smallest greatest Laplacian eigenvalue.
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From Lemma 3 follows that the n-vertex tree with the smallest greatest Laplacian

eigenvalue is the tree whose line graph has the smallest greatest ordinary eigenvalue.

This line graph possesses n− 1 vertices and is connected.

The line graphs of all n-vertex trees, except the path, possess cycles. The line

graph of Pn is Pn−1 .

From Lemma 2 follows that for any connected cycle–containing (n − 1)-vertex

graph G there is an (n − 1)-vertex tree (namely any spanning tree of G), whose λ1-

value is smaller than λ1(G) . By Lemma 4, of all these (n− 1)-vertex trees the path

Pn−1 has the smallest λ1-value.

Now, because Pn−1 happens to be the line graph of a tree, namely of Pn , it follows

that Pn has the smallest greatest Laplacian eigenvalue among all n-vertex trees, which

is just what was claimed in Theorem 1.

DISCUSSION

Because Lemma 3 holds for all bipartite graphs [4], by deducing Theorem 1 we,

in fact, proved a stronger result:

Theorem 2. Among all connected bipartite graphs with a fixed number of vertices

the path has the smallest value of the greatest Laplacian eigenvalue.

The expression λ1(Pn) = 2 cos[π/(n + 1)] is long known [1, 8]. Then in view of

Lemma 3 we get

µ1(Pn) = 2 + 2 cos
π

n + 1
.

Evidently, µ1(Pn) < 4 .

Bearing in mind the classical result of Smith [12] (in which all graphs with λ1 < 2

and λ1 = 2 are characterized) we arrive at the following corollary of Theorem 2:

Theorem 3. The only connected bipartite graphs whose greatest Laplacian eigen-

values are less than 4 are the paths Pn , n = 1, 2, 3, . . . .

Acknowledgement: Profeesor Mirko Lepović (Kragujevac) obtained the same

results, independently of us.
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