Kragujevac J. Math. 24 (2002) 61–65.

THE STAR IS THE TREE WITH GREATEST GREATEST LAPLACIAN EIGENVALUE

Ivan Gutman

Faculty of Science, P. O. Box 60, 34000 Kragujevac, Yugoslavia

(Received August 23, 2002)

Abstract. It is shown that among all trees with a fixed number of vertices the star has the greatest value of the greatest Laplacian eigenvalue.

INTRODUCTION

Throughout this paper n denotes an integer greater than 1. All square matrices are assumed to be of order n and all vectors are assumed to be column-vectors of dimension n. If \vec{C} is a column-vector, then \vec{C}^t is its transpose, which is a row-vector of dimension n. The sum of all the n components of the vector \vec{C} is denoted by $\sigma(\vec{C})$.

By I we denote the unit matrix and by J the square matrix whose all elements are unity. By $\vec{0}$ and \vec{j} we denote the vector whose all components are respectively equal to zero and unity.

Let G be a graph on n vertices. Label the vertices of G by v_1, v_2, \ldots, v_n . Then the adjacency matrix A(G) of G is a square matrix of order n, defined so that its (i, j)-entry is unity if the vertices v_i and v_j are adjacent and is zero otherwise. The number of first neighbors of a vertex v is the degree of this vertex and is denoted by d(v). Note that if v_i is a vertex of the graph G, then $d(v_i)$ is equal to the sum of the *i*-th row of the adjacency matrix A(G).

Let D(G) be a square matrix whose diagonal entries are $d(v_1), d(v_2), \ldots, d(v_n)$ and the off-diagonal elements are zero.

Then L(G) = D(G) - A(G) is the Laplacian matrix of G.

The eigenvalues $\mu_1, \mu_2, \ldots, \mu_n$ of L(G) are called the Laplacian eigenvalues of the graph G and the respective eigenvectors $\vec{C}_1, \vec{C}_2, \ldots, \vec{C}_n$ the Laplacian eigenvectors of the graph G. Thus the equality $L(G) \vec{C}_i = \mu_i \vec{C}_i$ is obeyed for all $i = 1, 2, \ldots, n$. We label the Laplacian eigenvalues so that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$.

Details of the theory of Laplacian spectra of graphs can be found in some of the numerous reviews published on this topic [2, 3, 4]. Here we only mention that it is always $\mu_n = 0$.

SOME AUXILIARY RESULTS

Lemma 1. The vector \vec{j} is a Laplacian eigenvector of any n-vertex graph, corresponding to the eigenvalue $\mu_n = 0$.

Proof. Because the sum of any row of L(G) is equal to zero, $L(G) \vec{j} = \vec{0} = 0 \cdot \vec{j}$.

In view of Lemma 1 we may choose $\vec{C}_n = \vec{j}$. In what follows we assume that the Laplacian eigenvectors \vec{C}_i , i = 1, 2, ..., n - 1, are orthogonal to \vec{C}_n . If $\mu_{n-1} \neq 0$ then this orthogonality condition is automatically satisfied. If however, $\mu_{n-k} = 0$ for some $k \geq 1$, then the requirement that the eigenvectors $\vec{C}_{n-1}, \ldots, \vec{C}_{n-k}$ are chosen to be orthogonal to \vec{C}_n must be additionally stipulated. Recall that $\mu_{n-1} \neq 0$ if and only if the graph G is connected [2, 3, 4].

From the fact that for any vector \vec{C} the scalar product $\vec{j}^t \bullet \vec{C}$ is equal to $\sigma(\vec{C})$, it follows:

Lemma 2. For any graph G and any $1 \le i \le n-1$, $\sigma(\vec{C_i}) = 0$.

Denote by \overline{G} the complement of the graph G and its Laplacian eigenvalues by $\overline{\mu}_1 \ge \overline{\mu}_2 \ge \cdots \ge \overline{\mu}_{n-1} \ge \overline{\mu}_n = 0$.

Lemma 3. If $\vec{C_i}$ is a Laplacian eigenvector of the graph G, then $\vec{C_i}$ is a Laplacian eigenvector of the graph \bar{G} .

Proof. For i = n Lemma 3 follows from Lemma 1. Assume, therefore, that $1 \le i \le n-1$. Then, by Lemma 2, $\sigma(\vec{C_i}) = 0$.

From the construction of the complement of a graph it is clear that $L(G) + L(\overline{G}) = n I - J$. Consequently,

$$\begin{split} L(\bar{G}) \, \vec{C}_i &= [n \, I - J - L(G)] \, \vec{C}_i \\ &= n \, I \, \vec{C}_i - J \, \vec{C}_i - L(G) \, \vec{C}_i \\ &= n \, \vec{C}_i - \sigma(\vec{C}_i) \, \vec{j} - \mu_i \, \vec{C}_i \\ &= (n - \mu_i) \, \vec{C}_i \end{split}$$

This not only proves that \vec{C}_i is an eigenvalue of $L(\bar{G})$, but also shows the way in which the Laplacian eigenvalues of G and \bar{G} are related:

Lemma 4. For i = n, $\bar{\mu}_i = \mu_i = 0$. For i = 1, 2, ..., n - 1, $\bar{\mu}_i = n - \mu_{n-i}$.

As a direct consequence of Lemma 4 we have

Lemma 5. If \overline{G} is not connected, then $\mu_1 = n$. If \overline{G} is connected, then $\mu_1 < n$.

The Lemmas 4 and 5 are previously known results [2, 3, 4].

THE MAIN RESULT AND ITS PROOF

A tree is a connected acyclic graph. The star S_n is the *n*-vertex tree in which n-1 vertices are of degree 1 and one vertex is of degree n-1.

Lemma 6. For any $n \ge 2$, the greatest Laplacian eigenvalue of the n-vertex star is equal to n.

Proof. The complement of the star S_n is disconnected (and consists of the complete graph on n-1 vertices and an isolated vertex). Thus Lemma 6 follows from Lemma 5.

Lemma 7. If T is any n-vertex tree, not isomorphic to S_n , then \overline{T} is connected.

Proof. A graph is connected if there is a path between any two of its vertices. Let u and v be two distinct vertices of T. We show that in \overline{T} there always exists a path connecting u and v.

Case 1. Vertices u and v are not adjacent in T. Then these vertices are adjacent in \overline{T} and are thus connected by an edge. We are done.

Case 2. Vertices u and v are adjacent in T. Then either

d(u) = 1 and d(v) = 1 (subcase 2.1), or d(u) = 1 and d(v) > 1 (subcase 2.2), or d(u) > 1 and d(v) = 1 (subcase 2.3), or d(u) > 1 and d(v) > 1 (subcase 2.4).

Subcase 2.1 implies $T = S_2$, contradiction.

Subcase 2.2. If d(u) = 1 and d(v) > 1 then either (i) all neighbors of v are of degree 1, or (ii) at least one neighbor of v, say x, is of degree greater than one. If (i) holds, then T is a star, contradiction. It (ii) holds, then x has a further neighbor y. The vertex y differs from u, and y is not adjacent to either v or u, because otherwise T would possess a cycle. Then in \overline{T} , u and y are adjacent and v and y are adjacent. Therefore, in \overline{T} there is a path (u, y, v) connecting u and v.

Subcase 2.3 is treated in a fully analogous manner.

Subcase 2.4. The vertex u has a neighbor x and the vertex v has a neighbor y. The vertices x and y are different and not adjacent, because otherwise T would possess a cycle. Then in \overline{T} , u is adjacent to y, v is adjacent to x, and x is adjacent to y. Consequently, in \overline{T} , the vertices u and v are joined but the path (u, y, x, v).

By this all possibilities have been exhausted, and the general validity of Lemma 7 has been verified.

Combining Lemma 7 with Lemma 5 we conclude:

Lemma 8. If T is any n-vertex tree, not isomorphic to S_n , then $\mu_1(T) < n$.

Combining Lemmas 6 and 8 we reach our main result:

Theorem 1. Among all trees with a fixed number of vertices the star has the greatest value of the greatest Laplacian eigenvalue.

Although elementary, the result of Theorem 1 seems not to be previously reported in the mathematical literature. Even worse, in a recent paper [1] the property $\mu_1 = n$ was erroneously attributed only to the complete graph, from which it would (erroneously) follow that the greatest value of the greatest Laplacian eigenvalue of any *n*-vertex tree is less than n.

References

- X. Li, The distribution of Laplacian eigenvalues of graphs, Graph Theory Notes New York 37 (1999) 25–27.
- [2] R. Merris, Laplacian matrices of graphs: A survey, Lin. Algebra Appl. 197–198 (1994) 143–176.
- [3] R. Merris, A survey of graph Laplacians, Lin. Multilin. Algebra **39** (1995) 19–31.
- [4] B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi, G. Chartrand, O. R. Ollermann, A. J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley, New York, 1991, pp. 871–898.