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Abstract. It is shown that among all trees with a fixed number of vertices the star has
the greatest value of the greatest Laplacian eigenvalue.

INTRODUCTION

Throughout this paper n denotes an integer greater than 1. All square matrices

are assumed to be of order n and all vectors are assumed to be column-vectors of

dimension n . If ~C is a column-vector, then ~Ct is its transpose, which is a row-vector

of dimension n . The sum of all the n components of the vector ~C is denoted by σ(~C) .

By I we denote the unit matrix and by J the square matrix whose all elements

are unity. By ~0 and ~j we denote the vector whose all components are respectively

equal to zero and unity.

Let G be a graph on n vertices. Label the vertices of G by v1, v2, . . . , vn . Then

the adjacency matrix A(G) of G is a square matrix of order n , defined so that its

(i, j)-entry is unity if the vertices vi and vj are adjacent and is zero otherwise.
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The number of first neighbors of a vertex v is the degree of this vertex and is

denoted by d(v) . Note that if vi is a vertex of the graph G , then d(vi) is equal to the

sum of the i-th row of the adjacency matrix A(G) .

Let D(G) be a square matrix whose diagonal entries are d(v1), d(v2), . . . , d(vn) and

the off-diagonal elements are zero.

Then L(G) = D(G)− A(G) is the Laplacian matrix of G .

The eigenvalues µ1, µ2, . . . , µn of L(G) are called the Laplacian eigenvalues of the

graph G and the respective eigenvectors ~C1, ~C2, . . . , ~Cn the Laplacian eigenvectors of

the graph G . Thus the equality L(G) ~Ci = µi
~Ci is obeyed for all i = 1, 2, . . . , n . We

label the Laplacian eigenvalues so that µ1 ≥ µ2 ≥ · · · ≥ µn .

Details of the theory of Laplacian spectra of graphs can be found in some of the

numerous reviews published on this topic [2, 3, 4]. Here we only mention that it is

always µn = 0 .

SOME AUXILIARY RESULTS

Lemma 1. The vector ~j is a Laplacian eigenvector of any n-vertex graph, corre-

sponding to the eigenvalue µn = 0 .

Proof. Because the sum of any row of L(G) is equal to zero, L(G)~j = ~0 = 0 ·~j .

In view of Lemma 1 we may choose ~Cn = ~j . In what follows we assume that the

Laplacian eigenvectors ~Ci , i = 1, 2, . . . , n − 1 , are orthogonal to ~Cn . If µn−1 6= 0

then this orthogonality condition is automatically satisfied. If however, µn−k = 0 for

some k ≥ 1 , then the requirement that the eigenvectors ~Cn−1, . . . , ~Cn−k are chosen

to be orthogonal to ~Cn must be additionally stipulated. Recall that µn−1 6= 0 if and

only if the graph G is connected [2, 3, 4].

From the fact that for any vector ~C the scalar product ~jt • ~C is equal to σ(~C) , it

follows:

Lemma 2. For any graph G and any 1 ≤ i ≤ n− 1 , σ(~Ci) = 0 .
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Denote by Ḡ the complement of the graph G and its Laplacian eigenvalues by

µ̄1 ≥ µ̄2 ≥ · · · ≥ µ̄n−1 ≥ µ̄n = 0 .

Lemma 3. If ~Ci is a Laplacian eigenvector of the graph G , then ~Ci is a Laplacian

eigenvector of the graph Ḡ .

Proof. For i = n Lemma 3 follows from Lemma 1. Assume, therefore, that

1 ≤ i ≤ n− 1 . Then, by Lemma 2, σ(~Ci) = 0 .

From the construction of the complement of a graph it is clear that L(G)+L(Ḡ) =

n I − J . Consequently,

L(Ḡ) ~Ci = [n I − J − L(G)] ~Ci

= n I ~Ci − J ~Ci − L(G) ~Ci

= n ~Ci − σ(~Ci)~j − µi
~Ci

= (n− µi) ~Ci

This not only proves that ~Ci is an eigenvalue of L(Ḡ) , but also shows the way in

which the Laplacian eigenvalues of G and Ḡ are related:

Lemma 4. For i = n , µ̄i = µi = 0 . For i = 1, 2, . . . , n− 1 , µ̄i = n− µn−i .

As a direct consequence of Lemma 4 we have

Lemma 5. If Ḡ is not connected, then µ1 = n . If Ḡ is connected, then µ1 < n .

The Lemmas 4 and 5 are previously known results [2, 3, 4].

THE MAIN RESULT AND ITS PROOF

A tree is a connected acyclic graph. The star Sn is the n-vertex tree in which

n− 1 vertices are of degree 1 and one vertex is of degree n− 1 .

Lemma 6. For any n ≥ 2 , the greatest Laplacian eigenvalue of the n-vertex star

is equal to n .
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Proof. The complement of the star Sn is disconnected (and consists of the com-

plete graph on n − 1 vertices and an isolated vertex). Thus Lemma 6 follows from

Lemma 5.

Lemma 7. If T is any n-vertex tree, not isomorphic to Sn , then T̄ is connected.

Proof. A graph is connected if there is a path between any two of its vertices.

Let u and v be two distinct vertices of T . We show that in T̄ there always exists a

path connecting u and v .

Case 1. Vertices u and v are not adjacent in T . Then these vertices are adjacent

in T̄ and are thus connected by an edge. We are done.

Case 2. Vertices u and v are adjacent in T . Then either

d(u) = 1 and d(v) = 1 (subcase 2.1), or

d(u) = 1 and d(v) > 1 (subcase 2.2), or

d(u) > 1 and d(v) = 1 (subcase 2.3), or

d(u) > 1 and d(v) > 1 (subcase 2.4).

Subcase 2.1 implies T = S2 , contradiction.

Subcase 2.2. If d(u) = 1 and d(v) > 1 then either (i) all neighbors of v are of

degree 1, or (ii) at least one neighbor of v , say x , is of degree greater than one. If (i)

holds, then T is a star, contradiction. It (ii) holds, then x has a further neighbor y .

The vertex y differs from u , and y is not adjacent to either v or u , because otherwise

T would possess a cycle. Then in T̄ , u and y are adjacent and v and y are adjacent.

Therefore, in T̄ there is a path (u, y, v) connecting u and v .

Subcase 2.3 is treated in a fully analogous manner.

Subcase 2.4. The vertex u has a neighbor x and the vertex v has a neighbor

y . The vertices x and y are different and not adjacent, because otherwise T would

possess a cycle. Then in T̄ , u is adjacent to y , v is adjacent to x , and x is adjacent

to y . Consequently, in T̄ , the vertices u and v are joined bu the path (u, y, x, v) .

By this all possibilities have been exhausted, and the general validity of Lemma

7 has been verified.

Combining Lemma 7 with Lemma 5 we conclude:
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Lemma 8. If T is any n-vertex tree, not isomorphic to Sn , then µ1(T ) < n .

Combining Lemmas 6 and 8 we reach our main result:

Theorem 1. Among all trees with a fixed number of vertices the star has the

greatest value of the greatest Laplacian eigenvalue.

Although elementary, the result of Theorem 1 seems not to be previously reported

in the mathematical literature. Even worse, in a recent paper [1] the property µ1 = n

was erroneously attributed only to the complete graph, from which it would (erro-

neously) follow that the greatest value of the greatest Laplacian eigenvalue of any

n-vertex tree is less than n .
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