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Abstract. Let G be a simple connected or disconnected graph which has exactly two main

eigenvalues. Let Gk = Gr k be the corresponding vertex deleted subgraph of G. If Gi and

Gj are cospectral in this paper we prove that their complementary graphs Gi and Gj are

also cospectral.

Let G be a simple graph of order n with vertex set V (G) = {1, 2, . . ., n}. The

spectrum of G consists of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of its ordinary adjacency

matrix A and is denoted by σ(G).

We say that an eigenvalue µ of G is main if and only if 〈j,Pj〉 = n cos2 α 6= 0, where

j is the main vector (with coordinates equal to 1) and P is the orthogonal projection

of the space Rn onto the eigenspace EA(µ). The quantity β = | cos α| is called the

main angle of µ.

Let Ak = [a
(k)
ij ] for any non-negative integer k. The number Nk of all walks of

length k in G equals sumAk, where sumM is the sum of all elements in a matrix M .
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According to [2], [3], the generating function HG(t) is defined by HG(t) =
+∞∑
k=0

Nkt
k.

Besides, it was proved in [2] that

HG(t) =
1

t




(−1)nPG

(− t + 1

t

)

PG

( 1

t

) − 1


 , (1)

where PG(λ) = |λI−A| is the characteristic polynomial of G and G its complementary

graph. We also note that HG(t) can be represented in the form

HG

( 1

λ

)
=

n1λ

λ− µ1

+
n2λ

λ− µ2

+ · · ·+ nkλ

λ− µk

, (2)

where ni = nβ2
i and n1 + n2 + · · · + nk = n; µi and βi (i = 1, 2, . . ., k) stand for the

main eigenvalues and main angles of G, respectively. Using this notation we can see

that Nm = n1µ
m
1 + n2µ

m
2 + · · ·+ nkµ

m
k for any non-negative integer m.

In [1] was proved that the graph G and its complement G have the same number

of main eigenvalues. We also know that λ1(G) + λ1(G) = n − 1 if and only if G is

regular. More generally, it was proved in [4] the following result.

Theorem 1. Let µ1, µ2, . . . , µk and µ1, µ2, . . . , µk be the main eigenvalues of the

graph G and its complement G, respectively. Then
k∑

i=1

(
µi + µi

)
= n− k.

Let G = G1 ∪ G2 be the union of two regular graphs G1 and G2 (not necessarily

connected) of order n1 and n2 and degree r1 and r2 (r1 6= r2), respectively. Using

the fact that HG(t) = HG1(t) + HG2(t), we have HG( 1
λ
) = n1λ

λ−r1
+ n2λ

λ−r2
, wherefrom we

obtain that G has two main eigenvalues r1 and r2.

Let r1, r2 denote the main eigenvalues of G and let n1 = nβ
2

1, n2 = nβ
2

2, where β1

and β2 are the main angles of r1 and r2, respectively. For the graph G let A
k

= [a
(k)
ij ]

for any non-negative integer k, where A is the adjacency matrix of G.

In the sequel, we shall use the following notations: a
(k,1)
ij = a

(k)
ij if i, j ∈ V (G1);

a
(k,2)
ij = a

(k)
ij if i, j ∈ V (G2); and ω

(k)
ij = a

(k)
ij , otherwise. We can see that ω

(k)
ij is

independent of the choice of vertices i and j. Consequently, in order to simplify the
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notation, we shall set ω
(k)
ij = ωk. Let

∆k,` =
sk

` + (−1)k−1(r` + 1)k

n`

+ n`

[ k−2∑
m=0

sm
` ωk−1−m

]
, (3)

where s` = (n` − 1)− r` and ` = 3− ` for ` = 1, 2. By induction on k we can easily

see that

a
(k,`)
ij = ∆k,` + (−1)k

k∑
m=0

(
k

m

)
a

(m)
ij

(
i, j ∈ V (G`)

)
, (4)

by understanding that a
(0)
ij = δij, where δij is the Kronecker delta symbol. Since the

proof of relation (4) is trivial it will be omitted. We now note that

2∑

`=1

[∑
i∈V`

∑
j∈V`

a
(k,`)
ij

]
+ 2n1n2ωk = n1r

k
1 + n2r

k
2 , (5)

for any non-negative integer k. By a straightforward calculation, it is not difficult to

show that the expression for

r1 =
(n1n− 2n1 + n) + (n− n1 − n1) r1 + (n1 − n1) r2

2n1 − n
(6)

and

r2 =
(n1n− 2n1 + n− n2) + (n1 − n1) r1 + (n− n1 − n1) r2

2n1 − n
, (7)

can be obtained by solving the following system of equations

n1s1 + n2s2 + 2n1n2 = n1r1 + n2r2 ,

r1 + r2 + r1 + r2 = n− 2 .

Observe that the first equation is obtained from relation (5) for k = 1, and the

second one follows from Theorem for k = 2. Besides, setting k = 2 in relation (5)

and using (3) and (4) we find that

[
n1s

2
1 + n2

1n2

]
+

[
n2s

2
2 + n2

2n1

]
+ 2n1n2ω2 = n1r

2
1 + n2r

2
2 ,

where ω2 = s1 + s2. Substituting r1 and r2 from (6) and (7) in the last relation, by a

straightforward calculation we obtain the following quadratic equation:

n2
1 − nn1 +

n1(n− n1)(r1 − r2)
2

(r1 − r2 + n)2 − 4n1(r1 − r2)
= 0 .
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Hence,

n1,2 =
n

2
± n2 + (n− 2n1)(r1 − r2)

2
√

∆
, (8)

where ∆ = (r1 − r2 + n)2 − 4n1(r1 − r2). Substituting n1 back into (6) and (7), we

obtain that

r1,2 =
n− 2− r1 − r2

2
±
√

∆

2
. (9)

Next, we have

n1ωk =
∑
i∈V1

[ ∑
j∈V1

a
(k−1,1)
ij

]
+ n1s2ωk−1 ;

n2ωk =
∑
i∈V2

[ ∑
j∈V2

a
(k−1,2)
ij

]
+ n2s1ωk−1 ,

from which an easy calculation yields nωk +
[
n1r2 + n2r1 + n

]
ωk−1 = Nk−1, where

Nk = sumA
k
. From the last difference equation, we get

ωk =
1

n

k−1∑
i=0

(−1)k−1−i
( ∇

n

)k−1−i

N i ,

where ∇ =
[
n1r2 + (n− n1) r1 + n

]
. Since Nk = n1 rk

1 + n2 rk
2 the previous relation is

transformed into

ωk =
(−∇)k−1

nk

k−1∑
i=0

(−1)i
[
n1

( n r1

∇
)i

+ n2

( n r2

∇
)i]

=
(−1)k−1

nk

2∑

`=1

n`

[∇k + (−1)k+1nk rk
`

∇+ n r`

]

=
∇(1) +∇(2)

nk
[∇+ nr1

][∇+ nr2

] ,

where ∇(1) = (−1)k−1n∇k
[∇ + n1 r2 + n2 r1

]
and ∇(2) = nk

[∇Nk + n r1 r2 Nk−1

]
.

We can easily verify that ∇(1) = 0 and

∇(2)

nk
= n1 r1

[∇+ n r2

]
rk−1
1 + n2 r2

[∇+ n r1

]
rk−1
2 ,

which results in

ωk =
[ n1 r1

∇+ n r1

]
rk−1
1 +

[ n2 r2

∇+ n r2

]
rk−1
2 .
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By a straightforward calculation we find that
[ n` r`

∇+ n r`

]
=

1

2

[
1± n− 2− r1 − r2√

∆

]
,

where ’+’ and ’−’ are related to ` = 1 and ` = 2, respectively. Using the last relation,

we finally have

ωk =
rk
1 − rk

2√
∆

(
k = 0, 1, 2, . . .

)
. (10)

With regard to (3) and (10), we notice that ∆k,` may be written in the following

form:

∆k,` =
sk

` + (−1)k−1(r` + 1)k

n`

+
n`√
∆

[rk
1 − sk

`

r1 − s`

− rk
2 − sk

`

r2 − s`

]
. (11)

Further, let S be any (possibly empty) subset of the vertex set V (G) and let GS be

the graph obtained from the graph G by adding a new vertex x (x /∈ V (G)), which is

adjacent exactly to the vertices from S.

For a square matrix M denote by {M} the adjoint of M and for any two subsets

X, Y ⊆ V (G) define 〈X,Y 〉 =
∑

i∈X

∑
j∈Y Aij, where A = [Aij] = {λI − A}. The

expression 〈X,Y 〉 is called the formal product of the sets X and Y , associated with

the graph G. For any two disjoint subsets X, Y ⊆ V (G) let X +Y denote the union of

X and Y . Then 〈X +Y, Z〉 = 〈X,Z〉+ 〈Y, Z〉 for any Z ⊆ V (G) and 〈X,Y 〉 = 〈Y, X〉
for any (not necessarily disjoint) X,Y ⊆ V (G). According to [5],

PGS
(λ) = PG(λ)

[
λ− 1

λ
FS

( 1

λ

)]
and 〈S, S〉 =

PG(λ)

λ
FS

( 1

λ

)
, (12)

where FS(t) =
+∞∑
k=0

d(k)tk and d(k) =
∑
i∈S

∑
j∈S

a
(k)
ij (k = 0, 1, 2, . . . ). More generally, we

proved in [6] that

〈X, Y 〉 =
PG(λ)

λ
FX,Y

( 1

λ

)
(X,Y ⊆ V (G)) , (13)

where FX,Y (t) =
+∞∑
k=0

e(k)tk and e(k) =
∑
i∈X

∑
j∈Y

a
(k)
ij (k = 0, 1, 2, . . . ). Setting S• = V (G)

we obtain that 〈S•, S•〉 = sum {λI−A} and FS•(t) = HG(t). We also note from (12)

that for any S ⊆ V (G),

PGS
(λ) = λPG(λ)− 〈S, S〉 , (14)

where 〈S, S〉 is the formal product associated with G.
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Let i be a fixed vertex from the vertex set V (G) and let Gi = G r i be its corre-

sponding vertex deleted subgraph.

Proposition 1 (Lepović [9]). Let G be a connected or disconnected regular graph

of order n and degree r. Then for any i ∈ V (G) and any S ⊆ V (G) we have:

(10) PGi (λ) =
(−1)n−1

λ + r + 1

[(
λ− r

)
PGi( λ )− PG( λ )

λ + r + 1

]
;

(20) PGT
(λ) = PGS

(λ)− n− 2 |S|
λ− r

PG(λ) ;

(30) PGS
(λ) =

(−1)n+1

λ + r + 1

[(
λ− r

)
PGS

( λ ) +

(
λ + r + 1− |S|)2

λ + r + 1
PG( λ )

]
,

where r = (n− 1)− r, λ = −λ− 1 and T = V (G)r S.

Let G be the union of any k (not necessarily connected) graphs G(1), G(2), . . . , G(k)

and let S = S1 ∪ S2 ∪ · · · ∪ Sk ⊆ V (G), where Si ⊆ V (G(i)) for i = 1, 2, . . ., k. In [7]

it was proved that

PGS
(λ) =

k∑
i=1

[
P

G
(i)
Si

(λ)
∏
j∈Vi

PG(j)(λ)
]
− (k − 1) λ

k∏
i=1

PG(i)(λ) , (15)

where Vi = {1, 2, . . ., k}r{i}. Using the last relation and Proposition (20), we easily

obtain the following result.

Proposition 2. Let G be the union of k regular graphs G1, G2, . . ., Gk of order

n1, n2, . . . , nk and degree r1, r2, . . ., rk, respectively. Then for any S =
k⋃

m=1

Sm ⊆
V (G), we have

PGT
(λ) = PGS

(λ)−
[ k∑

m=1

nm − 2 |Sm|
λ− rm

]
PG(λ) , (16)

where T = V (G)r S and Sm ⊆ V (Gm) for m = 1, 2, . . ., k.

Let M(G) = {µ1, µ2, . . ., µk} be the set of all main eigenvalues of a graph G of

order n. As is known, if λ ∈ σ(G) rM(G) then −λ − 1 ∈ σ( G ) rM(G), which

provides the following relation

[ k∏
m=1

(
λ + µm + 1

)]
PG (λ) =

[ k∏
m=1

(
λ− µm

)]
(−1)nPG(−λ− 1) , (17)
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where µm ∈M(G) for m = 1, 2, . . ., k.

Further, let x1,x2, . . . ,xn denote a complete set of mutually orthogonal normalized

eigenvectors of the adjacency matrix A corresponding to the eigenvalues λ1, λ2, . . ., λn

of G, respectively. Let X = [x1,x2, . . . ,xn] = [xij] denote the orthogonal matrix of

eigenvectors x1,x2, . . . ,xn. Besides, let Λ = diag (λ1, λ2, . . . , λn) be the diagonal

matrix of the eigenvalues of G. Since X−1 = X> and Ak = X Λk X>, where X> is

the transpose of X, we have

a
(k)
ij =

n∑
ν=1

xiν xjν λk
ν (i, j = 1, 2, . . ., n) , (18)

for any non-negative integer k.

Proposition 3. Let G be the union of two regular graphs G1 and G2 of order n1

and n2 and degree r1 and r2, respectively. Then for any S = S1 ∪S2 ⊆ V (G) we have

(−1)n+1PGS
(λ) =

[
1−

2∑
m=1

nm

λ + rm + 1

]
PGS

( λ ) +
[ 2∑

m=1

∣∣Sm

∣∣
λ + rm + 1

]2

PG( λ )

+
[
1−

2∑
m=1

2
∣∣Sm

∣∣
λ + rm + 1

]
PG( λ ) ,

where λ = −λ− 1 and Sm ⊆ V (Gm) for m = 1, 2.

Proof. Using (12) and (18) we have FS( 1
λ
) = λ

[ n∑
ν=1

dν

λ−λν

]
where dν =

∑
i∈S

∑
j∈S

xiνxjν .

Then we easily obtain

n∑
i=1

di

λ + λi + 1
=

(
λ + 1

)
+

PGS
( λ )

PG(λ )
. (19)

Next, denote the formal generating function of GS by FS(t) =
∑+∞

k=0 d
(k)

tk, where

d
(k)

=
∑

i∈S

∑
j∈S a

(k)
ij . Since 〈S, S〉 = 〈S1, S1〉+2 〈S1, S2〉+〈S2, S2〉 and

√
∆ = r1−r2,

using equations (4), (10), (11), (13), (18), we get
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FS

( 1

λ

)
= λ

[ 2∑
m=1

∣∣Sm

∣∣2
(
λ− sm

)(
λ + rm + 1

)
]

+ λ
[ n∑

i=1

di

λ + λi + 1

]

+
λ(

λ− r1

)(
λ− r2

)
[ 2∑

`=1

n`

∣∣S`

∣∣2
λ− s`

]
+

2
∣∣S1

∣∣∣∣S2

∣∣λ(
λ− r1

)(
λ− r2

) .

In view of (12), (14), (17), (19) and the previous relation, a straightforward calcu-

lation yields

(−1)n+1PGS
(λ) =

[( 2∑

`=1

n`

∣∣S`

∣∣2
λ− s`

)
+ 2

∣∣S1

∣∣∣∣S2

∣∣
] PG( λ )(

λ + r1 + 1
)(

λ + r2 + 1
)

+

(
λ− r1

)(
λ− r2

)
(
λ + r1 + 1

)(
λ + r2 + 1

)
[
PG( λ ) + PGS

( λ ) +

+
2∑

m=1

∣∣Sm

∣∣2PG( λ )(
λ− sm

)(
λ + rm + 1

)
]
.

Since (λ1 − s1)(λ − s2) − (λ − r1)(λ − r2) = n1n2 the last relation is transformed

in the form

(−1)n+1PGS
(λ) =

[
1−

2∑
m=1

nm

λ + rm + 1

] (
PGS

( λ ) + PG( λ )
)

+
[ 2∑

m=1

∣∣Sm

∣∣
λ + rm + 1

]2

PG( λ ) .

Finally, since PGS
(λ) = PGT

(λ) where T = T1∪T2 and Tm = V (Gm)rSm, applying

(16) to the previous relation we obtain that

(−1)n+1PGS
(λ) =

[
1−

2∑
m=1

nm

λ + rm + 1

] [( 2∑
m=1

nm − 2
∣∣Sm

∣∣
λ + rm + 1

)
PG( λ ) +

+ PGS
( λ ) + PG( λ )

]
+

[ 2∑
m=1

nm −
∣∣Sm

∣∣
λ + rm + 1

]2

PG( λ ) ,

from which we find the proof.

Let G be a graph with k main eigenvalues µ1, µ2, . . ., µk and let (x
(m)
1 , x

(m)
2 , . . . , x

(m)
n )

denote the eigenvector of µm so that
n∑

i=1

x
(m)
i =

√
nm.
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Proposition 4 (Lepović [10]). Let G be a connected or disconnected graph of

order n with exactly two main eigenvalues µ1 and µ2. Then x
(1)
i = deg(i)−µ2√

n1 ( µ1−µ2)
for

i = 1, 2, . . ., n.

Proposition 5 (Lepović [10]). Let G be any connected or disconnected graph of

order n with k main eigenvalues µ1, µ2, . . ., µk. Then for any i ∈ V (G) and any

S ⊆ V (G) we have:

(−1)n+1PGT
(λ) =

[
1 +

k∑
m=1

nm

λ− µm

](
PGS

(λ) + PG(λ)
)

+
[ k∑

m=1

∣∣Sm

∣∣
λ− µm

]2

PG(λ) ;

(−1)n+1PGS
(λ) =

[
1 +

k∑
m=1

nm

λ− µm

]
PGS

(λ) +
[
1 +

k∑
m=1

∣∣Sm

∣∣
λ− µm

]2

PG(λ) ;

(−1)n−1PGi (λ) =
[
1 +

k∑
m=1

nm

λ− µm

]
PGi(λ)−

[ k∑
m=1

∣∣I(i)m

∣∣
λ− µm

]2

PG(λ) ,

where λ = −λ− 1 and T = V (G)rS; |Sm| = √
nm

[ ∑
i∈S

x
(m)
i

]
and I(i)m | = √

nm x
(m)
i .

Theorem 2. Let G be a connected or disconnected graph with exactly two main

eigenvalues and let PGi(λ) = PGj(λ). Then PGi (λ) = PGj (λ).

Proof. According to Proposition it suffices to show that |I(i)1 | = |I(j)1 | and |I(i)2 | =
|I(j)2 |. We note that |I(i)1 | + |I(i)2 | = |I(j)1 | + |I(j)2 | (see also [10]). Since deg(i) = deg(j)

from Proposition it follows that |I(i)1 | = |I(j)1 |, which provides the proof.

Further, for any S ⊆ V (G) denote by GS,T the graph obtained from G by adding

two new non-adjacent vertices x, y, so that x is adjacent exactly to the vertices from

S, and y is adjacent exactly to the vertices from T = V (G)r S. Besides, let GṠ,Ṫ be

the overgraph of G obtained by adding two new adjacent vertices x, y, so that x and

y are adjacent in G exactly to the vertices from S and T , respectively.
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Theorem 3 (Lepović [7]). Let G be any graph of order n. Then for any S ⊆ V (G)

we have:

PGS,T
(λ) = λPGS

(λ) + (−1)nPGS
(−λ− 1)− (λ2 + λ) PG(λ) +

+ (−1)n(λ + 1) PG (−λ− 1) + (λ + 1) PGT
(λ) ;

PGṠ,Ṫ
(λ) = (λ− 1) PGS

(λ) + (−1)nPGS
(−λ− 1)− (λ2 − λ) PG(λ) +

+ (−1)nλPG (−λ− 1) + λPGT
(λ) ,

where T = V (G)r S.

Proposition 6. Let G be a connected or disconnected graph with k main eigenval-

ues µ1, µ2, . . ., µk. Then for any S ⊆ V (G), we have:

PGS,T
(λ) =

[
2λ−

k∑
m=1

nm

λ− µm

]
PGS

(λ)−
[
λ−

k∑
m=1

∣∣Sm

∣∣
λ− µm

]2

PG(λ) ;

PGṠ,Ṫ
(λ) =

[
2
(
λ− 1

)−
k∑

m=1

nm

λ− µm

]
PGS

(λ)−
[(

λ− 1
)−

k∑
m=1

∣∣Sm

∣∣
λ− µm

]2

PG(λ) ,

where T = V (G)r S and |Sm| = √
nm

[ ∑
ı∈S

x
(m)
i

]
for m = 1, 2, . . ., k.

Proof. Using Proposition 5 and Theorem 3 by an easy calculation we obtain the

required statement.
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