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Abstract. Let G be a simple connected or disconnected graph which has exactly two main
eigenvalues. Let GF = G\ k be the corresponding vertex deleted subgraph of G. If G* and
GY are cospectral in this paper we prove that their complementary graphs G and Gij are

also cospectral.

Let G be a simple graph of order n with vertex set V(G) = {1,2,...,n}. The
spectrum of GG consists of the eigenvalues \y > Ay > --- > A, of its ordinary adjacency
matrix A and is denoted by o(G).

We say that an eigenvalue p of G is main if and only if (j, Pj) = ncos® a # 0, where
j is the main vector (with coordinates equal to 1) and P is the orthogonal projection
of the space R™ onto the eigenspace E4(p). The quantity § = |cosa| is called the
main angle of .

Let AF = [al(f)] for any non-negative integer k. The number Ny of all walks of

length % in G equals sum A*, where sum M is the sum of all elements in a matrix M.
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+o0
According to [2], [3], the generating function Hg(t) is defined by Hg(t) = > Ntk

k=0
Besides, it was proved in [2] that

Holt) = -1 )

where Pg(\) = |\ — A| is the characteristic polynomial of G and G its complementary
graph. We also note that Hg(t) can be represented in the form

A To A NEA
= + 4+ , 2
)\) A= A= g A — [k 2)

where n; = nf3? and ny +ny + - +mn, =n; u; and G; (1 = 1,2,..., k) stand for the
main eigenvalues and main angles of GG, respectively. Using this notation we can see
that N, = nqp" + nops + - - - + ngp’ for any non-negative integer m.

In [1] was proved that the graph G and its complement G have the same number

of main eigenvalues. We also know that A\;(G) + A\ (G) = n — 1 if and only if G is

regular. More generally, it was proved in [4] the following result.

Theorem 1. Let juy, pio, ..., and fiy, [y, - .., i be the main eigenvalues of the
_ k
graph G and its complement G, respectively. Then (,uz- + /_Li) =n—k.
i=1

Let G = G U G5 be the union of two regular graphs G; and Gs (not necessarily
connected) of order n; and ny and degree m and ry (r; # 19), respectively. Using

the fact that He(t) = He, (t) + He, (t), we have Hg(3) = A”_;;\l + 22 wherefrom we

A—rgy’?

obtain that GG has two main eigenvalues r; and 7s.

Let 71, 75 denote the main eigenvalues of G and let 77, = nB?, Ny = nﬁg, where 3,

(k)]

and (3, are the main angles of 7; and 75, respectively. For the graph G let A= [Gij

for any non-negative integer k, where A is the adjacency matrix of G.

V=a®ifij e v(Gy):

ij

_g;,z) = dz(f) if 1,7 € V(Gq); and wg?) = ng), otherwise. We can see that wi(f) is

In the sequel, we shall use the following notations: Eg-“

S

independent of the choice of vertices i and j. Consequently, in order to simplify the
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notation, we shall set wg?) = wy. Let
By = SRV DTSR L] 3)
= ng 50 Wk—1-m | ,
k£ ny ? — ¢ Wk—1

where sy = (ny, — 1) — ry and {=3—/(for { =1,2. By induction on k we can easily

see that

k
EN .
m=0

by understanding that al(?) = 0;;, where 0;; is the Kronecker delta symbol. Since the

proof of relation (4) is trivial it will be omitted. We now note that

2
Z [Z Z az(f’é)] + 2nynowy = Ty + T (5)

(=1 i€V, jeV,
for any non-negative integer k. By a straightforward calculation, it is not difficult to
show that the expression for

(ﬁln—Qﬁl —|—n) + (n—m —ﬁl)rl -+ (n1 —ﬁl)TQ
2ﬁ1—n

r =

(6)

and
(ﬁln—Zﬁl—l—n—nQ)—i—(nl —ﬁl)rl—i-(n—nl —ﬁl)T’Q
Qﬁl —n

, (7)

72 -
can be obtained by solving the following system of equations
n181 + NaSa + 2’/11’/12 =TT + NaTa,
ri+ro+ri+ra=n—2.

Observe that the first equation is obtained from relation (5) for £ = 1, and the
second one follows from Theorem for k& = 2. Besides, setting k = 2 in relation (5)
and using (3) and (4) we find that

[nls% + n%nﬂ + [ngsg + n%nl} + 2nnawy = ﬁlﬁ + m?g ,

where wy = s1 + So. Substituting 7; and 75 from (6) and (7) in the last relation, by a
straightforward calculation we obtain the following quadratic equation:

A2 — niy + na(n —m)(r — )’
! ! (ri —ro +n)% —4ny(ry — o)

=0.
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Hence,
2
_9 _
Ty = non + (n—2ny)(ry —ra)

. s , ®

where A = (r; — ro + n)? — 4ny(r; — ry). Substituting 7; back into (6) and (7), we

obtain that

— 2 - A
7172 = I 2T1 2 :|: \/2_ . (9)

Next, we have

nwy = Z [Z 51(?_1’1)] + n1SoWk-1;

i€eVy jewn;

Nowy, = Z [Z 51(571’2)] + ngsiwg—1,

icVo  jEV:

from which an easy calculation yields nwy + [nlrg + nory + n} wi_1 = Nj_1, where

- —k . .
N =sum A . From the last difference equation, we get

=

1

1 k= , k—1—i__
Wi = — (—1)]611(2) Ny,

n

Il
o

i
where V = [nlrg +(n—ny)r + n} . Since N = m, 7% 4+ M, 75 the previous relation is

transformed into

= () ()

- [V’f + (—1)Ftnt Ff}
¢ V +n7

I
—
|
—_
ipv\-;r
L
(]

(=1

vl v@
N ’I"Lk [V + nFl} [V + nFQ} ’

where V(l) == (—1)’“‘1nd [V + ﬁl ?2 + ﬁz Fl} and V(Q) = nk [Vﬁk + n?l 72 Nk—l] .
We can easily verify that V(Y = 0 and

v
7;;::ﬁlﬂ[V—%nFﬂF?J—%ﬁQEJV—%nFJFQJ,

which results in
nr ]—k—l [ NaTo ]Fk—l

W = |=0—— e
b [V+nﬂ 1 V +n',
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By a straightforward calculation we find that

e ]!

= |1+
V—l—nm [

n—2—r1—r2]
2 Y

VA

where '+’ and '’ are related to £ = 1 and ¢ = 2, respectively. Using the last relation,

we finally have

T — 7%
Wi = A (k=0,1,2,...). (10)

With regard to (3) and (10), we notice that Ag, may be written in the following

form:

Apy = DR I | V}f —% a e 3?] ' (11)
ny VA
Further, let S be any (possibly empty) subset of the vertex set V(G) and let Gg be

THL—8 To— 58

the graph obtained from the graph G by adding a new vertex x (x ¢ V(G)), which is
adjacent exactly to the vertices from S.

For a square matrix M denote by {M} the adjoint of M and for any two subsets
X,Y CV(G) define (X,Y) = >,y > ey Ayj, where A = [Ayj] = {A\ — A}. The
expression (X,Y') is called the formal product of the sets X and Y, associated with
the graph G. For any two disjoint subsets X, Y C V(G) let X +Y denote the union of
XandY. Then (X+Y,7Z) = (X, Z)+ (Y, Z) forany Z C V(G) and (X,Y) = (Y, X)
for any (not necessarily disjoint) X,Y C V(G). According to [5],

Pag(A) = Pa(X) [)\ - %SS(%)} and (S,S9) = PG)E)‘>

§s(y).  (12)

+oo

where Fs(t) = Y d®tk and d® = 3 ag-“) (k=0,1,2,...). More generally, we
k=0 i€s jes

proved in [6] that

Pa(A 1
(X,Y) = G)E ) SX,Y(X) (X, Y CV(G)), (13)
where §x v (t) = iozo etk and e®) = S 3 ag-“) (k=0,1,2,...). Setting S* = V(G)

k=0 I€EX jEY

we obtain that (S®,S®) = sum {\ — A} and §ge(t) = He(t). We also note from (12)
that for any S C V(G),
Pas(A) = APa(A) = (5, 9), (14)

where (S, .S) is the formal product associated with G.
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Let i be a fixed vertex from the vertex set V(G) and let G = G \ i be its corre-
sponding vertex deleted subgraph.

Proposition 1 (Lepovi¢ [9]). Let G be a connected or disconnected reqular graph
of order n and degree r. Then for any i € V(G) and any S C V(G) we have:
- Ny PN
1) P ()= (0 =7) Pa(X) - E
() G’() )\—|—T+1( T)G<) )\_|_7a+1’
n—2|9|

(2°) Par(\) = Pag(A) — N, Pa(N);

—1)nt+t — r —15])?
®) P )= T () pey () L)

whereT=(n—1)—7r, A=—-A—1and T =V (G) \ S.

Pa(M)].

Let G be the union of any & (not necessarily connected) graphs GV, G® ... G®
and let S = S, US,U---US, C V(G), where S; C V(GW) fori = 1,2,...,k. In [7]

it was proved that

Pos(0) = [P oo ) TT Pao )| - k- DM Peo ). (15)

=1 JEV;
where V; = {1,2,...,k}~ {i}. Using the last relation and Proposition (2°), we easily

obtain the following result.

Proposition 2. Let G be the union of k regular graphs G1,Gs, ..., Gy of order
k
ni,No, ..., ng and degree 1,79, . .., 1y, respectively. Then for any S = |J Sn C
V(G), we have
1 = 2|Snl

)\—rm

Par(\) = Pes () = | Pa()), (16)

where T =V (G) N S and S,, CV(Gy,) form=1,2,.. k.

Let M(G) = {p1, pa, - - -, pix:} be the set of all main eigenvalues of a graph G of
order n. As is known, if A € o(G) ~ M(G) then —\ — 1 € o(G) ~ M(G), which

provides the following relation

[f_[ )\—i-um—i-l] [f_{ A— ,um] D"Pa(—X—1), (17)
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where i, € M(G) for m =1,2,.. k.

Further, let xq, X2, ..., X, denote a complete set of mutually orthogonal normalized
eigenvectors of the adjacency matrix A corresponding to the eigenvalues A\, Ao, ..., A,
of G, respectively. Let X = [x1,Xa2,...,Xn] = [2;;] denote the orthogonal matrix of
eigenvectors Xi,Xa,...,X,. DBesides, let A = diag (A, A2, ..., \;) be the diagonal
matrix of the eigenvalues of G. Since X' = X and A* = X A* X7 where X is

the transpose of X, we have
=z N (Lj=1,2,...n), (18)
v=1

for any non-negative integer k.
Proposition 3. Let G be the union of two reqular graphs Gy, and Gs of order n,
and ny and degree 11 and ry, respectively. Then for any S = S1U Sy C V(G) we have

2

)= [1- 3 ] e 0+ [ L]

2 S _
[ 2 ] o)

where A= — X —1 and S,, C V(G,,) form =1,2.

Proof. Using (12) and (18) we have Fs(+) = A [ 3 2 } whered, = > > %),
v=1 i€S jES
Then we easily obtain

\)

ZA+)\+1 (A+1)+ };f;(% (19)

~—

Next, denote the formal generating function of Gs by Sg(t) = >0 E(k)tk, where

0 _ s des ” . Since (S, S) = (Sy, S1)+2 (S, S5)+(Sy, So) and VA =7 —T,,
using equations (4), (10), (11), (13), (18), we get
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2 n
_ S’ d;
A[z:l —Sm )\"‘Tm"'l)]_l—)\[;)\‘i‘)\i"{'l}
. A [ & né\sg\z} 2|51 [|Sa| A
A=T)(A=T) L= A =5 A=T)(A=T) "

In view of (12), (14), (17), (19) and the previous relation, a straightforward calcu-
lation yields

Pa(X)
A+ri+1)A+r+1)

2
i JEEAIEA]

(1" P, ) = (X ";‘_S

A=71) (A —T2) - _
(/\+r1+1)(>\+r2+1) (PR + Pos(R)+

S 510

+mz1 A= Sm) )\+rm 1)}

Since (A1 — $1)(A — s2) — (A = T1)(A — T2) = nyng the last relation is transformed

in the form
2

(—1)" 1 Pg, (1) = [1 - Z #

[ o,

Finally, since Pg; (\) = Pg,.(\) where T' = TyUT; and T, = V(G}) \ S, applying

| (Pos(3) + Pa(X))

(16) to the previous relation we obtain that
n 2 |Sm —
(=)™ Pz (V) = [1_Zz\+rm+1] [(Z )\+7“m|—|—1|) Pa(A)+

+ Pag(X) + Pe(X)] + [Zﬁrﬁ‘l] Pa(X).

from which we find the proof.

Let G be a graph with k& main eigenvalues p1, pto, . . ., . and let (xgm), mgm), e xq(lm))

n
denote the eigenvector of p,, so that > xgm) = /Nm.
i=1
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Proposition 4 (Lepovi¢ [10]). Let G be a connected or disconnected graph of
. . . 1 deg(¢)—
order n with exactly two main eigenvalues py and po. Then Z‘Z( ) = % for

1=1,2,....n.

Proposition 5 (Lepovi¢ [10]). Let G be any connected or disconnected graph of
order n with k main eigenvalues py, fia, ..., pg. Then for any i € V(G) and any
S C V(G) we have:

(—1)" P (V) = [1+ mZ ] (Pas () + Pa(n) + [mz A‘?ﬂmf&;w,
(~1)" Pz () = 1+ Z | P+ 14 Z A‘%JPM ,
(~1)" P () = |1+ Z | Peh) — [i_ A‘ﬁ‘m]%m ,

where A\ =—X—1 and T =V (G)\S; |Sp| = /itm [ 2 xﬁ’”’} and 19| = /iy ™.
i€S

Theorem 2. Let G be a connected or disconnected graph with exactly two main

eigenvalues and let Pgi(\) = Pgi(X). Then Pez (A) = P57 (A).

Proof. According to Proposition it suffices to show that [I{”| = |]I§j)| and |]1§)| =
I197). We note that 1] + |I| = 19| + [I¥| (see also [10]). Since deg(i) = deg(5)
from Proposition it follows that |I{”| = [IY”|, which provides the proof.

Further, for any S C V(G) denote by Ggr the graph obtained from G by adding
two new non-adjacent vertices x,y, so that x is adjacent exactly to the vertices from
S, and y is adjacent exactly to the vertices from T'= V(G) \ S. Besides, let Gy be
the overgraph of GG obtained by adding two new adjacent vertices x,y, so that x and

y are adjacent in G exactly to the vertices from S and T, respectively.
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Theorem 3 (Lepovié¢ [7]). Let G be any graph of order n. Then for any S C V(Q)

we have:
Pagr(\) = APas(A) + (=1)"Pgg (A = 1) = (A + A) Pa(\) +
+(=1)"A\+ 1) Ps(=A—1)+ (A+1) Pg,(N);

Pq.

5r

A)=(A—1) Pog(N) + (=1)" Pz (=X — 1) = (A* = X) Pa(A) +
+ (=1)"APs(=A—=1)+ AP (N),
where T =V (G) \ S.

Proposition 6. Let G be a connected or disconnected graph with k main eigenval-

ues iy, {2, - - ., . Then for any S C V(G), we have:

PGS,T<A>=[2A—iA””; }Pasw—[A—i Sl 12 po;

m=1 T Pm m=1

k

Py = [20-1) = 352 P = (-1 - X2 52 R,
whereT:V(G)\Sand|Sm|:\/m[Zx }form—l? Lk

Proof. Using Proposition 5 and Theorem 3 by an easy calculation we obtain the

required statement.
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