Kragujevac J. Math. 23 (2001) 75-83.

WEIGHTED HARDY'S INEQUALITIES WITH MIXED NORM II

James Adedayo Oguntuase

Department of Mathematical Sciences, University of Agriculture Abeokuta, Nigeria

(Received December 20, 1999)

Abstract. We obtain in this paper conditions on the nonnegative weight functions u(x) and v(x) which ensure an inequality of the form

$$\left(\int_{-\infty}^{\infty} | \ v(x) f(x) \ |^{(1-\frac{1}{r})p} \ dx \right)^{\frac{1}{(1-\frac{1}{r})p}} \ \leq \ C \left(\int_{-\infty}^{\infty} | \ u(x) (Tf)(x) \ |^{(1-\frac{1}{s})q} \ dx \right)^{\frac{1}{(1-\frac{1}{s})q}},$$

where T is either I or I^* , and C is a constant depending on (k, p, q, r, s) but independent of f.

INTRODUCTION

Let $k(x,y) \ge 0$ be defined on $\triangle = \{(x,y) \in \Re^2 : y < x\}$ and define the operator T and its dual T^* by

$$(If)(x) = \int_{-\infty}^{x} k(x,y)f(y)dy, \quad (I^*f)(x) = \int_{x}^{\infty} k(y,x)f(y)dy.$$
 (1)

Let u(x), v(x) and f(x) denote the nonnegative extended real valued measurable functions on $(0, \infty)$. We shall give conditions on the nonnegative weight functions

u(x) and v(x) in terms of the kernel k(x, y) and the nonnegative real numbers p, q, r and s which guarantees an inequality of the form

$$\left(\int_{-\infty}^{\infty} |v(x)f(x)|^{(1-\frac{1}{r})p} dx\right)^{\frac{1}{(1-\frac{1}{r})p}} \leq C\left(\int_{-\infty}^{\infty} |u(x)(Tf)(x)|^{(1-\frac{1}{s})q} dx\right)^{\frac{1}{(1-\frac{1}{s})q}}$$
(2)

where T is either I or I^* , and C is constant independent of f.

The purpose of this paper is to generalize some of the results obtained in in [1, 2]. Throughout this paper, we shall let p' denote the conjugate index of p and is defined by $\frac{1}{p} + \frac{1}{p'} = 1 - \frac{1}{r}$, r > 1. The conjugate q' of q is defined by $\frac{1}{q} + \frac{1}{q'} = 1 - \frac{1}{s}$, s > 1. Also C is a constant which may be different at difference occurences.

THE MAIN RESULT

We shall need the following Definitions and Lemmas in the proof of our main results.

Definition 1. Let $k(x,y) \geq 0$, $(x,y) \in \triangle$. Let p,q < 1, $p \neq 0$, $q \neq 0$ and $\beta = 0$ or 1. Then for any real number a we define K and J by

$$K_{\beta}(a) = \left(\int_{-\infty}^{a} k(a,z)^{(1-1/s)\beta q} u(z)^{(1-1/s)q} dz \right)^{\frac{1}{(1-1/s)q}} \times \left(\int_{-\infty}^{a} K(a,z)^{(1-1/r)(1-\beta)p'} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)p'}}, \tag{3}$$

$$J_{\beta}(a) = \left(\int_{a}^{\infty} k(z,a)^{(1-1/s)\beta q} v(z)^{(1-1/s)q} dz \right)^{\frac{1}{(1-1/s)q}} \times \left(\int_{a}^{\infty} K(z,a)^{(1-1/r)(1-\beta)p'} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)p'}}.$$
 (4)

Definition 2. A function f is said to be T-admissible, respectively T^* admissible if (Tf)(x), respectively $(T^*f)(x)$, is finite for $0 < x < \infty$.

Lemma 1. Let $g(x,y) \ge 0$. Suppose $1 \le p \le \infty$ and $b > -\infty$, then

$$\left(\int_{b}^{\infty} \left[\int_{b}^{x} g(x,y)dy\right]^{p} dx\right)^{1/p} \leq \int_{b}^{\infty} \left(\int_{y}^{\infty} g(x,y)^{p} dx\right)^{1/p} dy \tag{5}$$

and

$$\left(\int_{b}^{\infty} \left[\int_{x}^{\infty} g(x,y)dy\right]^{p} dx\right)^{1/p} \leq \int_{b}^{\infty} \left(\int_{b}^{y} g(x,y)^{p} dx\right)^{1/p} dy. \tag{6}$$

If p < 1, inequalities (5) and (6) are reversed.

Proof. See [3, Theorem 202, p. 148].

Lemma 2. Let $k(x,y) \ge 0$, $(x,y) \in \triangle$. Let h(y) be defined by

$$h(y) = \left(\int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)^{2}pp'}}.$$
 (7)

Suppose $0 < (1-1/s)q \le (1-1/r)p < 1$, $0 < q \le p < 1$ and $J_1(a)$ is nondecreasing. Then

$$J_1(y) \left(\int_y^\infty k(z,y)^{(1-1/s)q} u(z)^{(1-1/s)q} dz \right)^{-\frac{1}{(1-1/s)q}} = h(y)^{(1-1/r)p}$$
(8)

Proof. By (4) we have $J_1(y) \left(\int_y^\infty k(z,y)^{(1-1/s)q} u(z)^{(1-1/s)q} dz \right)^{-\frac{1}{(1-1/s)q}}$

$$= \left(\int_{y}^{\infty} k(z,y)^{(1-1/s)q} v(z)^{(1-1/s)q} dz \right)^{\frac{1}{(1-1/s)q}} \left(\int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)p'}}$$

$$\times \left(\int_{y}^{\infty} k(z,y)^{(1-1/s)q} u(z)^{(1-1/s)q} dz \right)^{-\frac{1}{(1-1/s)q}}$$

$$= \left(\int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)p'}}$$

$$= h(x)^{(1-1/r)p}.$$

This completes the proof of the Lemma.

Lemma 3. Let $y \in \Re$, h(y) as in Lemma 2. If $0 < (1 - 1/s)q \le (1 - 1/r)p < 1$, and $0 < q \le p < 1$, then

$$\left(\int_{-\infty}^{x} v(y)^{-(1-1/r)p'} \left(\int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz \right)^{-\frac{1}{(1-1/r)p}} dy \right)^{\frac{1}{(1-1/r)p'}}$$

$$= (1 - 1/r)^{\frac{1}{(1 - 1/r)p'}} (-p')^{\frac{1}{(1 - 1/r)p'}} h(x)^{\frac{p}{p'}}. \tag{9}$$

Proof. By Lemma 2, we have

$$\int_{-\infty}^{x} v(y)^{-(1-1/r)p'} \left(\int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz \right)^{-\frac{1}{(1-1/r)p}} dy$$

$$= (1 - 1/r) p' \left(\int_{-\infty}^{x} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)p'}}$$

$$= (1 - 1/r) (-p') \left(\int_{x}^{\infty} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)p'}}$$

$$= (1 - 1/r) (-p') h(x)^{(1-1/r)p}.$$

Therefore

$$\left(\int_{-\infty}^{x} v(y)^{-(1-1/r)p'} \left(\int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz\right)^{-\frac{1}{(1-1/r)p'}} dy\right)^{\frac{1}{(1-1/r)p'}} \\
= \left(1 - 1/r\right)^{\frac{1}{(1-1/r)p'}} \left(-p'\right)^{\frac{1}{(1-1/r)p'}} h(x)^{\frac{p}{p'}}$$

and the proof is complete.

Lemma 4. Let T be the integral operator defined in (1) and let $k(x,y) \ge 0$, $(x,y) \in \triangle$. Suppose $0 < (1-1/s)q \le (1-1/r)p < 1$ and $1 < q \le p < 1$. Then

$$[(Tf)(x)]^{(1-1/s)} \ge (1 - 1/r)^{\frac{(1-1/s)q}{(1-1/r)p'}} (-p')^{\frac{(1-1/s)q}{(1-1/r)p'}} \times \left(\int_{-\infty}^{x} k(x,y)^{(1-1/r)p} \left[f(y)v(y)h(y) \right]^{(1-1/r)p} dy \right)^{\frac{(1-1/s)q}{(1-1/r)p}} h(x)^{\frac{(1-1/s)pq}{p'}}.$$
(10)

Proof. Using the definition of T we have,

$$(Tf)(x) = \int_{-\infty}^{x} k(x, y) f(y) dy$$

=
$$\int_{-\infty}^{x} k(x, y) f(y) v(y) h(y) v(y)^{-1} h(y)^{-1} dy.$$

By Holder's inequality, we have

$$(Tf)(x) \geq \left(\int_{-\infty}^{x} k(x,y)^{(1-1/r)p} \left[f(y)v(y)h(y)\right]^{(1-1/r)p} dy\right)^{\frac{1}{(1-1/r)p}}$$

$$\times \left(\int_{-\infty}^{x} v(y)^{-(1-1/r)p'} h(y)^{-(1-1/r)p'} dy \right)^{\frac{1}{(1-1/r)p'}} \\
= \left(\int_{-\infty}^{x} k(x,y)^{(1-1/r)p} \left[f(y)v(y)h(y) \right]^{(1-1/r)p} dy \right)^{\frac{1}{(1-1/r)p}} \\
\times \left(\int_{-\infty}^{x} v(y)^{-(1-1/r)p'} \left(\int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz \right)^{-\frac{1}{(1-1/r)p}} dy \right)^{\frac{1}{(1-1/r)p'}}$$

By Lemma 3, we have

$$(Tf)(x) \ge (1 - 1/r)^{\frac{1}{(1 - 1/r)p'}} \times (-p')^{\frac{1}{(1 - 1/r)p'}} \left(\int_{-\infty}^{x} k(x, y)^{(1 - 1/r)p} \left[f(y)v(y)h(y) \right]^{(1 - 1/r)p} dy \right)^{\frac{1}{(1 - 1/r)p}} h(x)^{\frac{p}{p'}}.$$

Hence

$$[(Tf)(x)]^{(1-1/s)} \ge (1-1/r)^{\frac{(1-1/s)q}{(1-1/r)p'}} (-p')^{\frac{(1-1/s)q}{(1-1/r)p'}} \times \left(\int_{-\infty}^{x} k(x,y)^{(1-1/r)p} \left[f(y)v(y)h(y) \right]^{(1-1/r)p} dy \right)^{\frac{(1-1/s)q}{(1-1/r)p}} h(x)^{\frac{(1-1/s)pq}{p'}}.$$

This completes the proof of the Lemma.

Theorem 1. Let $k(x,y) \ge 0$, $(x,y) \in \triangle$ and k(x,y) is nondecreasing in y. Let (u,v) satisfy $\inf J_1(a) \equiv B > 0$ with $J_1(a)$ either bounded or nonincreasing. Suppose $0 < (1-1/s)q \le (1-1/r)p < 1$, $0 < q \le p < 1$ and $f \ge 0$. Then

$$\left(\int_{-\infty}^{\infty} |v(x)f(x)|^{(1-\frac{1}{r})p} dx\right)^{\frac{1}{(1-\frac{1}{r})p}} \leq C\left(\int_{-\infty}^{\infty} |u(x)(Tf)(x)|^{(1-\frac{1}{s})q} dx\right)^{\frac{1}{(1-\frac{1}{s})q}},$$
(11)

for every T-admissible f and some positive constant C where

$$C^{-1} = (1 - 1/r)^{\frac{1}{(1 - 1/r)p'}} (-p')^{\frac{1}{(1 - 1/r)p'}} (1 - 1/r)^{\frac{1}{(1 - 1/s)q}} p^{\frac{1}{(1 - 1/s)q}} B.$$
 (12)

Proof. Denote by N the integral on the right hand side of (11) and assume that it is finite and T-admissible. Let $J_1(a)$ be nonincreasing, then we have

$$N = \left(\int_{-\infty}^{\infty} |u(x)(Tf)(x)|^{(1-1/s)q} dx \right)^{\frac{1}{(1-1/s)q}}$$
$$= \left(\int_{-\infty}^{\infty} u(x)^{(1-1/s)q} |(Tf)(x)|^{(1-1/s)q} dx \right)^{\frac{1}{(1-1/s)q}}.$$

By Lemma 4, we have

$$N \ge (1 - 1/r)^{\frac{1}{(1 - 1/r)p'}} (-p')^{\frac{1}{(1 - 1/r)p'}} \left(\int_{-\infty}^{x} u(x)^{(1 - 1/s)q} \right)^{\frac{1}{(1 - 1/r)p}} \left(\int_{-\infty}^{x} u(x)^{(1 - 1/s)q} dx \right)^{\frac{1}{(1 - 1/r)p}} dx$$

$$\times \left\{ \int_{-\infty}^{x} k(x, y)^{(1 - 1/r)p} \left[f(y)v(y)h(y) \right]^{(1 - 1/r)p} dy \right\}^{\frac{(1 - 1/s)q}{(1 - 1/r)p}} h(x)^{\frac{(1 - 1/s)pq}{p'}} dx \right)^{\frac{1}{(1 - 1/s)q}}$$

Hence

$$N^{(1-1/r)p} \ge (1 - 1/r)^{\frac{p}{p'}} (-p')^{\frac{p}{p'}} \left(\int_{-\infty}^{x} u(x)^{(1-1/s)q} dx \right)^{\frac{1}{(1-1/r)p}} dx$$

$$\times \left\{ \int_{-\infty}^{x} k(x,y)^{(1-1/r)p} \left[f(y)v(y)h(y) \right]^{(1-1/r)p} dy \right\}^{\frac{(1-1/s)q}{(1-1/r)p}} h(x)^{\frac{(1-1/s)pq}{p'}} dx \right)^{\frac{(1-1/r)p}{(1-1/s)q}}.$$

By Minkowskii's integral inequality (5), we obtain

$$N^{(1-1/r)p} \geq (1 - 1/r)^{\frac{p}{p'}} (-p')^{\frac{p}{p'}} \int_{-\infty}^{\infty} \left(\int_{y}^{\infty} k(x,y)^{(1-1/s)q} u(x)^{(1-1/s)q} \right)^{(1-1/s)q} \times h(x)^{\frac{(1-1/s)pq}{(1-1/r)p'}} dx \int_{-\infty}^{\frac{(1-1/r)p}{(1-1/s)q}} [f(y)v(y)h(y)]^{(1-1/r)p} dy$$

$$= (1 - 1/r)^{\frac{p}{p'}} (-p')^{\frac{p}{p'}} \int_{-\infty}^{\infty} \left(\int_{y}^{\infty} k(x,y)^{(1-1/s)q} u(x)^{(1-1/s)q} \right)^{\frac{(1-1/r)p}{(1-1/r)q}} dx$$

$$\times \left\{ \int_{y}^{\infty} v(z)^{-(1-1/r)p'} dz \right\}^{\frac{(1-1/s)q}{(1-1/r)^{3}(p')^{2}}} dx \int_{-\infty}^{\frac{(1-1/r)p}{(1-1/s)q}} [f(y)v(y)h(y)]^{(1-1/r)p} dy.$$

From Lemma 2, we have

$$\left(\int_{y}^{\infty} v(z)^{(1-1/r)p'} dz\right)^{\frac{(1-1/s)q}{(1-1/r)^{3}(p')^{2}}}$$

$$= J_{1}(x)^{\frac{(1-1/s)q}{(1-1/r)^{2}p'}} \left(\int_{y}^{\infty} k(z,y)^{(1-1/s)q} u(z)^{(1-1/s)q} dz\right)^{-\frac{1}{(1-1/r)p'}}.$$

Hence

$$N^{(1-1/r)p} \geq (1-1/r)^{\frac{p}{p'}} (-p')^{\frac{p}{p'}} \int_{-\infty}^{\infty} \int_{y}^{\infty} k(x,y)^{(1-1/s)q} u(x)^{(1-1/s)q} \left\{ J_{1}(x)^{\frac{(1-1/s)q}{(1-1/r)^{2}p'}} \times \left(\int_{y}^{\infty} k(z,y)^{(1-1/s)q} u(z)^{(1-1/s)q} dz \right)^{-\frac{1}{(1-1/r)p'}} dx \right\}^{\frac{(1-1/r)p}{(1-1/s)q}} \times [f(y)v(y)h(y)]^{(1-1/r)p} dy.$$

Now by Lemma 4, we obtain

$$N^{(1-1/r)p} \geq (1-1/r)^{\frac{p}{p'}} (-p')^{\frac{p}{p'}} (1-1/r)^{\frac{(1-1/r)p}{(1-1/s)q}} p^{\frac{(1-1/r)p}{(1-1/s)q}} \int_{-\infty}^{\infty} [f(y)v(y)]^{(1-1/r)p} \\ \times J_{1}(y)^{\frac{(1-1/r)p}{(1-1/s)q}} J_{1}(y) \left(\int_{y}^{\infty} k(z,y)^{-(1-1/s)qu(z)^{(1-1/s)q}} dz \right)^{-\frac{1}{(1-1/s)q}} dz \right)^{-\frac{1}{(1-1/s)q}} \\ \times \left(\int_{y}^{\infty} k(z,y)^{(1-1/s)q} u(z)^{(1-1/s)q} dz \right)^{\frac{1}{(1-1/s)q}} dy \\ = (1-1/r)^{\frac{p}{p'}} (-p')^{\frac{p}{p'}} (1-1/r)^{\frac{(1-1/r)p}{(1-1/s)q}} p^{\frac{(1-1/r)p}{(1-1/s)q}} \int_{-\infty}^{\infty} [f(y)v(y)]^{(1-1/r)p} \\ \times J_{1}(y)^{\left[1+\frac{(1-1/r)p}{(1-1/s)q}\right]} dy.$$

Since $J_1(y)$ does not vary with y, then we can take it out of the integral sign. Hence

$$N^{(1-1/r)p} \geq (1-1/r)^{\frac{p}{p'}} (-p')^{\frac{p}{p'}} (1-1/r)^{\frac{(1-1/r)p}{(1-1/s)q}} p^{\frac{(1-1/r)p}{(1-1/s)q}} B^{(1-1/r)p} \times \int_{-\infty}^{\infty} [f(y)v(y)]^{(1-1/r)p} dy$$

where

$$B^{(1-1/r)p} = J_1(y)^{\frac{(1-1/r)p}{(1-1/s)q}}.$$

Hence

$$N \geq (1 - 1/r)^{\frac{1}{(1 - 1/r)p'}} (-p')^{\frac{1}{(1 - 1/r)p'}} (1 - 1/r)^{\frac{1}{(1 - 1/s)q}} p^{\frac{1}{(1 - 1/s)q}} B$$

$$\times \left(\int_{-\infty}^{\infty} [f(y)v(y)]^{(1 - 1/r)p} dy \right)^{\frac{1}{(1 - 1/r)p}}$$

$$= C^{-1} \left(\int_{-\infty}^{\infty} [f(y)v(y)]^{(1 - 1/r)p} dy \right)^{\frac{1}{(1 - 1/r)p}}.$$

From this we obtain

$$\left(\int_{-\infty}^{\infty} |v(x)f(x)|^{(1-\frac{1}{r})p} dx\right)^{\frac{1}{(1-\frac{1}{r})p}} \leq C\left(\int_{-\infty}^{\infty} |u(x)(Tf)(x)|^{(1-\frac{1}{s})q} dx\right)^{\frac{1}{(1-\frac{1}{s})q}}$$

where C^{-1} is defined above and the proof is complete.

Remark 1. In the limit $r \to \infty$ and $s \to \infty$ in Theorem 1, we obtain a result which is more general than Theorem 1 obtained by Beesack and Heinig [2].

Remark 2. In Theorem 1 if we let $r \to \infty$ and $s \to \infty$ then we shall obtain Theorem 3.1 obtained by Andersen and Heinig [1].

Theorem 2. Let $k(x,y) \geq 0$ be defined in \triangle and $0 < q \leq p < 1$. If k(x,y) is nondecreasing in y and (u,v) satisfy $\inf K_1(a) \equiv B > 0$ with $K_1(a)$ either bounded or either bounded above or nondecreasing. Suppose $0 < (1-1/s)q \leq (1-1/r)p < 1$. Then

$$\left(\int_{-\infty}^{\infty} |v(x)f(x)|^{(1-\frac{1}{r})p} dx\right)^{\frac{1}{(1-\frac{1}{r})p}} \leq C\left(\int_{-\infty}^{\infty} |u(x)(T^{\star}f)(x)|^{(1-\frac{1}{s})q} dx\right)^{\frac{1}{(1-\frac{1}{s})q}},$$
(13)

for every T^* -admissible f and some positive constant C where C^{-1} is defined above.

Proof. The proof is similar to that of Theorem 1 except that we define h by

$$h(y) = \left(\int_{-\infty}^{y} v(z)^{-(1-1/r)p'} dz \right)^{\frac{1}{(1-1/r)^2 pp'}}$$

$$= K_1(y)^{\frac{1}{(1-1/r)p}} \left(\int_{-\infty}^{y} k(y,z)^{(1-1/s)q} u(z)^{-(1-1/s)q} dz \right)^{-\frac{1}{(1-1/r)(1-1/s)pq}}.$$

The remaining part of the proof follows from Theorem 1.

Corollary 1. Let $k(x,y) \ge 0$ be defined in \triangle . Suppose $q \le p < 0$ and $(1 - \frac{1}{s})q \le (1 - \frac{1}{r})p < 0$.

(a) If k(x,y) is nonincreasing in x and (u,v) satisfies $\inf K_1(a) \equiv B > 0$ with $K_1(a)$ either bounded or nonincreasing, then (11) holds for every T-admissible f.

(b) If k(x,y) is nondecreasing in y and (u,v) satisfies $\inf J_1(a) \equiv B > 0$ with $J_1(a)$ either bounded or nondecreasing, then (13) holds for every T^* -admissible f.

Proof. The proofs of (a) and (b) follow directly from the proofs of Theorem 1 and Theorem 2 since Corollary 1 is just the dual of Theorem 1 while Corollary 2 is the dual of Theorem 2.

Acknowledgements: This work was supported by the University Research Council of the Obafemi Awolowo University, Ile-Ife, Nigeria under the Grant DVC/COR/RES/3.

References

- [1] K. F. Andersen and H. P.Heinig, Weighted norm inequalities for certain integral operators, SIAM. J. Math. Anal. 14 (1983), 834–844.
- [2] P. R. Beasack and H. P. Heinig, *Hardy's inequalities with indices less than 1*, Proc. Amer. Math. Soc. **83** (1981), 532–536.
- [3] G. H. Hardy, J. E. Littlewood, G. Polya, *Inequalities*, Cambridge University Press, 1959.
- [4] J. A. Oguntuase, Weighted Hardy's inequalities with mixed norms, RGMIA Res. Rep. Coll. 3 Article 2, (2000), http://rgmia.vu.edu.au/v3n1.html/
- [5] J. A. Oguntuase and R. Adegoke, Weighted norm inequalities for some integral operators, Coll. of Sci. Pap. Fac. Sci. Univ. Kragujevacu 21 (1999), 55–62.
- [6] J. A. Oguntuase and R. Adegoke, On Weighted norm inequalities for a certain class of integral operators, Ph.D Thesis, Obafemi Awolowo University, Ile-Ife (2001), 131 pp.