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Abstract. We obtain in this paper conditions on the nonnegative weight functions u(x)
and v(z) which ensure an inequality of the form

1

([ 1ot (057 a2) T < o ([ uternie) (050 as) T

—00 — 00

where T is either I or I*, and C is a constant depending on (k,p,q,,s) but independent
of f.

INTRODUCTION

Let k(z,y) > 0 be defined on A = {(z,y) € R?: y < z} and define the operator
T and its dual T™ by

INe) = [ ki, TN = [ keofwd. Q)

Let u(z),v(r) and f(z) denote the nonnegative extended real valued measurable

functions on (0,00). We shall give conditions on the nonnegative weight functions
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u(x) and v(x) in terms of the kernel k(z,y) and the nonnegative real numbers p, g, r

and s which guarantees an inequality of the form

1 1

([ 1@ 0= da) ™ <o ([T @) Tn@) [0 )

— 00 — 00

(2)
where T is either I or I*, and C'is constant independent of f.
The purpose of this paper is to generalize some of the results obtained in in [1, 2|.
Throughout this paper, we shall let p’ denote the conjugate index of p and is defined
by%+i:1—%, r> 1. Theconjugauteq’ofqisdeﬁnedby%+$:1—l s> 1.

s?

Also C'is a constant which may be different at difference occurences.

THE MAIN RESULT

We shall need the following Definitions and Lemmas in the proof of our main

results.

Definition 1. Let k(z,y) > 0, (z,y) € A. Let p,g < 1, p #0, ¢ # 0 and
B =0 or 1. Then for any real number a we define K and J by

1
Kg(a) = (/ k(a, Z)(ll/s)ﬂqu(z)uys)qu) a=1/%)q

—o0

X </a K(a, Z)(1—1/7")(1—,3):0’U(Z)—(l—l/r)pfdz> a—1/mp , (3)

Js(a) = </a k(z,a)(l_l/s)ﬁqv(z)(1—1/s)qdz>m

1
0 , , iy
x ( 7 K (@) meay ) dz) S (4)

Definition 2. A function f is said to be T-admissible, respectively T* admissible

if (Tf)(z), respectively (T f)(x), is finite for 0 < x < oo.

Lemma 1. Let g(x,y) > 0.Suppose 1 < p < oo and b > —oo, then

([ o] a)™ < [7 ([ otwwpar) " ay )
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and

(/boo [/Emg(x,y)dy}pdx>l/p < /boo (/byg(x,y)”dx>l/pdy. (6)

If p <1, inequalities (5) and (6) are reversed.
Proof. See [3, Theorem 202, p. 148].

Lemma 2. Let k(z,y) >0, (z,y) € A. Let h(y) be defined by

1
h(y) = (/y U(Z)(ll/r)p’dz>(1—l/r) . (7)

Suppose 0 < (1—-1/s)¢ < (1—-1/r)p<1, 0<¢q<p<1andJy(a)is nondecreasing.
Then

v) (/y k(Z,y)(l_l/s)qu(z’)“‘””%lz)(ll/s)q —  (y)-1me (8)

Proof. By (4) we have
N T
JI(?J) (fyoo k(z,y)(1—1/s)qu(z)(lfl/s)qdz) T-1/5)q

1
- (/oo k(z7 y)(l—l/s)qv(z)(l 1/8 ) (=179 I/S)q (/oo v 1 1/7‘ p d > (1—1/7)p’
! y
([ e )
y

= ([ uar ) T
Yy

— h(x)(l—l/r)p.
This completes the proof of the Lemma.

Lemma 3. Lety € R, h(y) as in Lemma 2. If0 < (1—1/s)g < (1 —1/r)p < 1,
and 0 < g <p <1, then

1 — L 7
(ffoo v(y)==1/mp' (fyoo U(Z)—(l—l/r)p'dz) e dy) (=t/me

P
I’y

= (1= 1/r) T ()T ()
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Proof. By Lemma 2, we have

o0

N S
'U(Z)(ll/r)p’dz> (a=1/rjp dy

Therefore

1
a=1/ryp’

<f$oo U(y)—(l—l/r)p’ (fyoo U(Z)_(l—l/r)p'dz)_m dy)
= (1= 1/r) T (—p )T h(z)7
and the proof is complete.

Lemma 4. Let T be the integral operator defined in (1) and let
k(xz,y) >0, (z,y) € A. Suppose 0 < (1—1/s)¢g<(1—=1/r)p<landl <qg<p<1.
Then

(1=1/s)q

(@H@IO) > (1= 1r) B3 () S5
(=1/s)q (=1/s)pg

([ k) o) dy) T )

—o0

(10)

Proof. Using the definition of 7" we have,

x

TN@) = [k y) )y

—00

= [ ke F@ @A) h) .

—00
By Holder’s inequality, we have

1
T (1-1/r)p

rne@ > ([

—00

o) O @] dy)
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L\ TS
8 (/x U(y)_(l_l/r)p, </mv(z)—(1—1/r)p'dz> a—i/mp dy>( ) |
oo ,

By Lemma 3, we have
(T @) > (1 Lr) =

T ([ k) ) i) T he)

— 00

P
!

S

Hence

(1-1/s)q (1—1/s)q

(TF)(@)] Y > (1= 1/r) 0 (—p!)a=iind

x (1-1/s)q
X </ k(x, y)(l_l/T)P [f(y)v(y)h(y)](l—l/r)p dy)

(1-1/7)p
—00

(1—1/s)pg
()

This completes the proof of the Lemma.

Theorem 1. Let k(z,y) >0, (x,y) € A and k(x,y) is nondecreasing in y. Let
(u,v) satisfy inf Ji(a) = B > 0 with Jy(a) either bounded or nonincreasing. Suppose
0<(1-1/s)¢g<(1—-1/rp<l, 0<qg<p<1landf>0.Then

([ st 12 as) T <o (f7 jutaenta (0 ) T
(1)

for every T-admissible f and some positive constant C' where

C_1 — (1 o ]_/7") (1711/7.)13/ (_p’) (1—11/r)p’ (]_ — ]_/T) (1*11/3)‘1 p(lfll/s)q B (12)

Proof. Denote by N the integral on the right hand side of (11) and assume that
it is finite and T-admissible. Let J;(a) be nonincreasing, then we have

N = ([ @@ [0 ae) T

—00

= </oo w(z) Y09 | (Tf) () |19 dx)

—00

1
(1-1/s)q
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By Lemma 4, we have

x

N>(1-1/r) YO (_p’)a—ll/r)p' </ u(x)(l’l/s)q

—0o0

(1—-1/s)pgq

(1—1/s)q (1—1/s)q
v —1/r —1/r (=1/mp (-1/s)pg
x {/ k(z, )P [ (y)oly)h(y) " dy} h(z)  » dfv)

—00
Hence

N = (1= 1/r) 7 ()P ([ a1

(1=1/m)p

(1—1/s)pq

(1—1/s)q (1—1/s)q
¢ —1/r —1/r (T=1/m)p =1/s)pg
X {/ k(, y) VP [ (y)o(y)h(y)) 0P dy} h(z) 7 dx) :

—0o0

By Minkowskii’s integral inequality (5), we obtain

NOZ® 2 (=1 fr)? ()7 [ ([ )0 ()t
y

—00

1-1
(1—-1/s)pq Qot/op

x b)) T (o)) dy

= A= 1nP )7 [ ([ k()0

—00

(a-1/r)p

(1-1/s)q

(9) , T30 (1-1/s)q
{7 ot 0mrge | d) )" dy.
Y

X

From Lemma 2, we have

(1-1/s)q

(/‘x’ ,U(Z)(ll/T‘)p’dZ> =1/ (/)2
y

= J; (x)% (/00 k(z,y)(1—1/s)qu(z)(1_1/s)qdz>(1—1/r)p1 .
Yy
Hence

(1=1/s)q

NO=UIP > (1= 1) ﬂ, B / / )(1=1/3)a (m)(l_m)q{Jl(x)(l_lm%,

a-1/mp

h = vor 1-1/s)q
(/ k(z, y)(I—I/S)qu(z)(l—l/s)qdz> (1—1/m)p dx}( /
Yy

< [fy)vy)hy)] P dy.

X
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Now by Lemma 4, we obtain

L, L/ (1—1/r)p (A=1/r)p

(=p")7" (1 —1/r) 17 pa=ifs >q/7 [F (y)v(y)] P
1
X Jp (y) 8 iflié’ Jl </ Z y) (1—1/s)qu(z)*~ 1/s)qd ) (T-1/s)q
y

X (/OO k(z, y)(11/s)qu(z)(11/s)qdz> =i a
y

2 (1—-1/rm)p (1-1/m)p

= (=107 (=p)P (1= 1) per |

—00

NUZYMP > (1 —1/r)

o0

L (y)u(y)) P

(1=1/m)p

X Jl (y) [1+ (1- 1/S)q]dy

Since J;(y) does not vary with y, then we can take it out of the integral sign. Hence

N(-1/r)p > (1 _ 1/70)5 (—p) (1 _ 1/r) (1 Jsgq pEi if ;’;B(lfl/r)p

< [ @e@) T ay

where

BO-YMp — J, () G=179

Hence

N > (1—1/r)Tm7 (—p)Tmw (1 — 1/7) =170 pT=17m B

1
> / ](1 1/r)p dy) (1-1/m)p

1
- ! (/OO ](l—l/r)p dy) =t/me

From this we obtain

([ 1ot 10 )T <o (7 Lot 0D an) =

—00

where C'! is defined above and the proof is complete.

Remark 1. In the limit r — oo and s — oo in Theorem 1, we obtain a result

which is more general than Theorem 1 obtained by Beesack and Heinig [2].

Remark 2. In Theorem 1 if we let r — oo and s — oo then we shall obtain

Theorem 3.1 obtained by Andersen and Heinig [1].
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Theorem 2. Let k(x,y) > 0 be defined in A and 0 < ¢ < p < 1. If k(z,y) is
nondecreasing in y and (u,v) satisfy inf K1(a) = B > 0 with Ki(a) either bounded or
either bounded above or nondecreasing. Suppose 0 < (1 —1/s)g < (1 —1/r)p < 1.
Then

([ @@ 1077 a2) 7 < o ([ Jutem s -0 as) T
19

for every T*-admissible f and some positive constant C where C~! is defined above.

Proof. The proof is similar to that of Theorem 1 except that we define h by

o) = ([ ot as)

—00

B B
= K1(?J)m (/y k(y,z)(ll/S)qu(z)(11/s)qdz> A=1/m-1/s)pq ‘
—00

The remaining part of the proof follows from Theorem 1.

Corollary 1. Let k(z,y) > 0 be defined in /\. Suppose ¢ < p < 0 and
(1-3)g<(1—3)p<0.

(a) If k(x,y) is nonincreasing in z and (u,v) satisfies inf Ky(a) = B > 0 with
Ki(a) either bounded or nonincreasing, then (11) holds for every T-admissible f.
(b) If k(z,y) is nondecreasing in y and (u,v) satisfies inf Jy(a) = B > 0 with Ji(a)
either bounded or nondecreasing, then (13) holds for every T*-admissible f.

Proof. The proofs of (a) and (b) follow directly from the proofs of Theorem 1
and Theorem 2 since Corollary 1 is just the dual of Theorem 1 while Corollary 2 is

the dual of Theorem 2.
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