63

Kragujevac J. Math. 23 (2001) 63-73.

BLOCKED NETWORK OF TANDEM QUEQUES WITH
WITHDRAWAL

Alfred Aanu Akinsete

Department of Statistics, University of Transkei, Private Bag X1, Umtata. Fastern
Cape Province, Republic of South Africa

(Received September 9, 1999)

Abstract. We consider a network of two queues in tandem with one server in the first
queue, and n > 1 in the second queue. Customers access the system through the first queue
in accordance with Poisson input having parameter A\. Holding times are exponentially
distributed with independent and identical random variables having rates p; and us at the
first and second queues respectively. A blocking phenomenon is observed in the system
with empty buffer between stages, bringing about a withdrawal effect. We obtain the state

probabilities and observe that the system has no product form.

INTRODUCTION

The earliest work on queues in tandem is due to [7] with a two-server station in
tandem, and its extension to k (> 2) stations in [8] with unlimited waiting spaces
between service points. However, when limitations of space are imposed between
stages, then the problem of blocking is encountered, which imposes some difficulties

in the analysis of such systems.
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According to [3] and [5], blocking occurs when the flow of units through one queue
is momentarily stopped owing to a capacity limitation of the queue ahead. A customer
finishing service at the first stage is only allowed to proceed to the second stage if
there is a free server in the second stage, otherwise he is blocked and stays in the first
queue until there is an exit of at least a customer from the second queue.

There are numerous contributions in the literature on the analysis of tandem
network of queues. See for example [14, 9, 12, 13, 11, 1, 2]. For such models in [16],
it has been shown that the joint queue length process forms a two-dimensional finite,
irreducible Markov process.

Here, we consider a network of two queues in tandem with one server in the first
queue, and n > 1 servers in the second queue. Customers access the system through
the first queue in accordance with Poisson input having parameter A. Service times
are independent and identically distributed random variables with rates p; and ps
at the first and second queues respectively, with a first-come, first- served discipline.
There is no waiting space between the two service stages, i.e. the queue length (L)
is zero in the second queue. Such a model is referred to as a 3-tuple(1,0,n)-model in
[12].

The diagram below describes the model.

H1 H2
eee — )\ — (1_—w>) Ly=0 — —  Leaves
1 server 4 No waiting n>1 system
° space servers 4
w °
d °
withdraws

A two-stage tandem queue with blocking and withdrawal

THE MODEL

Let at time ¢, an incoming customer meet m and r customers in the first and second

queues respectively, including those being served, where m > 0 and 0 < r < n.
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For state i, let &;(t) denote the number of customers at time . We therefore have,

Define
Py (t) = Prob{&(t) = m, &(t) =r}

and
P, (t) = Prob{&(t) = m, and the customer in service is blocked, &,(t) = n}

Let w denote the probability of withdrawal of a blocked customer who decides to

renege from further service. The random process
E={&(t):1=1,2;0 <t < o0}

assumes values in the strip {(m,7);0 < m < 00,0 < r < n} and constitutes a
continuous time Markov chain. We note that the definition of P, , () is contained in
P, since 0 < r < n, and where in this case, the incoming customer is not blocked
in the first stage.

Assuming that steady state exists, the global balance equations of the system

become

A+ +rue)Pr, = APp_1,+ P11+ (1 + 1) 2P yia;

0<m<oo,0<r<n (1)

with the following boundary equations:
()\ + Ml)Pm,O = )\Pm—l,O + /LQPm,l; 0<m< oo (2)
()\ + T/LQ)PO,,« = /L1P1,,«_1 + (7” + ].)/,LQPO’T_'_I O<r<n (3)

()‘ + H1 + n,U/Q)Pm,n = >\Pm—1,n + ,U/IPm-i—l,n—l + lePm—i—l,n + n/LQPéH_l,n;

0<m < oo (4)
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()\ + n,U/2)P0,n - Mlpl,nfl + lepl,n + n:U’QPII,n (5)
()‘ + n/L?)P;n,,n = >‘P7;7,71,n + /‘Ll(]' - U])Pm’n (6)
APoo = pebPoa (7)

By Konheim and Reiser [9, 10], the system of equations (1) to (7) is homogeneous

and hence always admits a bounded nonnull absolutely summable solution
{Pmr, P,’nn} =0, Vm,r,n,

which is also needed for the stability of the system. This requires that, P, ., P, # 0

(for some m,r, and n) and

> | Pur+ Py . |< o0

Now define the following generating functions
Pe(z)= Y. Pp2", 0<r<n
0<m<oo

and
Po(z)= > Pp,2"

1<m<oo

where z is a dummy variable satisfying | z |< 1, a condition needed for the conver-

gence of the infinite series.

The above generating functions transform the system of equations (1) to (7) to

the following:

Pr(2) — 27" Pr_i(2) — (r + DpaPryr(2) = i Poy — puz ' Pop1; 0<r <n (8)

aoPo (Z) — ,u2731 (Z) = MlPO,O (9)



0 Pp(2) — iz " Puo1(2) — npez ' Po(z) = m(l—wz )Py,

-1
— wmz Byp

, Pp(2) = (1 = w)P(2) = = (1 — w) Py,

where
o, = M1 = 2) 4+ pr (1 —wz™'6,) + vy,
{ 0, 0<r<n
0 =
1, r=n

and o, = A(1 — z) + npe
The linear system of equations (8) to (11) can be expressed in the form

An(2)P(2) = Bu(2)Py

where A,(z) and B,(z) are tridiagonal (n + 2) X (n + 2) matrices with

P(z) = (Po(2), P1(2), ..., Pu(2), P (2))
and
750 - (PO,(]; PO,I; (XY PU,TM O)I

being (n 4 2) x 1 vectors.
Let (12) be written in the form

where
D(2) = (di(2), d2(2), ., dnt2(2))'
with
di(2) = (1 —wz""8,0)Poj 1 — iz "Poj 2 1<j<n+1
and

dn+2(2’) = —Ml(l - w)Po,n-
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d;0 is a Kronecker delta defined by

5. =40 I<j=<mn
WL, j=n4+1

and Py =0V k <0
According to [4] and [15], the solution P(z) = X of equation (13) is obtained by

back substitution as follows:

where

and

with

Tnt2 = CZnJr2 ~: ,P-n(z) } (14)
T, = dz_czxi-i-la Z_n+17n7 7]-
G = — I —1,2,...,m; G =0 (15)

~ )
ZQj—1 + (h1Cj—1

= zmbPoj o — Py oo+ Mldjq

d; = :
J (]_1)M1M2Tj—35 . ’
T"j_z 2]

201 —

a; =M1 —2) 4+ pi (1 — wz="8;) + jpue;

s [0 i=01. n+l
IT1L, j=n+2

Ty =T 10,5 — jupeTj 2, j21; To=ap, T_y=1, T; =0 for j < -2

Also,

5.1 for odd j
7] 1, for even j and zero

with d; = 0 for j <0 and Py; =0 for j < 0

It is now easy to see that

where

—npi23(2)
2(anB(2) — np i)

Cpt+1 =

B(z) = zap—1 + p1Cn1,
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i ()
" 2A(2)(anB(2) — npapz)

and where

H() = mB){zA2) (1 —wz ™ YPou+ (2T 2 — M2))Poy s
— Ty p—2+ MlTn—ZJn—l}
with
)\(Z) = zap_1Ty 9 — (TL - 1),“/1,“/2Tn—36z,n-

Finally, we have
; 40)

T k) — mmm( — W)

where

V() = Q=w{maA(2)[mBb(z)(1 —wz"") — ¢(2)]Pon
+ M%B(Z’) (2Th—o — )\(Z))Pﬂ,nfl - M?B(Z’)anpo,nq + M?B(Z)Tnﬂdnq}
and
p(2) = anB(2) — nppe
It is now possible to write

(1 =w) X, Di(2) Ry,

P = Da(2)
where,
Dy(2) = pi™ (i — To(2))
Di(z) = pi 7z (1= wz )T (2) = T3(2)], G#0, j#n
and

Dn(2) =| An(2) [= 03 Tn(2) = nppa(1 — w) T (2)
We remark that the expression which gave P! (z) is defined for z = 0, since z cancels
out when this expression is simplified. And by means of successive back substitutions
in equation (14), we can express P, (2); 0 < r < n, in terms of P} (2) and the boundary

values { Py}, from which the state probabilities can subsequently be retrieved.
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A SPECIAL CASE

We illustrate the results obtained above for n = 1. In this case we have a (1,0,1)-
model with withdrawal. This presents us with a network of two queues in tandem
with one server in each of the queues with unlimited waiting space in front of the

first queue, and none between them. Using equations (15) and (16) we obtain the

following.
G = 0=2¢ W
G = oyt
é? = ——MZQUTYJ
do =0
U B 17
dy = pag Py o
dy = {p[(pm1 — o) Pop + zao(l — wz™" ) Poa] 17", and
ds = (1l —w)[p( — ao)Poo + (pzan(l —we™") — T1) Py
X (P(z))t J
where

O(2) = Ty — pyprocre(1 — w)

and in particular, ®(1) = p?usw.

By substituting corresponding expressions in (17) into (14), we shall obtain

Pi(z) = ds

Pi(2) = {mp —ao)d! Pog + paglzai (1 —wz™")
— o1 = w)]Poi }O7H(2)

Po(2) = {mlzara] — pipe(l — w) — &y pa] Poyg

+ ppefzal (1 —wzh) = pa(1 — w)] Py, @ (2)
Using the normalizing condition

Y Ple=D)4Phz=1)=1

0<r<n

and (7), we can show that

_ mpa(pn + po) = A(pi(1 — w) + pps + p13)
Poo = (18)
papia(pn + p2) + A (pw + piz)
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By definition,

1 .
Pk,z' = Ed(k),PZ(Z) |Z:0, 1 = 0, 1
and

1
Pk,l = Hd(k)'P{(Z) |z:0 .

We retrieve { P i} and { P}, } from thier generating functions, noting that /) ; = 0 =
Py, Vi and k > 0 for obvious reasons. Finally if we set n = 1 in this model, we have
a network with no waiting space in front of the first queue. The implication of this
by [16] and [6], is that arriving customers to the first queue are turned away, either,
when the system is blocked or when a service is in progress at station one, even if the
second queue is empty, as the system is in sequence. In this case, the system (1) to

(7) becomes

(1 +p2)Prp = APy,
piPr APy + poPry
(A + p2)Poq pPrp + pwPyy + pa Py (19)
pePiy = (1 —w)Pp,
)\Po,o = M2P0,1

The solution of (19) produces the state probabilities

A
Py = —PF
2
A
Py = (A4 + /L2)P0’0
p (a1 + p2)
)\2
P, _ 20
1,1 12 (i + 1) 0,0 (20)
1 — w)\?
Plll = Ml( w) PO,O: giving

’ 13 (11 + pa2)
pa iy (g + i)
’ papia{ (i + p2) (2 + A) + A2} + A{p3A + o + p2) + A (1 — w)}

CONCLUSION

In this paper, we have shown that our model generalises the result in the literature.

We observe that by setting w = 0 in equation (20), we have the results obtained in
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[16], when it is assumed that the servers are homogeneous. That is, when p; = po.
We also observe that expressions (18) and (19) do not have a product form, since by
[16], the queues are not independent.
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