A NOTE ON DENSITY OF THE ZEROS OF σ -ORTHOGONAL POLYNOMIALS

Gradimir V. Milovanović a and Miodrag M. Spalević b

^a Faculty of Electronic Engineering, Department of Mathematics, University of Niš, P. O. Box 73, 18000 Niš, Serbia, Yugoslavia ^b Faculty of Science, Department of Mathematics and Informatics, P. O. Box 60, 34000 Kraqujevac, Serbia, Yugoslavia

(Received May 15, 2001)

Abstract. A new proof of density of the zeros of σ -orthogonal polynomials is presented. Some numerical results for a class of σ -orthogonal polynomials on two symmetric intervals are included.

INTRODUCTION

Let $d\lambda(t)$ be a nonnegative distribution on the compact support [a,b], for which all moments

$$\mu_k = \int_a^b t^k \, d\lambda(t), \quad k = 0, 1, \dots,$$

exist and are finite, and $\mu_0 > 0$.

Let $\sigma = (s_1, s_2, \ldots, s_n, \ldots)$ be a bounded sequence of nonnegative integers, and denote (s_1, s_2, \ldots, s_n) by σ_n . Let

$$\overline{s} = \max\{s_k \mid k = 1, 2, \ldots\}.$$

Assume that for $\tau_{\nu}(=\tau_{\nu}^{(\sigma_n)}) \in (a,b), \ \nu=1,\ldots,n, \text{ hold}$

$$\tau_1 < \tau_2 < \cdots < \tau_n$$
.

It is known (for more details see the survey paper [5]) that the Chakalov-Popoviciu quadrature formula with multiple nodes,

$$\int_{a}^{b} f(t) d\lambda(t) = \sum_{\nu=1}^{n} \sum_{h=0}^{2s_{\nu}} A_{h\nu} f^{(h)}(\tau_{\nu}) + R(f), \tag{1}$$

has the maximum degree of exactness

$$d_{\text{max}} = 2\left(\sum_{\nu=1}^{n} s_{\nu} + n\right) - 1$$

if and only if

$$\int_{a}^{b} \prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu} + 1} t^{k} d\lambda(t) = 0, \quad k = 0, 1, \dots, n - 1.$$
 (2)

The proofs of the existence and the uniqueness of (1) which have been obtained recently can be found in [6], [7].

The orthogonality conditions (2) define a sequence of polynomials $\{\pi_{n,\sigma}\}_{n\in\mathcal{N}_0}$ which are called σ -orthogonal polynomials. In the case $s_1 = s_2 = \ldots = s$ the above polynomials reduce to the s-orthogonal polynomials, and (1) is known as the Gauss-Turán quadrature formula.

MAIN RESULT

Recently Shi [8] has stated a property of density of σ -orthogonal polynomials. He obtained this statement as a consequence of the convergence of the corresponding quadrature formula (1) for $f \in C^{2\overline{s}}[a,b]$.

The main result of our paper can be stated in the following form:

Theorem. Let $d\lambda(t)$ be a nonnegative distribution on the finite segment [a,b], and let $\{\pi_{n,\sigma}(t)\}$ denote the associated orthogonal set of (monic) σ -polynomials. Let

[a',b'] be a subinterval of [a,b] such that $\int_{a'}^{b'} d\lambda(t) > 0$. Then if n is sufficiently large, every polynomial $\pi_{n,\sigma}(t)$ has at last one zero in [a',b'].

Proof. Let $\varrho(t)$ be an arbitrary polynomial of degree m, which is not greater than 0 in [a,b], except possibly in [a',b']. Assuming that the polynomial $\pi_{k,\sigma}(t)$ $(k=n,n+1,\ldots)$ has no zeros $\tau_{\nu}^{(\sigma_k)}$ in [a',b'], and taking $2n-1\geq m$ (therefore $2k-1\geq m$ $(k=n,n+1,\ldots)$), we obtain

$$\int_{a}^{b} \varrho(t) \prod_{\nu=1}^{k} (t - \tau_{\nu}^{(\sigma_{k})})^{2s_{\nu}} d\lambda(t) = \sum_{\nu=1}^{k} \lambda_{\nu}^{(\sigma_{k})} \varrho(\tau_{\nu}^{(\sigma_{k})}) \ (\leq 0), \tag{3}$$

where (3) is the corresponding Gauss quadrature formula subject to the new nonnegative distribution

$$d\mu(t) = d\mu^{(\sigma_k)}(t) = \prod_{\nu=1}^k (t - \tau_{\nu}^{(\sigma_k)})^{2s_{\nu}} d\lambda(t).$$

(A general class implicitly defined polynomials was introduced and studied by Engels (cf. [2, pp. 214–226]).)

It is clear that the condition $\int_{a'}^{b'} d\lambda(t) > 0$ implies $\int_{a'}^{b'} d\mu^{(\sigma_k)}(t) > 0$.

Hence, when we apply the theorem of Weierstrass, it follows that

$$\int_a^b f(t) \, d\mu^{(\sigma_k)}(t) \le 0,$$

where f(t) is continuous in [a, b] and not greater than 0 in [a, b], except possibly in [a', b']. If we define (see Szegő [9, pp. 111–112])

$$f(t) = \begin{cases} 0, & \text{in } a \le t \le a' \text{ and } b' \le t \le b, \\ (t - a')(b' - t), & \text{in } a' \le t \le b', \end{cases}$$

we reach a contradiction.

Remark. In the special case we have that the above result holds for the zeros of s-orthogonal polynomials. By a different method it was also proved by Martinelli, Ossicini and Rosati [4].

Let $[a', b'] \subset [a, b]$, with b' - a' < b - a, and $\lambda(t)$ is constant on [a', b'] ($\lambda(a') = \lambda(b') = \text{const}$). We can prove that $\pi_{n,\sigma}(t)$ ($n \geq 2$) has at most one zero in [a', b'].

As we know, the *n* zeros of $\pi_{n,\sigma}(t)$ are distinct, real and all contained in the open interval (a,b) (see [5]).

Let $\pi_{n,\sigma}(t)$ has at least two zeros in [a',b'], and τ and T are the minimal and maximal zero of $\pi_{n,\sigma}(t)$ belong to [a',b'], respectively. Consider a polynomial of degree n-2 defined by

$$\varphi_{n-2}(t) = \frac{\pi_{n,\sigma}(t)}{(t-\tau)(t-T)},$$

for which holds

$$\int_{a}^{b} \varphi_{n-2}(t) \prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu}+1} d\lambda(t) = 0.$$
 (4)

We have

$$\varphi_{n-2}(t) \prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu}+1} = \frac{\prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu}+2}}{(t - \tau)(t - T)} \ge 0, \quad \text{for} \quad t \notin (\tau, T),$$

and

$$\int_{a}^{b} \varphi_{n-2}(t) \prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu}+1} d\lambda(t) = \int_{a}^{a'} \varphi_{n-2}(t) \prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu}+1} d\lambda(t)
+ \int_{b'}^{b} \varphi_{n-2}(t) \prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu}+1} d\lambda(t) > 0,$$

and this contradicts the condition (4).

SOME NUMERICAL RESULTS

In this section we consider a class of σ -orthogonal polynomials on two symmetric intervals. The theory of polynomials orthogonal on [-1,1] with respect to the measure $d\lambda(t) = w(t)dt$, where

$$w(x) = \begin{cases} |t + \alpha|(t^2 - \xi^2)^p (1 - t^2)^q, & t \in [-1, -\xi] \cup [\xi, 1], \\ 0, & \text{elsewhere,} \end{cases}$$
 (5)

and $0 < \xi < 1$, p, q > -1, has been studied by Barkov [1] and Gautschi [3] (when $|t + \alpha|$ was replaced by the symmetric factor $|t|^{\gamma}$, $\gamma \in \mathbf{R}$).

	m 0.0	m 0.4	m 0.1	m 0.01
n	r = 0.8	r = 0.4	r = 0.1	r = 0.01
''	$\xi = 0.11111$	$\xi = 0.42857$	$\xi = 0.81818$	$\xi = 0.98020$
2	-0.612120313218	-0.660305047380	-0.833833863424	-0.970705737842
	0.791538623729	0.809370364068	0.917214970670	0.990186207142
3	-0.866277989768	-0.870064707368	-0.933909373897	-0.991074266969
	-0.141858314662	-0.261739694431	-0.673968179280	-0.935042701919
	0.782829639687	0.797042350068	0.915546320831	0.990167593418
4	-0.942511607904	-0.942347586802	-0.970405718164	-0.996201935187
	-0.595280051440	-0.597351468349	-0.841926044199	-0.982306992400
	0.047822651573	0.073329568533	0.187853844540	0.211943408769
	0.857082617275	0.854477211319	0.922462041206	0.990246578198
5	-0.950394843409	-0.950161150659	-0.972884655185	-0.996281089352
	-0.648039232684	-0.644004681231	-0.845156714371	-0.982358957317
	-0.068106927896	-0.101880137962	-0.317922361302	-0.605397923021
	0.735898910602	0.740189699069	0.888329106698	0.987049364689
	0.990493563273	0.990585955919	0.995327538187	0.999408079763
6	-0.966074166811	-0.972033302583	-0.988877645473	-0.998693354845
	-0.755777758344	-0.803594791068	-0.926201432719	-0.991561285102
	-0.333780971761	-0.517591055853	-0.839550753398	-0.982352377951
	0.421729771267	0.562644302197	0.850062845879	0.983403047720
	0.803498401912	0.839828653597	0.938151635137	0.992853899335
	0.965688670635	0.971557550110	0.988524020929	0.998642775028

Table 1: Zeros $\tau_{\nu}^{(\sigma_n)}$ for n=2(1)6 and $r=0.8,~0.4,~0.1,~\mathrm{and}~0.01$

The special case $\alpha = 0$, p = q = -1/2, $\xi = (1 - r)/(1 + r)$ (0 < r < 1) of (5) arises in the study of the diatomic linear chain, where r = m/M has the meaning of a mass ratio, m and M (m < M) being the masses of the two kinds of particles alternating along the chain (see [10] and [3]). In that case, the coefficients in the three-term recurrence relation for polynomials $\{\pi_n\}$, orthogonal in a usual sense $(s_1 = s_2 = \cdots = 0)$ with respect to $d\lambda(t)$,

$$\pi_{n+1}(t) = t\pi_n(t) - \beta_n \pi_{n-1}(t), \quad \pi_{-1}(t) = 0, \ \pi_0(t) = 1,$$

are known explicitly

$$\beta_0 = \pi, \quad \beta_1 = \frac{1}{2}(1+\xi^2), \quad \beta_2 = \frac{1}{4} \cdot \frac{(1-\xi^2)^2}{1+\xi^2}, \quad \beta_3 = \frac{1}{4} \cdot \frac{1+6\xi^2+\xi^4}{1+\xi^2},$$

$$\beta_{2k} = \frac{1}{16} \cdot \frac{(1-\xi^2)^2}{\beta_{2k-1}}, \quad \beta_{2k+1} = \frac{1}{2}(1+\xi^2) - \beta_{2k} \quad (k=2,3,\ldots).$$

Using the iterative procedure for determining the zeros of σ -orthogonal polynomials given in [6], we illustrate the results from the previous section. We take a σ -sequence, for example, $\sigma = \{2, 1, 3, 4, 0, 2, ...\}$, and calculate the zeros of $\pi_{n,\sigma}(t)$ for some selected values of r, i.e., ξ , and n. The corresponding zeros $\tau_{\nu}^{(\sigma_n)}$ are presented in Table 1. The boxed zeros belong to the internal interval $[-\xi, \xi]$. Notice that at most one zero of the polynomial $\pi_{n,\sigma}(t)$ can be inside this "hole," which spreads when r decreases. In the other words, at least n-1 zeros of of this polynomial is very close to the points ± 1 , when $r \to 0$.

In the case of s-orthogonal polynomials with respect to the weight (5) (for $\alpha = 0$), the corresponding zeros are symmetrically distributed around the origin, so that only polynomials of odd degree has one zero in t = 0. The all zeros of polynomials of even degree are outside the "hole" $[-\xi, \xi]$. For $s = \max_{1 \le k \le n} \sigma_k$, n = 2(1)6, and for the same selected values of r as before, these zeros are given in Table 2.

Table 2: Zeros of s-orthogonal polynomials for n = 2(1)6 and r = 0.8, 0.4, 0.1, and 0.01

n	s	r = 0.8	r = 0.4	r = 0.1	r = 0.01
16	3	$\xi = 0.11111$	$\xi = 0.42857$	$\xi = 0.81818$	$\xi = 0.98020$
2	2	∓ 0.711458248604	∓ 0.769309258162	∓ 0.913625056466	∓ 0.990148513614
3	3	∓ 0.865757289350	∓ 0.860704264964	∓ 0.922589947265	∓ 0.990247509655
		0.	0.	0.	0.
4	4	∓ 0.924857488171	∓ 0.938323903257	∓ 0.975493668722	∓ 0.997124645515
		∓ 0.396212450065	∓ 0.550655719996	∓ 0.847250606306	∓ 0.983122881094
5	4	∓ 0.950979456907	∓ 0.952575621577	∓ 0.977369073062	∓ 0.997148921613
		∓ 0.586918631541	∓ 0.608465051352	∓ 0.850010598227	∓ 0.983148119846
		0.	0.	0.	0.
6	4	∓ 0.966353820074	∓ 0.972273876714	∓ 0.988865733374	∓ 0.998685788750
		∓ 0.711458248604	∓ 0.769309258162	∓ 0.913625056466	∓ 0.990148513614
		∓ 0.280189174380	∓ 0.488218166445	∓ 0.831604502730	∓ 0.981536985229

References

- [1] G.I. Barkov, On some systems of polynomials orthogonal on two symmetric intervals, Izv. Vysš. Učebn. Zav. Mat. 1960, No. 4 (17), 3–16.
- [2] H. Engels, Numerical Quadrature and Cubature, Academic Press, London, 1980.
- [3] W. Gautschi, On some orthogonal polynomials of interest in theoretical chemistry, BIT 24 (1984), 473–483.
- [4] M.R. Martinelli, A. Ossicini, and F. Rosati, Densità degli zeri di un sistema di polinomi s-ortogonali, Rend. Mat. 12 (1992), 235–249.
- [5] G.V. Milovanović, Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation, in: W. Gautschi, F. Marcellan, L. Reichel (Eds.), Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. J. Comput. Appl. Math. 127 (2001), 267–286.
- [6] G.V. Milovanović and M.M. Spalević, Quadrature formulae connected to σorthogonal polynomials, J. Comput. Appl. Math. (to appear).
- [7] Y.G. Shi, Generalized Gaussian quadrature formulas for Tchebycheff systems, Far East J. Appl. Math. 3 (1999), 153–170.
- [8] Y.G. Shi, Convergence of Gaussian quadrature formulas, J. Approx. Theory 105 (2000), 279–291.
- [9] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol 23, 4th ed., Amer. Math. Soc., Providence R.I., 1975.
- [10] J.C. Wheeler, Modified moments and continued fraction coefficients for the diatomic linear chain, J. Chem. Phys. 80 (1984), 472–476.