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Abstract. A new proof of density of the zeros of og-orthogonal polynomials is presented.
Some numerical results for a class of o-orthogonal polynomials on two symmetric intervals
are included.

INTRODUCTION

Let dA(t) be a nonnegative distribution on the compact support [a, b], for which
all moments
b
usz t*FdA(t), k=0,1,...,
exist and are finite, and py > 0.
Let 0 = (s1,592,...,8n,...) be a bounded sequence of nonnegative integers, and

denote (s1,S2,...,5,) by o,. Let

S=max{sg| k=1,2,...}.
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Assume that for 7, (= 7{"*)) € (a,b), v = 1,...,n, hold

1%
T < Ty < oe < Ty

It is known (for more details see the survey paper [5]) that the Chakalov-Popoviciu

quadrature formula with multiple nodes,

n 2s,

[ 10 a0 = 3 3 Aur®m) + RO )

v=1h=0
has the maximum degree of exactness
n
Amax = 2 (Zsy+n> —1
v=1

if and only if
b n
/ [t —r)>  Fdat) =0, k=0,1,....n—1. 2)
@ y=1

The proofs of the existence and the uniqueness of (1) which have been obtained
recently can be found in [6], [7].

The orthogonality conditions (2) define a sequence of polynomials {7, ,}nens,
which are called o-orthogonal polynomials. In the case s; = s = ... = s the
above polynomials reduce to the s-orthogonal polynomials, and (1) is known as the

Gauss-Turan quadrature formula.

MAIN RESULT

Recently Shi [8] has stated a property of density of o-orthogonal polynomials. He
obtained this statement as a consequence of the convergence of the corresponding
quadrature formula (1) for f € C%]a, b].

The main result of our paper can be stated in the following form:

Theorem. Let d\(t) be a nonnegative distribution on the finite segment |a, b,

and let {m,,(t)} denote the associated orthogonal set of (monic) o-polynomials. Let



39

[a', 0] be a subinterval of [a,b] such that ff,' dA(t) > 0. Then if n is sufficiently large,

every polynomial 7, »(t) has at last one zero in [a',V'].

Proof. Let o(t) be an arbitrary polynomial of degree m, which is not greater
than 0 in [a, b], except possibly in [/, b']. Assuming that the polynomial 7y () (k =
n,n+1,...) has no zeros 7{?¥) in [a’, '], and taking 2n — 1 > m (therefore 2k — 1 >
m (k=n,n+1,...)), we obtain

k k

[ o) Tt~ 7> axt) = 3 AT o(si7) (< 0), ®)

v=1 v=1
where (3) is the corresponding Gauss quadrature formula subject to the new nonneg-

ative distribution

k
du(t) = dpt™(t) = T[ (¢ — 7)) dAQ).
v=1
(A general class implicitly defined polynomials was introduced and studied by Engels
(cf. [2, pp. 214-226]).)
It is clear that the condition [% dA(t) > 0 implies 7 du(“#)(t) > 0.

Hence, when we apply the theorem of Weierstrass, it follows that

b
[ F®duo ) <o,

where f(t) is continuous in [a, b] and not greater than 0 in [a,b], except possibly in

[a’,b']. If we define (see Szegd [9, pp. 111-112])

(1) = 0, in a<t<d and b <t<hb,
)l (t=d)(¥ —t), in o <tV

we reach a contradiction.
Remark. In the special case we have that the above result holds for the zeros of

s-orthogonal polynomials. By a different method it was also proved by Martinelli,

Ossicini and Rosati [4].

Let [/, V] C [a,b], with O’ —a’ < b — a, and A(¢) is constant on [a',V'] (A(a) =

A(D') = const). We can prove that 7, ,(t) (n > 2) has at most one zero in [a',b'].
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As we know, the n zeros of 7, ,(t) are distinct, real and all contained in the open
interval (a, b) (see [5]).

Let 7,,(t) has at least two zeros in [a@’,V'], and 7 and T are the minimal and
maximal zero of 7, ,(t) belong to [@’, b'], respectively. Consider a polynomial of degree

n — 2 defined by
Tno (1)
n— t) = . y
#nal?) (t—1)(t—T)
for which holds

n

/ab Pna(t) [Tt — 7)* THdA(t) = 0. (4)

v=1
We have
. [ - mym
Pn_2(t) Vl;[l(t — 7)o = ”(:tl_ =T >0, for t¢(r,T),
and
[ e L0 n axt) = [ oot L0~ n)>* dr)

+ no(t) J] (t — 7)* T dA(t) > 0,

and this contradicts the condition (4).

SOME NUMERICAL RESULTS

In this section we consider a class of g-orthogonal polynomials on two symmetric
intervals. The theory of polynomials orthogonal on [—1, 1] with respect to the measure
dA(t) = w(t)dt, where

|t—i_O[|(t2 _52)1)(1 _t2)q’ le [_1,—51 U [ga ]-]7
w(z) = (5)

0, elsewhere,

and 0 < £ < 1, p,g > —1, has been studied by Barkov [1] and Gautschi [3] (when
|t + «| was replaced by the symmetric factor |t|7, v € R).
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Table 1: Zeros 7\"") for n = 2(1)6 and r = 0.8, 0.4, 0.1, and 0.01

r=0.8

r=20.4

r=0.1

r = 0.01

€ =0.11111

€ = 0.42857

£ = 0.81818

£ = 0.98020

—0.612120313218
0.791538623729

—0.660305047380
0.809370364068

—0.833833863424
0.917214970670

—0.970705737842
0.990186207142

—0.866277989768
—0.141858314662
0.782829639687

—0.870064707368

—0.933909373897

—0.991074266969

[—0.261739694431 |

| —0.673968179280 |

[—0.935042701919 ]

0.797042350068

0.915546320831

0.990167593418

—0.942511607904
—0.595280051440

—0.942347586802
—0.597351468349

—0.970405718164
—0.841926044199

—0.996201935187
—0.982306992400

10.047822651573 |

10.073329568533 |

10.187853844540 |

10.211943408769 |

0.857082617275

0.854477211319

0.922462041206

0.990246578198

—0.950394843409
—0.648039232684

—0.950161150659
—0.644004681231

—0.972884655185
—0.845156714371

—0.996281089352
—0.982358957317

—0.068106927896 |

| —0.101880137962 |

| —0.317922361302 |

| —0.605397923021

0.735898910602
0.990493563273
6 | —0.966074166811
—0.755777758344
—0.333780971761

0.740189699069
0.990585955919
—0.972033302583
—0.803594791068
—0.517591055853

0.888329106698
0.995327538187
—0.988877645473
—0.926201432719
—0.839550753398

0.987049364689
0.999408079763
—0.998693354845
—0.991561285102
—0.982352377951

0.421729771267 0.562644302197 0.850062845879 0.983403047720
0.803498401912 0.839828653597 0.938151635137 0.992853899335
0.965688670635 0.971557550110 0.988524020929 0.998642775028

The special case « =0, p =¢=—-1/2, 6 =(1—-r)/(14+7) (0 <r < 1) of (5)
arises in the study of the diatomic linear chain, where r = m/M has the meaning
of a mass ratio, m and M (m < M) being the masses of the the two kinds of
particles alternating along the chain (see [10] and [3]). In that case, the coefficients in
the three-term recurrence relation for polynomials {m,}, orthogonal in a usual sense

(s1 = sg = --+=0) with respect to dA(¢),

Tnt1(t) = tm,(t) — Bumn 1 (t), 7 1(t) =0, mo(t) =1,

are known explicitly

1 (1—¢2)? 1 14682+
Z'W, Py =—-

1
™ b=50+8), b= I 1ie

Bo =
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_ 1 (a-¢y
52]6 - ]._6 3213—1 )

Using the iterative procedure for determining the zeros of o-orthogonal polyno-

————, Py = %(1 + &%) = Boy (k=2,3,...).

mials given in [6], we illustrate the results from the previous section. We take a
o-sequence, for example, 0 = {2,1,3,4,0,2, ...}, and calculate the zeros of 7, ,(t) for
some selected values of r, i.e., &, and n. The corresponding zeros T,E"") are presented
in Table 1. The boxed zeros belong to the internal interval [—¢&,&]. Notice that at

7

most one zero of the polynomial 7, ,(¢) can be inside this “hole,” which spreads when
r decreases. In the other words, at least n — 1 zeros of of this polynomial is very close
to the points 1, when r — 0.

In the case of s-orthogonal polynomials with respect to the weight (5) (for a = 0),
the corresponding zeros are symmetrically distributed around the origin, so that only
polynomials of odd degree has one zero in ¢ = 0. The all zeros of polynomials of even

degree are outside the “hole” [—£,€&]. For s = max oy, n = 2(1)6, and for the same
SKSn

selected values of r as before, these zeros are given in Table 2.

Table 2: Zeros of s-orthogonal polynomials for n = 2(1)6 and r = 0.8, 0.4, 0.1, and 0.01

r=0.8

r=20.4

r=0.1

r=0.01

¢ =0.11111

¢ = 0.42857

¢ = 0.81818

¢ = 0.98020

F0.711458248604

F0.769309258162

F0.913625056466

F0.990148513614

F0.865757289350
0

F0.860704264964
0

F0.922589947265
0

F0.990247509655
0

F0.924857488171
F0.396212450065

F0.938323903257
F0.550655719996

F0.975493668722
F0.847250606306

F0.997124645515
F0.983122881094

F0.950979456907
F0.586918631541
0

F0.952575621577
F0.608465051352
0

F0.977369073062
F0.850010598227
0

F0.997148921613
F0.983148119846
0

F0.966353820074
F0.711458248604
F0.280189174380

F0.972273876714
F0.769309258162
F0.488218166445

F0.988865733374
F0.913625056466
F0.831604502730

F0.998685788750
F0.990148513614
F0.981536985229
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