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ABSTRACT. Let G be a graph whose vertices are labeled by 1,2,...,n. A permutation
P :[1,2,...,n] = [P(1),P(2),...,P(n)] is said to be a graphic permutation of G if the
vertices ¢ and P(i) of G are adjacent for all 7 = 1,2,...,n. It is shown that a bipartite
graph with m perfect matchings has m? graphic permutations. Some consequences of this
result on the determinant of the adjacency matrix of a bipartite graph are pointed out.

INTRODUCTION

In this paper we consider finite bipartite graphs without loops and multiple edges.
Let G be such a graph and let its vertices be labeled by 1,2,...,n.

It is well known that bipartite graphs do not possess odd—membered circuits and
that their vertices can be colored by two colors (say, black and white), so that all first
neighbors of a white vertex are black, and vice versa.

As an example, in Fig. 1 we show the numbering and the coloring of the vertices
of a bipartite graph Gy .

A perfect matching of a graph G is a set of independent edges of G' that cover all
the vertices of G [7]. If G is bipartite then any edge in any of its perfect matchings
necessarily connects a black and a white vertex.

Three perfect matchings of the graph G, from Fig. 1 are represented by the
diagrams M, M, and M3 in Fig. 2; the edges belonging to the perfect matchings are
indicated by heavy lines.



Fig. 1.

The number of perfect matchings of a graph G is denoted by m = m(G). For

instance, m(Gy) = 6.

Let
1 2 .. n
P = (1)
P(1) P(2) ... P(n)
be a permutation of the numbers 1,2,...,n. We say that P is a graphic permutation

of G, or that G contains the permutation P, if all the vertex pairs (i, P(i)); i =
1,2,...,n, are adjacent in G.

Without loss of generality, a graph G (with undirected edges) can always be
regarded as a digraph in which every pair of adjacent vertices is connected by two
oppositely directed arcs. If so, then a graphic permutation can be understood as a
spanning sub—digraph of GG, in which exactly one arc starts from every vertex and
exactly one arc ends at every vertex.

In Fig. 3 are presented the digraphs corresponding to the permutations

12345 6 78 9 10 11 12 13 14 15 16
P1 -
2345616 8 7 10 9 12 11 14 1 13 15



Fig. 2.



and

12345 6 78 9 10 11 12 13 14 15 16
P2 -
2345616 8 9 10 7 12 11 14 1 13 15

We immediately see that P; is, whereas P, is not a graphic permutation of G (because

the vertices 7 and 10 are not adjacent in Gy, cf. Fig. 1).

THE NUMBER OF GRAPHIC PERMUTATIONS IN A BIPARTITE GRAPH
Theorem 1. The number of graphic permutations in a bipartite graph G is equal
to m?, where m is the number of perfect matchings of G .

Proof. Color the vertices of G by two colors (black and white), so that adjacent
vertices are colored differently. Suppose first that GG has at least one perfect matching,

i. e, that m > 1.

Fig. 3.



Let My,..., M,, be the perfect matchings of G. Then every edge in M;, 1 =
1,...,m, connects a black and a white vertex.

For ¢« = 1,...,m construct the digraph M by directing the edges of M; so that
they start at black vertices of G'. Construct the digraph M by directing the edges of
M; so that they start at white vertices of G'. Note that both M;, M? and M; have
the same vertex sets, coinciding with the vertex set of G .

Examples of the digraphs M and M, of G| can be found in Fig. 2; their arcs are
directed according to the coloring indicated in Fig. 1.

Construct now a digraph R;; = M U M7 so that it has the same vertex set as M7
and M7 (i. e., as ), whereas the edge set of R;; is the union of the edge sets of M
and M7 .

Evidently, for a fixed labeling of the vertices of G, two graphs R, and R.; are
isomorphic only if M? = M? and My = Mj. Consequently, there are m? labeled
digraphs R;; .

In order to arrive at Theorem 1 it is now sufficient to verify that there exists a
one—to—one correspondence between the digraphs R;;, 7 =1,...,m,j=1,...,m,
and the graphic permutations of G .

Indeed, because one arc starts from, and ends at every vertex of R;; we have:
Lemma 1. Every digraph R;; represents a graphic permutation of G .

Further, every graphic permutation of a bipartite graph can be decomposed into
two components. One component is formed by the arcs that start from black vertices,
the other by the arcs that start from white vertices. Bearing in mind the definition of
a permutation, we see that this decomposition results in an M- and an M7 -digraph.

Hence we arrived at:

Lemma 2. FEvery graphic permutation of G corresponds to a unique digraph of

the type R;; .

For instance, the permutation P; from Fig. 3 (which is graphic with respect to
Gy), coincides with the digraph Rys = M} U My |, where M; and Ms are given in Fig.
2.

Lemmas 1 and 2 straightforwardly lead to Theorem 1, provided m > 1. It,

therefore, remains to show that Theorem 1 holds also if m = 0. This, however, follows



from the above reasoning: the existence of a graphic permutation (in a bipartite
graph) implies the existence of at least one R;;—digraph, i. e., the existence of at least
one M7— and at least one M;-digraph, i. e., the existence of at least one perfect
matching.

Hence, if m = 0, then the graph G' cannot contain permutations and Theorem 1

is satisfied. O

Remark 1. Theorem 1 holds for an arbitrary labeling and an arbitrary coloring
of the vertices of G. In particular, it holds for disconnected graphs (for which the

coloring of the vertices is not unique).

Remark 2. Theorem 1 cannot be extended to non—bipartite graphs. One, how-

ever, has a weaker result:

Corollary 1.1. The number of graphic permutations in a non-bipartite graph H

is greater than or equal to m(H)?.
We wish here to emphasize the following special case of Theorem 1:

Corollary 1.2. A bipartite graph contains graphic permutations if and only if it

possesses perfect matchings.

SOME FURTHER COROLLARIES OF THEOREM 1

The adjacency matrix A of a (labeled) n-vertex graph G is defined as the square

matrix of order n, whose elements are given by

1 if the vertices ¢ and j are adjacent

Aij = _ (2)
0 otherwise .

The determinant of the adjacency matrix is thus equal to
det A = Z(—l)”(P) Av,pay A2,p2)  ++ An,p(n) (3)
P

where P is a permutation (see Eq. (1)), m(P) is its parity and the summation goes
over all n! permutations.
Bearing in mind Eq. (2) we see that the term A; p) Ag pe2) -+ An pm) Will be

non—zero if and only if A pq)y = Aspp) = -+ = A, pm) = 1, 1. e, if and only if



all the vertex pairs (i, P(i));i=1,2,...,n, are adjacent in G. This, on the other
hand, is just the definition of a graphic permutation. Hence, from (2) and (3) follows
that
det A =S""(=1)"") (4)
P
where the summation now embraces only graphic permutations.

As well known, the parity of a permutation P depends on its cycle-decomposition
and is equal to the parity of the number of its even—membered cycles. Denote by
¢;(P) the number of i-membered cycles contained in the permutation P . Introduce,
further, the quantities e and f:

e(P) =Y cx(P)
i>1
and

i>1
Thus e(P) counts the even-membered cycles in P whereas f(P) is equal to the number
of cycles in P whose sizes are divisible by four. Because of 7(P) = e(P) (mod 2), we
may rewrite Eq. (4) as
det A=Y ""(-1)"") . (5)
P

Formula (5) was first time obtained by Harary [5]; it holds for arbitrary graphs
and digraphs.
If G is a bipartite graph then Eq. (5) can be somewhat modified. Then for all
graphic permutations P, ¢;(P) = 0 if 7 is odd, and we have
S 2icy(P)=n .
i>1
Consequently,

i>1 i>1

+ ZC4l(P)

i>1

= [Z 2icyi(P) + (2 + 1) cyiya(P)

i>1 i>0

= 2(22 + 1) cyi(P) + 2(22 + 1) caiy2(P)

i>1 i>0

= [Z ci(P) + ) cyipa(P)| (mod 2)

i>1 i>0




n/2+ f(P) = e(P) (mod 2) . (6)

Substituting (6) back into (5) we obtain
Lemma 3. For a bipartite graph with n vertices,

det A = (=1)"2 37'(—1)/") . (7)

P

Note that when n is odd, then G cannot contain graphic permutations and, con-
sequently, det A = 0.

The advantage of formula (7) relative to (5) is seen from the following observation.
If all graphic permutations of G satisfy the condition f(P) =0, then the sum on the
right-hand side of (7) is equal to the number of graphic permutations of G, which,
on the other hand, is determined by Theorem 1. The following two corollaries are

now obvious.

Corollary 1.3. If a bipartite graph possesses no circuit whose size is divisible by
4, then
det A = (—1)"?m? (8)

Corollary 1.4. For a forest (= acyclic graph) F,

(—1)n/2 if F' has a perfect matching
det A =

0 if F' has no perfect matching .

Forests, of course, can have at most one perfect matching [7]. The result stated

here as Corollary 1.4 is well known in graph spectral theory (see [1], p. 37).

ONE MORE COROLLARY: APPLICATION OF THEOREM 1 TO HEXAGONAL
SYSTEMS

In addition to the graphs specified in Corollary 1.3, there exist other non—trivial
cases for which f(P) = 0 holds for all graphic permutations. One distinguished class

of graphs having this property are the so—called hexagonal systems.



According to Sachs [8], hexagonal systems are defined as follows. A hexagonal unit
cell is a plane region bounded by a regular hexagon of side length 1. A hexagonal
system is then a finite connected plane graph with no cut-vertices, in which every
interior region is a hexagonal unit cell.

The graph Gy depicted in Fig. 1 can serve as an example of a hexagonal system.
For more details on hexagonal systems and their applications in chemistry see [3, 4,
6, 7.

The vertices of a hexagonal system can be divided into internal and external. A
vertex is said to be internal if it belongs to three hexagonal unit cells; otherwise it
is external. The external vertices form the boundary of the respective hexagonal
system.

For instance, the vertices 15 and 16 of (G are internal whereas the vertices
1,2,...,14 are external (see Fig. 1).

Let n, n; and h be the numbers of vertices, internal vertices and hexagonal unit
cells, respectively, of a hexagonal system. Then the following identity is easily proved
by induction on h [4, 6]:

n=4h+2—n, . 9)

Rewriting (9) as
1
ni:2h+1—§(n—ni)

and bearing in mind that n — n; is just the size of the boundary, we see that in the
interior of a boundary whose size is divisible by four (in which case (n — n;)/2 is an

even integer), there is an odd number of vertices. This can be readily generalized as:

Lemma 4. Let H be a hexagonal system and vy its circuit whose size is divisible

by four. Then in the interior of v there is an odd number of vertices of H .

An immediate consequence of Lemma 4 is that graphic permutations of hexagonal
systems cannot contain cycles whose sizes are divisible by four. To see this observe
that in every graphic permutation P the vertices lying in the interior of v are mapped
either on each other or on the vertices of . If v would correspond to a cycle of P,
then the internal vertices would have to be mapped only on each other. Because
their number is odd, this would be possible only if at least one odd—membered cycle

is present in P. But because hexagonal systems are bipartite graphs, their graphic



permutations must not possess odd-membered cycles. Hence v cannot induce a cycle
in P.
Combining this property of hexagonal systems with Theorem 1 and Lemma 3, we

obtain:
Corollary 1.5. Hezagonal systems obey Eq. (8).

The result stated here as Corollary 1.5 was reported in 1952 by Dewar and
Longuet—Higgins [2]. Its rigorous proof was, however, published only in 1980 (see

[1], p. 243), using a way of reasoning that differs from ours.
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