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ABSTRACT. The main purpose of this paper is to present and discuss the analytical tools that
will be necessary to carry forward research in criminal careers. In an earlier model that was
used to analyses some crime data (Ojo [4]), the rate of offending or arrest v, say, of individual
criminals, was taken as a constant, which can be regarded as over simplification. This model and
other similar basic models in this context are extended in this paper, first, to reflect variations
in v across the explanatory variables, z (such as age, drug use, previous convictions, etc.), then
to reflect variations in 7 over time within a criminal career and finally, to take into account both

changes in « over time and variations across x.

1. INTRODUCTION

The high rate of crime is a common problem all over the world. A lot of research
has been done and there continues to be more efforts in either finding ways of
controlling crime or developing methods of analysing crime data. There are several
variables that can explain variations in criminology. Such variables include age,
drug use, stability in job, Psychiatric History and many others. Many other time
dependent factors also play important roles in criminology. For example the rate
of committing crime in Nigeria was on the increase before the civil war that broke
out in 1967. During this civil war, attention was diverted from crime as able —
boided men were drafted into the army and the crime rate automatically dropped.
At the end of the war many became jobless but shortly after was an era of oil
boom. Contacts were awarded here and there and many contractors and business
men became very rich and consequently crime rate started to increase again.

Apart from high rate of crime, the rate of offending or arrest or conviction varies
from criminal to criminal and from one type of offenese to another.

Because of these reasons and some others, there has ever been a need to carry
out research in criminology. Comprehensive data are needed for effective research
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in criminology. Such data must include the behavior of each individual criminal
over a sufficiently long period of time. These types of data can be obtained from
either prison, police records or psychiatric hospitals in some countries.

Unfortunately, these data are often not made available to researchers in Nigeria.
Indeed, more often than not these information are not kept, and where they are
kept, they are quite scanty. This has drastically slowed down the pace of statistical
research in quantitative criminology in Nigeria.

However, statistical models can still be developed and made ready to be used
when are available.

Thus, the main purpose of this paper is to present and discuss analytical tools
needed to carry forward research in criminal careers.

An important parameter in analysing criminal careers is the rate at which of-
fenders commit offense or simply the rate of offending or arrest or conviction which
is denoted by ~ in this paper. Most of the earlier models assume that this rate
is constant across criminals (for example see Cohen [2]). Subsequent research has
shown that there is a considerable heterogeneity in the values of v both between
individual offenders and for the same offender at different points during his criminal
career. Research such as the survey of inmates conducted by Rand (Paterson and
Braiker [5], Chaiken and Chaiken [1]) indicates that v varies considerably across
offenders and its distribution is Skewed.

It is usually assumed that the rate v starts from the maximum and decreases with
time to zero, marking the end of the career. However, it is strongly felt in this paper
that the rate v of offending may not necessarily start at the maximum particularly
if a criminal starts committing crime at a tender age. These criminals usually start
committing crime by pick-pocketing, shop-lifting or even raping. As they grow in
age, they continue to gain more experience and skill in their chosen career. They
continue in this way until they reach the peak of their career after which the rate of
committing crime starts to decrease (probably because of age, inability to perform,
lack of interest or Soberness) until the career eventually terminates. The models
for the rate v of offending that will meet the above requirements must satisfy the
following basic condition. If v(¢) denotes the rate at which an offense is committed
at time ¢, then (i) v(0) = 0 and (ii) y(¢) = 0 for sufficiently large value of ¢.

In addition to the fact that the distribution of v is Skewed, models that satisfy
the above conditions are presented in sections 4 and 5.

The number of crimes committed in a given interval of time and the times at
which these crimes are committed may be considered as random processes and this
concept is discussed in section 2.

In section 3, we mention a few number of models that can be used for the purpose
of prediction in the context of criminology. Model fitting is discussed in section 6.

The attendant problem of getting relevant and reliable data from sources like
prisons or police records, in Nigeria, has made a full illustration impossible in this
paper. However, a few number of models presented in section 5 are fitted to the
crime data obtained from a local prison.

2. MODEL AS A MARKOV PROCESS

We assume that within a period of time or within an individual’s criminal career,
the number of crimes committed and the exact times at which these crime are
committed are determined by a chance process.
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Now let X (¢) be the number of crimes committed at time ¢ > 0.

Thus X (¢, t+h) — X (¢) is the number of crimes committed in the interval (¢, t+h).

The process can be regarded as a Markov process and is specified by the following
basic assumptions.

(i) Pr (One crime in the interval (¢, 4+ h))= Ah.

(2.1)

(ii) Pr (Number of crimes > 1 in the interval (¢,¢+h)) = o(h) where A is the crime
rate and A is small and positive.
We are interested in finding the probability

P(X(t) = j|X(0) = 0)

— Py(t) (2.2)

Obviously,
P()j(X(t)) =0 if 0>y

Let us consider two contiguous intervals (0,¢) and (¢,¢ + h).
If at last one crime is committed during the interval (0,¢+ h), we must have one
of the following three mutually exclusive events:
(i) No crime during (¢,¢ + h) and j crimes during (0, ¢)
(ii) 1 crime during (¢,¢ + h) and j — 1 crimes during (0,¢).
(2.3)

(iii) > 1 crimes during (¢,¢ + h) and < j — 1 crimes during (0, ¢).
Combining (2.1) and (2.3) we get the following difference equation

Poj(t +h) = (1 — M) Po;(t) + AhPo j_1(t) + o(h).

That is
P()j(t + h) - P()j(t) = —)\h,P(]j (t) + )\hP()’j_l(t) + O(h,)

Dividing through by h and taking limit as h — 0, we get
Py;(t) = =APo;(t) + APy j—1(t) ... . (2.4)
By using the initial conditions
Py(0) =1 and PFPp;(0)=0 if j#0
it can be swown that the general solution of (2.4) is given by

At)d
Py;(t) = —(j') e ™M j=0,1,2,...

which is a Poisson distribution.
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3. MODELS VARYING ACROSS x, THE EXPLANATION VARIABLE ALONE

In a criminal, after being discharged from prison, does not come back to crime
n years after discharge, we consider it to be a “success” in this context. Statistical
models can be developed to predict the probability of success of such a criminal.
MobDEL 3.1
Let x1,22,... be independent or explanatory variables (such as age drug use, pre-
vious convictions etc.). A model that quickly comes to mind is the linear model

P; = Bo + prx1j + Bawaj + ...

where P; is the probability of success of the jth criminal. The model parameters can
easily be estimated by the method of least squares. However, the model can predict
the value of P; outside the range (0, 1) and thus may be considered inadequate for
this purpose.

MODEL 3.2

A model that can also easily predict P; and is free of the above limitation is the
logistic model given as

Pj = [1 —|— exp—(ﬁo —|— lelj + .. .)]_1.

The logistic model has been successfully used in analysing bioassay and quanta
response data.

4. MODELS VARYING WITH TIME, ¢, ALONE

Here we present time dependent models for the rate y(¢) that satisfies the con-
ditions stated in section 1 above.
MODEL 4.1 v(t) = t(po)®*, t >0, >0
where pg is the proportion of “successful” criminals in a given sample of criminals
and « is the model parameter. The model takes off from the origin, reaches the
maximum at time ¢ = (—alog Py)~! and finally approaches zero for sufficiently
large t corresponding to the end of a career.
MODEL 4.2: ANOTHER APPROPRIATE MODEL FOR THE RATE 7 IS GIVEN AS

te_/\t

(&

(1)
where A is a suitable decay coefficient. Here also the rate starts at the origin,
reaches the maximum at time ¢ = 1/ and decays to zero.

More flexible models are given and discussed as follows.
MODEL 4.3:
B—a o1

’Y(t) = F—ata le t/ﬂ7 t >0,

a, 3 > 0 where o and (3 are the model parameters (« being the shape parameter
and 3 the decay coefficient).

The model has an initial rate rate of zero, attains a maximum at time ¢t = B(a—1)
and eventual tends to zero.
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5. MODELS VARYING WITH TIME ¢ AND WITH x

A more general model for the rate v can be obtained by combining the depen-
dence of the rate function on both time and variate z.
We consider a few of these types of models.
MODEL 5.1:
logvy(t,z) = logt + Ot log Py,

where P, is the proposition of “successful” cases in a sample of criminals and

0 = By + B1x1 + ... . The model starts at the origin, attains the maximum at time
t = (—0log Py)~! and tends to zero for large t.
MODEL 5.2

Another general model is proposed as
logy(t, ) = logt — Ot — log(1 + €%),

where 6 is as given in model 5.1.
MODEL 5.3:
This general model is presented as

logy(t,z) =log A — alogt — Ot

where 6 is also as given in model 5.1. Similar to the earlier ones, models 5.2
and 5.3 start at the origin, attain maximum values at times ¢ equals 1/6 and «/0
respectively and decay to zero.

Remark. It is interesting to note that by using model (3.2) in model (5.1) or
(5.2), the rate y(t,z) of offending decreases as P;, the probability of success, in-
creases and vice versa. This is to be expected since a criminal with high probability
of success will have a tendency of committing fewer number of crimes.

6. MODEL FITTING

One of the best methods of estimating the parameters of a statistical model is
the method of maximum likelihood. It has many desirable properties. Suppose
there are N subjects, the ith subject is observed over a period of time from a to b
and that during this period, he commits n; offenses at times t;1,%;2,...,tim. Then
the probability of what has been observed for this subject is proportional to

b
Y(ti, i)y (tiz, i) « .. Y(tin,, ;) €xp (— / v(t, ;) dt)

(See Cox and Isham [3] for the relevant Mathematical background)
The logarithm of the likelihood function for the complete data is

N n; b;
ZZlOg (7(tija$1l) —/ ’Y(t,l’i) dt) .

i=1 1=1 i

The integral has to be evaluated for each particular form of v(¢,z) and then the
complete log likelihood function is coded into machine readable form so that a
numerical maximization package can call on its value for any trail set of values of
the model parameters.
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7. ILLUSTRATION

Because a comprehensive information on individual criminals was not available
at the time of compiling these results, a full illustration cannot be given in this
paper. However, some information were collected on a number of criminals in a
local prison and models (5.1) and (5.2) were fitted to the data.

Information were obtained on ten explanatory variables on 76 criminals as fol-
lows:

r1 = age

x9 = Institutional life under 15 years
r3 = Educational attainment

x4 = longest period in any one job
x5 = Marital Status

¢ = Number of convictions

r7 = Recidivism

xg = Psychiatric admission

r9 = Approved School

x19 = Number of Juvenile Convictions

All hese variables have been coded to take numerical values. The complete data on
76 cases are displayed in table (7.1). The variable y, which takes values 1 and 0,
denotes “outcome” which is classified as “success” or “failure”.

A criminal is judged to have attained a success if he does not come back to crime
two years after discharge. The data consists of 26 successes and 50 failures. Since
there was no information on the times the offenses were committed, the time ¢ in
the model is considered fixed. In this situation, we obtain the maximum likelihood
estimates of the /’s in model (3.2) and use these estimates to fit models (5.1) and
(5.2). The maximum likelihood estimates of the j3;’s are

by = —2.5734
by = 0.1232
by = 0.7709
bs = 0.7095
by = 0.4776
by = 0.2152
be = 0.3198
by = —1.6989
bs = 0.6744
by = 0.6144
bip = —8.6802

The value of Py in model (5.1) is 26/76. For a particular criminal, the offending
rate functions, y(t,x) are graphed in figures (7.1) and (7.2).



Table 7.1: Criminal career data
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