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ABSTRACT. The estimation of the remainder term in midpoint formula for mappings with

bounded variation is given. Applications for special means are also pointed out.

1. INTRODUCTION

The following inequality is well known in the literature as the midpoint inequality:

[ (5 0w

where the mapping f : [a,b] — R is supposed to be twice differentiable on the
interval (a,b) and having the second derivative bounded on (a,b), that is
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1" Moo (b—a)? (1.1)

1 f" o= sup [f"(z)| < oo.
z€(a,b)

Now, if we assume that Iy, :a =29 < 1 < ... < 1 < T, = b is a partition of
the interval [a,b] and f is as above, then we have the midpoint quadrature formula:

b
/ f(@)dz = Ap(f, In) + Ry (f, In) (1.2)
where Aps(f, Ip,) is the midpoint rule
S
Anlh ) = 37 (P o (1.3

and the remainder term Ry (f, I) satisfies the estimation
13
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n—1
1
[Bar(fo I < 5 17 oo > h (1.4)
i=0
where h; ;= x;41 —x; for i =0,...,n — 1.
When we have an equidistant partitioning of [a, b] given by
h—
Iniai=a+ —2i i=0,..,n, (1.5)
n
then we have the formula
b
[ @ = Aag(£)+ Rasa(1) (16)
where
n—1 .
b—a b—a 201+1
Avralf) = Gy (1.7
1=0

and the remainder satisfies the estimation

1 (b—a)?
DI < 57 E ) o (1.9

For other midpoint type’s inequalities see the recent book [1].
2. MIDPOINT INEQUALITY FOR MAPPINGS WITH BOUNDED VARIATION

The following midpoint inequality for mappings with bounded variation holds:

THEOREM 2.1. Let f : [a,b] — R be a mapping with bounded variation on

[a,b]. Then we have the inequality

[ w1 (") 00

where V2 (f) denotes the total variation of f on the interval [a,b].

The constant % 15 the best possible one.
Proof. Using the integration by parts formula for Riemann-Stieltjes integral we

Vo (f) (2.1)

1
< -
-2

have
b . b
[ e =1 () 0-a- [ s (2:2)
where
r—aifze [a,a;b)
plr) = CH_b,b]



15
Now, assume that A, : a = .T( ") < :cg") . < a:fln_)l <z™ —pisa sequence of

divisions with v(A,) — 0 as n — oo, where V(An) 1= MaX;e(o,...,n—1} (T §+)1 - x(n))

and £ € [z 27,
If p: [a,b] — R is continuous on [a, b] and v : [a, b] — R is with bounded variation

on [a,b], then

n—1

b
[ p@ve) = Jim S pE) D) - o)
a " i=0
< Jim Zm”nv CRIBIC]
< mac [p(e supDv o) — o) = max p@Vye). (23)
An =0

Applying the inequality (2.3) for p(z) as above and v(z) = f(z),z € [a,b], we

get
| pardr@) <

and then by (2.4), via the identity (2.2), we deduce the desired inequality (2.1).
Now, assume that the inequality (2.1) holds with a constant C' > 0, i.e.,

mMm—f(a;b>@—a)

Consider the mapping f : [a,b] — R,

< max [p@)|V2(f) = 2Z2ve(p) (2.4)

z€[a,b] 2

< Cb—a)V(f). (2.5)

a+b

o) 0ifz € la,b]\{ }
- lifx:a+b.
2

Then

b
() =2 [ fla)do =
For this mapping we have

[ w1 (") 00y =-0-w

and

and then by (2.5) we get

b—a<2C(b—a)
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which implies that C' > % and the sharpness of (2.1) is proved.
The following corollary holds:

COROLLARY 2.2. Let f: [a,b] — R be a differentiable mapping on (a,b)
whose derivative is integrable on (a,b). Then we have the inequality:

;c)dm—f(a;b> (b—a)

<31 N - o). (26)

Remark 2.3. It is well known that if f : [a,b] — R is a convex mapping on
[a,b] , then Hermite-Hadamard’s inequality holds

f<“;b>§biaéwwmm§[Q;;ﬂQ. 21)

Now, if we assume that f : I C R — R is differentiable convex on I and
a,b € Int(I), a < b, then f’ is monotonous nondecreasing on [a, b] and by Theorem
2.1 we get,

o< [r@a s (M) < Hiho - o 29

which gives a counterpart for the first membership of Hadamard’s inequality.
The following corollary for midpoint composite formula holds:

COROLLARY 2.4. Let f : [a,b] — R be a mapping with bounded variation
on la,b] and I}, a partition of [a,b]. Then we have the midpoint quadrature formula
(1.2) and the remainder term R (f, In) satisfies the estimation:

1
[Rae(f, In)| < 5’)’(h)vab(f)- (2.9)
Moreover, the constant § is the best possible one, where y(h) = max{h;|i =

0,...,n—1}.
Proof. Applying inequality (2.1) on the interval [z;,z;y1] ( = 0,....,n — 1) we

have
Tit1 ) )
[ s - g (B

3

1
< ShVE()).

Using the generalized triangle inequality we get

</wl x_f<m+mﬂ>mﬂ
= T 2
/ ZH z)dx — f <7xl +2$i+1> h;

|Rar(f, In) |—

Z

=0

n—1
1 N

1=0
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and the corollary is proved.
The case of equidistant partitioning is embodied in the following corollary:

COROLLARY 2.5. Let I, be an equidistant partitioning of [a,b] and f be
as in Theorem 2.1. Then we have the formula (1.6) and the remainder satisfies the
estimation:

(b—a)Va(f). (2.10)

SRS

Rarn(f)l < 5

Remark 2.6. If we want to approximate the integral f: f(x)dz by midpoint
formula Aas,,(f) with an accuracy less that ¢ > 0, we need at least n. € N points
for the division I,,, where

Ne 1= Q-g(b—a)Vab(f) +1

and [r] denotes the integer part of r € R.

Comments 2.7. If the mapping f : [a,b] — R is neither twice differentiable
nor the second derivative is bounded on (a, b), then we can not apply the classical
estimation in midpoint formula using the second derivative. But if we assume that
f is with bounded variation, then we can use instead the formula (2.9).

We give here a class of mappings which are with bounded variation but having
the second derivative unbounded on the given interval.

Let fpq : [a,b] = R, fpq(x) = (7 — a?)? where p € (1,2) and ¢ > 2. Then
obviously

f}:),q(x) = pqxq_l(l'q — aq)p—17 xr € (a, b)

and

21 [(pg — Da ~ (g = Do

(@7 — at)ir , « € (a,b).

fpa(®) = pg

It is clear that f is with bounded variation and the total variation is

Vf(fp,q) = ||f;,q 1(b? —a?)? < oo

but limg a4 f, ,(7) = +o0.
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3. APPLICATIONS FOR SPECIAL MEANS

Let us recall the following means:

1. Arithmetic mean

a+b

A= A(a,b) := 5

, a,b>0;
2. Geometric mean

G = G(a,b) := Vab, a,b>0;

3. Harmonic mean

2
H=H(a,b) = +—, a,b> 0;
aTh
4. Logarithmic mean
L = L(a,b) b= b>0,a#b
= L(a = a a
bl h’lb—l bl bl bl ’
5. Identric mean
1 bb b—a
[:I(a,b)——<—> , a,b>0, a#b;
e \ a®

6. p-Logarithmic mean

pp+1 _ gp+1
(p+1)(b—a)

It is well known that L, is monotonous nondecreasing over p € R with L_; := L
and Lo := I. In particular, we have the following inequalities

1
L, = Ly(a,b):= [ } , p€ R\{-1,0}, a,b>0, a #b.

H<G<L<I<A. (3.1)

In what follows, by the use of Theorem 2.1, we point out some new inequalities for
the above means.

1. Let f:]a,0) > R (0<a<b), f(x)=2aP, pe R\{—1,0}. Then

biaLUWsz%mw»f(ﬁ”):Ammw

£/l = Ipl(b— a)L2Z}, p € R\ {-1,0,1}.
Using the inequality (2.6) we get

L8(a.0) — A 5) < Pt - a2 (32)

2. Let f:[ab]— R (0<a<b) f(a:):i. Then
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T b b—
i [ e = 1, g (M50) = A7), 17 = g

Using the inequality (2.6) we get

(b—a)®
2G2

0<A-L< LA. (3.3)

3. Let f:[a,b] > R (0 <a<b), f(x) =Inz. Then

1 b a+b b—a
— /a f(x)dx =1nl(a,b), f ( ) =1In A(a,b), ||f'|l1 = T(ab)
Using the inequality (2.6) we get
<4 (b—a) (3.4)
S T Sexp 5T : :
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