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MHD MICROPOLAR FLUID FLOW TOWARDS A
VERTICAL SURFACE IN PRESENCE OF HEAT

SOURCE/SINK UNDER RADIATIVE HEAT FLUX

A. Adhikari and A.K.Maiti

Abstract. A steady two-dimensional incompressible magnetohtdrodynamics

micropolar fluid flow towards a stretching or shrinking vertical sheet under suc-
tion or blowing with prescribed surface heat flux is studied in this paper. The

transport equations employed in the analysis include the effect of radiative heat

flux under mixed convection. Similarity transformation is used to convert the
governing non-linear boundary-layer equations to coupled higher order nonlin-

ear ordinary differential equation. These transformed differential equations are

solved numerically by a finite-difference scheme, known as Keller-box method.
Numerical results are obtained for the velocity, microrotation and temperature

distributions, as well as the skin friction coefficient and local Nusselt number

for various parameters and then these are shown graphically. Dual similarity
solutions are found to exist for the opposing flow, while for the assisting flow,

the solution is unique. Suction, applied magnetic field and micropolar fluids
delay the boundary-layer seperation and exibit drag reduction as compared to

the non-suction, non-magnetic field and classical Newtonian fluid respectively.

The present results are compared with available results in literature and found
a good agreement with them.

1. Introduction

The study of stagnation point flow towards a solid surface in moving fluid
traced back to Hiemenenz in 1911. He was the pioneer to analyze two-dimensional
stagnation-point flow on stationary plate using a similarity transformation to reduce
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2 A. ADHIKARI AND A.K.MAITI

the Navier-Stokes equations to non-linear ordinary differential equations. Since
then many investigators have extended the idea to different aspect of the stagnation-
point flow problems in various way. Accordingly, Mahapatra and Gupta [1] numeri-
cally analyzed two-dimensional boundary-layer flow, stagnation-point flow and heat
transfer over a stretching sheet. Wang [2] studied two-dimensional stagnation-point
flow on stretching sheet and on axisymetric shrinking sheet. Lok et al. [3] observed
non-orthogonal stagnation-point flow towards a shrinking sheet. It was found that
the obliqueness of a free stream line causes the shifting of the stagnation-point
towards the incoming flow.

Laminar boundary layer behavior over a moving continuous and linearly stretch-
ing surface is a significant type of flow has considerable practical applications in
engineering and polymer processing. For example, materials manufactured by ex-
trusion processes and heat treated materials traveling between a feed roll and a
windup roll or on a conveyor belt possess the characteristics of a moving contin-
uous surface. The hydromagnetic flow and heat transfer problems have become
important industrially. To be more specific, it may be pointed out that many met-
allurgical processes involve the cooling of continuous strips or filaments by drawing
them through a quiescent fluid and that in the process of drawing, these strips are
sometimes stretched. Mention may be made of drawing, annealing and tinning of
copper wires. In all the cases the properties of the final product depend to a great
extent on the rate of cooling. By drawing such strips in an electrically conduct-
ing fluid subjected to a magnetic field, the rate of cooling can be controlled and
a final product of desired characteristics can be achieved. Another interesting ap-
plication of hydromagnetics to metallurgy lies in the purification of molten metals
from nonmetallic inclusions by the application of a magnetic field. The study of
heat and mass transfer is necessary for determining the quality of the final product.
The significant work in this area was conducted by Sakiadis [4, 5, 6]. He analyzed
the boundary layer assumptions and the governing equations of the problem on a
continuously stretching surface with a constant velocity. Thermal radiation effects
could play an important role in controlling heat transfer in industry. Heat transfer
characteristics of a continuous stretching surface with variable temperature were
studied by Grubka and Bobba [7]. Cortwell [8] discussed the effects of viscous dis-
sipation and radiation on the thermal boundary layer over a non-linearly stretching
sheet. Spreiter and Rizzi [9] studied in the context of solar wind radiative magneto-
hydrodynamics. Nath et al. [10] obtained a set of similarity solutions for radiative
MHD steller point explosion dynamics using shooting methods. Chen [11] studied
the effects of anisotropic scattering on steady non-similar free convective radiative
hydromagnetic boundary layer flow over a diffuse refecting surface solving a sep-
arate equation for magnetic field distribution. Noor et al .[12] studied the effect
of heat source/sink on MHD free convection thermophoretic flow over a radiative
isothermal inclined plate. Most recently, heat transfer problems for boundary layer
flow concerning a convective boundary condition was investigated by Aziz [13]for
the Blasius flow. Similar analysis was applied to the Blasius and Sakiadis flow
with radiation effect by Bataller [14]. Makinde [15, 16] studied the heat and mass
transfer over a vertical plate with convective boundary conditions.
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The theory of microrotation fluids, first studied by Eringen [17], display the
effects of local rotary inertia and couple stresses, can explain the flow behavior due
to the microscopic effects arising from the local structure and micromotions of the
fluid elements in which the classical Newtonian fluids theory is inadequate. These
fluids contain dilute suspensions of rigid micromolecules with individual motions
which support stress and body moments and influenced by spin-inertia. The exten-
sion of the theory of micropolar to thermomicropolar fluids was also investigated by
Eringen [18]. He established a suitable non-Newtonian fluid models which could be
used to analyze the behavior of exotic lubricants (Khonsari [19]), polymeric fluids
(Hadimoto [20], liquid crystals (Lee et al. [21], paints, animal blood (Ariman et al.
[22], colloidal suspensions, ferro-liquids etc. Kolpashchikov et al. [23] have derived
a method to measure micropolar parameters experimentally. A thorough review of
this subject and application of micropolar fluid mechanics has been provided by
Ariman et al. [24]. Studies of the flow of heat convection in micropolar fluids have
been focused on flat plate by Yucel [25], Jena and Mathur [26], Gorla [27], Hossain
et al. [28] and Mori [29] etc. Several researchers have investigated the theory and
its applications such as Lukaszewicz [30], Eringen [31] etc.

The stagnation-point flow of a micropolar fluid towards a stretching sheet was
studied by Nazar et al. [32]. Similarly Ishak et al. [33] investigated stagnation-
point flow over a shrinking sheet in a micropolar fluid and established that the
solution is different from a stretching sheet. It was found that the solutions for a
shrinking sheet are not unique. Furthermore, Ishak et al. [34] analyzed a mixed
stagnation-point flow of a micropolar fluid towards a stretching sheet. Hayat et al.
[35] discussed the MHD flow of a micropolar fluid near a stagnation-point towards a
non-linear stretching surface. Further, Nadeem et al. [36] extended the problem to
porous medium. Ashraf and Ashraf [37] incorporated the heat transfer parameter
to stagnation-point flow. Ali et al. [38] included the idea of induced magnetic field
to the problem of Ashraf. Moreover, Hayat et al. [39] investigated stagnation-
point flow of a Maxwell fluid with magnetic field and radiation effect. Laminar
mixed convection in two-dimensional stagnation flows around heated surfaces in
the case of arbitrary surface temperature and heat flux variations was examined
by Ramachandran et al. [40]. They established a reverse flow developed in the
buoyancy opposing flow region and dual solutions are found to exist for a certain
range of the buoyancy parameter. Devi et al. [41] extended this work for unsteady
case. Lok et al. [42] studied the case for a vertical surface immersed in a micropolar
fluid. Mahapatra and Gupta [43] studied the MHD stagnation point flow over a
stretching surface. Chen [44] considered the combined effects of Joule heating
and viscous dissipation on MHD flow past a permeable stretching surface with
free convection and radiative heat transfer. Chin et al. [45], Ling et al. [46]
and Ishak et al.[47] reported the existence of dual solutions in the opposing flow
case. Hydromagnetic thermal boundary layer flow of a perfectly conducting fluid
observed by Das[48]. Mukhopadhyay et al. [49] discussed Lie group analysis of
MHD boundary layer slip flow past a heated stretching sheet in presence of heat
source/sink. Shit and Halder [50] examined thermal radiation effects on MHD
viscoelastic fluid flow over a stretching sheet with variable viscosity. Heat transfer
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effects on MHD viscous flow over a stretching sheet with prescribed surface heat
flux is studied by Adhikari and Sanyal [51]. Adhikari [52] also studied on MHD
micropolar fluid flow towards a stagnation point on a vertical surface under induced
magnetic field with radiative heat flux. The study of boundary layer flow against a
vertical surface problem was considered by Cramer [53], Cobble [54], Raptis et al.
[55], Kumari et al. [56] and so many researchers. Resently, Bachok and Ishak [57]
studied MHD stagnation-point flow of a micropolar fluid with prescribed wall heat
flux the vertical plate.

The aim of this paper is to make a numerical calculation, on mixed convective
heat transfer flow which have been of interest to the engineering community and to
the investigators dealing with the problem in geophysics, astrophysics and polymer
processing. From the technical point of view mixed convection flow past an infinite
vertical plate is always important for many practical applications. In this paper, we
have considered a two-dimensional steady MHD mixed convection stagnation point
flow of an incompressible micropolar fluid towards a stretching vertical surface with
prescribed surface heat flux together with the effect of radiative heat flux under
uniform transverse magnetic field which is normal to the surface.

2. Basic Equations

Consider a steady, two-dimensional flow of an incompressible electrically conducting
micropolar fluid toward a stagnation point past a vertical plate with prescribed
surface heat flux. The frame of reference (x,y) is chosen such that the x-axis is
along the direction of the surface and the y-axis is normal to the surface, as shown
in Fig.1. It is assumed that the velocity of the flow external to the boundary layer
U(= ax) and the surface heat flux qw(x)(= bx), temperature Tw(x) of the plate are
proportional to the distance x from the stagnation point, where a, b are constants.
A uniform magnetic field of strength B0 is assumed to be applied in the positive
y-direction, normal to the vertical plate. The assisting flow situation occurs if the
upper half of the flat surface is heated while the lower half of the flat surface is
cooled. In this case the flow near the heated flat surface tends to move upward and
the flow near the cooled flat surface tends to move downward. So this behaviour
acts to assists the flow field. The opposing flow situation occurrs if the upper half
of the flat surface is cooled while the lower half of the flat surface is heated. The
governing equations are

(1)
∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+

(
µ+ κ

ρ

)
∂2u

∂y2
+
κ

ρ

∂N

∂y

+
σB2

0

ρ
(U − u) + gβ(T − T∞),

(2)



MHD MICROPOLAR FLUID FLOW ... ... UNDER RADIATIVE HEAT FLUX 5

Figure 1. Model of the problem

(3) ρj

(
u
∂N

∂x
+ v

∂N

∂y

)
= γ

∂2N

∂y2
− κ

(
2N +

∂u

∂y

)
,

(4) u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− 1

ρCp

∂qr
∂y

.

The boundary conditions are
at y = 0 :

u = uw(x) = cx, v = vw(x),

N = −n∂u
∂y
,

∂T

∂y
= −qw

k
,

(5)

at y =∞ :

(6) u→ U = ax, N → 0, T → T∞ .

where u and v are the velocity components along the x and y-axis respectively,
uw(x) the wall shrinking or stretching velocity ( c > 0 for stretching, c < 0 for
shrinking and c = 0 for static wall), vw(x) the wall mass flux velocity, N is the
microrotation or angular velocity whose direction of rotation is in the xy plane,
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µ(= νρ) is the dynamic viscosity, ρ is the density of the fluid, ν is the coefficient of
viscosity, σ is the electrical conductivity, j is the micro-inertia per unit mass, i.e.,
micro-inertia density, γ is the spin gradient viscosity, κ is the vortex viscosity or
micro-rotation viscosity, T is the fluid temperature in the boundary layer, T∞ is
the uniform ambient temperature, β is the thermal expansion coefficient, α(= k

ρCp
)

is the thermal diffusivity, k is he thermal conductivity, qw is the wall heat flux.
Note that n is a constant such that 0 6 n 6 1. When n = 0 then N = 0 at the wall
represents concentrated particle flows in which the microelements close to the wall
surface are unable to rotate. This case is also known as the strong concentration
of microelements. When n = 1/2, we have the vanishing of anti-symmetric part of
the stress tensor and denotes weak concentration of microelements, the case n = 1
is used for the modeling of turbulent boundary layer flows. We shall consider here
both cases of n = 0 and n = 1/2. Assume γ = (µ + κ/2)j = µ(1 + K/2)j, where
K = κ/µ is the micropolar or material parameter, K 6= 0 for micropolar fluid and
K = 0 for the classical Newtonian fluid. This assumption is invoked to allow the
field of equations that predicts the correct behavior in the limiting case when the
microstructure effects become negligible and the total spin N reduces to the angular
velocity (Ahmadi [58], Yucel [25]).

By using the Rosseland approximation the radiative heat flux qr in y-direction
is given by (Brewster [59])

(7) qr = −4σs
3ke

∂T 4

∂y
,

where σs is the Stefan-Bolzmann constant and ke the mean absorption coefficient.
It should be noted that by using Rosseland approximation, the present study is
limited to optically thick fluids. Expanding T 4 in a Taylor series about T∞ as:

(8) T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + . . . ,

and then neglecting higher order terms beyond the first degree in (T −T∞), we get

(9) T 4 = 4T 3
∞T − 3T 4

∞,

In view of the equations (7) and (9), the equation (4) becomes

(10) u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

16σsT
3
∞

3keρCp

∂2T

∂y2
.

Introduce a Stream function ψ as follows

(11) u =
∂ψ

∂y
, v = −∂ψ

∂x
.

The momentum, angular momentum and energy equations can be transformed into
the corresponding ordinary differential equations by the following transformation:
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η = y
√
a/ν, f(η) =

ψ

x
√
aν
,

p(η) =
N

ax
√
a/ν

, θ(η) =
k(T − T∞)

qw

√
a/ν,

(12)

where η the independent dimensionless similarity variable. Thus u and v are given
by u = axf ′(η), v = −

√
aνf(η), Substituting variables (12) into equations (2), (3)

and (10), we get the following ordinary differential equations:

(13) (1 +K)f ′′′ + ff ′′ + 1− f ′2 +Kp′ +M(1− f ′) + λθ = 0,

(14) (1 +K/2)p′′ + fp′ − pf ′ −K(2p+ f ′′) = 0,

(15)
1

Pr

(
1 +

4

3F

)
θ′′ + fθ′ − θf ′ = 0,

subject to the boundary conditions (5) and (6) which become

(16) f(0) = s, f ′(0) = e, p(0) = −nf ′′(0), θ′(0) = −1,

(17) f ′(η)→ 1, p(η)→ 0, θ(η)→ 0, as η →∞.
Here f(η), p(η) and θ(η) give (dimensionless) the velocity, the angular velocity and
temperature respectively. In the above equations, primes denote differentiation
with respect to η; j = ν/a the characteristic length (Rees and Bassom [60]), Pr =
ν/α the Prandtl number, M = σB2

0/(ρa) the magnetic parameter, e = c/a the
velocity ratio parameter, s = −vw(x)/

√
aν the constant mass flux with s > 0 for

suction and s < 0 for injection, λ = Grx/Re
2
x the buoyancy or mixed convection

parameter, Grx = gβ(Tw − T∞)x3/ν2 the local Grashof number, Rex = Ux/ν is
the local Reynolds number and F = kek

4σsT 3
∞

the radiation parameter. Here λ is a

constant and the negative and positive values of λ correspond to the opposing and
assisting flows respectively. When λ = 0, i.e., when Tw = T∞ is for pure forced
convection flow.

The skin friction coefficient Cf and the local Nusselt number Nux are defined
as

(18) Cf =
τw

ρU2/2
, Nux =

xqw
k(Tw − T∞)

.

where the wall shear stress τw and the heat flux qw are given by

(19) τw =

[
(µ+ κ)

∂u

∂y
+ κN

]
y=0

, qw = −k
[
∂T

∂y

]
y=0

.
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with k being the thermal conductivity. Using the similarity variables (12), we get

(20)
1

2
CfRe

1/2
x = [1 + (1− n)K/2] f ′′(0),

Nux

Re
1/2
x

=
1

θ(0)
.

3. Numerical Solutions

The equations(13), (14) and (15) subject to the boundary conditions(16) and
(17) are solved numerically using an implicit finite-difference scheme known as the
Keller-box method (Cebeci and Bradshaw [61], Cebeci and Cousteix [62] and Na
[63]). The method has following four basic steps:

(i) Reduce Equations(13) ,(14) and (15) to first order equations;
(ii) Write the difference equations using central differences;
(iii) Linearise the resulting algebraic equations by Newtons method and write

them in Matrix-vector form;
(iv) Use the Block-tridiagonal elimination technique to solve the linear system.

3.1. The Finite difference scheme. In this section, steps (i) and (ii) are
combined. First we introduce new dependent variables u(x, η), v(x, η), g(x, η) and
q(x, η) such that

(21) f ′ = u, u′ = v, p′ = g, θ′ = q,

so that equations (13),(14) and (15) reduce to

(22) (1 +K)v′ + fv + 1− u2 +Kg +M(1− u) + λθ = 0,

(23) (1 +K/2)g′ + fg − pu−K(2p+ v) = 0, .

(24)
1

Pr

(
1 +

4

3F

)
q′ + fq − uθ = 0.

We now consider the net rectangle in the xη plane as shown in fig.2 and the
net points defined as follows:

(25) x0 = 0, xn = xn−1 + kn, n = 1, 2, . . . N,

(26) η0 = 0, ηj = ηj−1 + hj , j = 1, 2, . . . J, ηJ = η∞,

where kn is the 4x - spacing and hj is the 4η - spacing. Here n and j are the
sequence of numbers that indicate the coordinate location, not tensor indices or
exponents.
Here we use the following finite-differences:

(27) ()nj−1/2 =
1

2
[()nj + ()nj−1],
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(28) ()
n−1/2
j =

1

2
[()nj + ()n−1j ],

(29)

(
∂u

∂x

)n−1/2
j−1/2

=
[(u)nj−1/2 − (u)n−1j−1/2]

kn
,

(30)

(
∂u

∂η

)n−1/2
j−1/2

=
[(u)

n−1/2
j − (u)

n−1/2
j−1 ]

hj
,

Now we write the finite-difference for the midpoint (xn, ηj−1/2) of the segment P1P2

using (27) to (30) . This process is called ”centering about (xn, ηj−1/2)”. We get
by ommitting upper indices n:

(31) fj − fj−1 −
hj
2

(uj + uj−1) = 0,

(32) uj − uj−1 −
hj
2

(vj + vj−1) = 0,

(33) pj − pj−1 −
hj
2

(gj + gj−1) = 0,

(34) θj − θj−1 −
hj
2

(qj + qj−1) = 0,

η
j

η
j−1/2

η
j−1

xn−1
xn−1/2

xn x

η k
n

h
j

P
3
 (known)

P
1
(unknown)

P
2
 (unknown)

P
4
 (known)

Figure 2. Net Rectangle for difference approximation
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(1 +K)

hj
(vj − vj−1) +

1

4
(fj + fj−1)(vj + vj−1)

+1− (uj + uj−1)2

4
+
K

2
(gj + gj−1)

+M

[
1− (uj + uj−1)

2

]
+ λ

(θj + θj−1)

2
= 0,

(35)

(
1 +

K

2

)
(gj − gj−1)

hj
+

1

4
(fj + fj−1)(gj + gj−1)

−1

4
(uj + uj−1)(pj + pj−1)

−K
[
(pj + pj−1) +

(vj + vj−1)

2

]
= 0,

(36)

(qj − qj−1)

Prhj

(
1 +

4

3F

)
+

1

4
(fj + fj−1)(qj + qj−1)

−1

4
(uj + uj−1)(θj + θj−1) = 0.

(37)

The boundary condiions at x = xN are

fN0 = 0, uN0 = 0, pN0 = −nvN0 ,
qN0 = −1, uNJ = 1, pNJ = 0, θNJ = 0.

(38)

3.2. Newton’s method for linearisation. To linearise the nonlinear system
(31) to (37), we introduce the following i-th iterate at x = xn:

f
(i+1)
j = f

(i)
j + δf

(i)
j , u

(i+1)
j = u

(i)
j + δu

(i)
j ,

v
(i+1)
j = v

(i)
j + δv

(i)
j , p

(i+1)
j = p

(i)
j + δp

(i)
j ,

g
(i+1)
j = g

(i)
j + δg

(i)
j , θ

(i+1)
j = θ

(i)
j + δθ

(i)
j ,

q
(i+1)
j = q

(i)
j + δq

(i)
j .

(39)

Substituting these in (31) to (37) and then retaining only the linear terms in

δf
(i)
j , δu

(i)
j , δv

(i)
j , δp

(i)
j , δg

(i)
j , δθ

(i)
j and δq

(i)
j , we get the following linear tridiagonal

system:

(40) δfj − δfj−1 −
hj
2

(δuj + δuj−1) = (r1)j ,

(41) δuj − δuj−1 −
hj
2

(δvj + δvj−1) = (r2)j ,
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(42) δpj − δpj−1 −
hj
2

(δgj + δgj−1) = (r3)j ,

(43) δθj − δθj−1 −
hj
2

(δqj + δqj−1) = (r4)j ,

(a1)jδfj + (a2)jδfj−1 + (a3)jδuj + (a4)jδuj−1

+(a5)jδvj + (a6)jδvj−1 + (a7)jδgj + (a8)jδgj−1

+(a9)jδθj + (a10)jδθj−1 = (r5)j ,

(44)

(b1)jδfj + (b2)jδfj−1 + (b3)jδuj + (b4)jδuj−1

+(b5)jδvj + (b6)jδvj−1 + (b7)jδpj + (b8)jδpj−1

+(b9)jδgj + (b10)jδgj−1 = (r6)j ,

(45)

(c1)jδfj + (c2)jδfj−1 + (c3)jδuj

+(c4)jδuj−1 + (c5)jδθj + (c6)jδθj−1

+(c7)jδqj + (c8)jδqj−1 = (r7)j ,

(46)

where (a1)j = 1
2vj−1/2 = (a2)j , (a3)j = −

(
uj−1/2 + M

2

)
= (a4)j , (a5)j =

(1+K)
hj

+ 1
2fj−1/2, (a6)j = − (1+K)

hj
+ 1

2fj−1/2, (a7)j = K
2 = (a8)j , (a9)j = λ

2 =

(a10)j , (b1)j = 1
2gj−1/2 = (b2)j , (b3)j = − 1

2pj−1/2 = (b4)j , (b5)j = −K2 =

(b6)j , (b7)j = −
(uj−1/2

2 +K
)

= (b8)j , (b9)j = 1
hj

(
1 + K

2

)
+ 1

2fj−1/2,

(b10)j = − 1
hj

(
1 + K

2

)
+ 1

2fj−1/2, (c1)j = 1
2qj−1/2 = (c2)j , (c3)j = − 1

2θj−1/2 =

(c4)j , (c5)j = − 1
2uj−1/2 = (c6)j , (c7)j = 1

hjPr

(
1 + 4

3F

)
+ 1

2fj−1/2, (c8)j =

− 1
hjPr

(
1 + 4

3F

)
+ 1

2fj−1/2, (r1)j = fj−1 − fj + hjuj−1/2, (r2)j = uj−1 − uj +

hjvj−1/2, (r3)j = pj−1 − pj + hjgj−1/2, (r4)j = θj−1 − θj + hjqj−1/2, (r5)j =

− (1+K)
hj

(vj − vj−1)− fj−1/2vj−1/2 − (1 +M) + (uj−1/2)2 −Kgj−1/2 +Muj−1/2 −
λθj−1/2, (r6)j = − (1+K)

hj
(gj − gj−1)− gj−1/2fj−1/2 + uj−1/2pj−1/2 + 2Kpj−1/2 +

Kvj−1/2, (r7)j = − 1
Prhj

(
1 + 4

3F

)
(qj − qj−1)− fj−1/2qj−1/2 + uj−1/2θj−1/2.

For all iterates, we take

δf0 = 0, δu0 = 0, δp0 = 0, δq0 = 0,

δuJ = 0, δpJ = 0, δθJ = 0.
(47)

3.3. The Block tridiagonal matrix. The linearised difference system (40)
to (46) has a block tridiagonal structure as follows:
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
[A1] [C1]
[B2] [A2] [C2]

. . . . . .
[BJ−1] [AJ−1] [CJ−1]

[BJ ] [AJ ]




[δ1]
[δ2]
. . .

[δJ−1]
[δJ ]



=


[r1]
[r2]
. . .

[rJ−1]
[rJ ]



or,

(48) Aδ = r,

where

[A1] =

0 0 0 1 0 0 0
d 0 0 0 d 0 0
0 d 0 0 0 d 0
0 0 −1 0 0 0 d

(a6)1 (a8)1 (a10)1 (a1)1 (a5)1 (a7)1 0
(b6)1 (b10)1 0 (b1)1 (b5)1 (b9)1 0

0 0 (c6)1 (c1)1 0 0 (c7)1


,

[Aj ] =

d 0 0 1 0 0 0
−1 0 0 0 d 0 0
0 −1 0 0 0 d 0
0 0 −1 0 0 0 d

(a4)j 0 (a10)j (a1)j (a5)j (a7)j 0
(b4)j (b8)j 0 (b1)j (b5)j (b9)j 0
(c4)j 0 (c6)j (c1)j 0 0 (c7)j


,

2 6 j 6 J ;
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[Bj ] =



0 0 0 −1 0 0 0
0 0 0 0 d 0 0
0 0 0 0 0 d 0
0 0 0 0 0 0 d
0 0 0 (a2)j (a6)j (a8)j 0
0 0 0 (b2)j (b6)j (b10)j 0
0 0 0 (c2)j 0 0 (c8)j


,

2 6 j 6 J ;

[Cj ] =



d 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

(a3)j 0 (a9)j 0 0 0 0
(b3)j (b7)j 0 0 0 0 0
(c3)j 0 (c5)j 0 0 0 0


,

1 6 j 6 J − 1.

Here d = −hj

2 ,

[δ1] =



δv0
δg0
δθ0
δf1
δv1
δg1
δq1


, [δj ] =



δuj−1
δpj−1
δθj−1
δfj
δvj
δgj
δqj


, 2 6 j 6 J ;

[rj ] =



(r1)j
(r2)j
(r3)j
(r4)j
(r5)j
(r6)j
(r7)j


, 1 6 j 6 J.

Forward sweep:

To solve equation (48) , assume the matrix A to be nonsingular and it can be
factored as

(49) A = LU,
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where

L =


[α1]
[B2] [α2]

. . . . . .
[αJ−1]
[BJ ] [αJ ]

 ,

U =


I [Γ1]

I [Γ2]
. . . . . .

I [ΓJ−1]
I

 ,
[I] is the identity matrix of order 7, and [αj ], [Γj ] are 7×7 matrices whose elements
are determined by the following equations:

(50) [α1] = [A1],

(51) [A1][Γ1] = [C1],

(52) [αj ] = [Aj ]− [Bj ][Γj−1], j = 2, 3, · · · J,

(53) [αj ][Γj ] = [Cj ], j = 2, 3, · · · J − 1.

Backward sweep:
Equation (49) can now be substituted in (48) and we get

(54) LUδ = r,

Let

(55) Uδ = w,

Then the equation (54) becomes

(56) Lw = r,

where

w =


[w1]
[w2]
· · ·

[wJ−1]
[wJ ]

 ,
and the [wj ] are 7 × 1 column matrices. The elements w can be solved from the
equation (56) by

(57) [α1][w1] = [r1],
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(58) [αj ][wj ] = [rj ]− [Bj ][wj−1], 2 6 j 6 J.

With these [wj ] and from equation (55) we get [δj ]:

(59) [δJ ] = [wJ ],

(60) [δj ] = [wj ]− [Γj ][δj+1], 1 6 j 6 J − 1.

These iterations will be stoppped when

(61) |δv(i)0 | < ε,

where ε is the desired level of accuracy.

4. Numerical Results and Discussions

With the help of the implicit finite-difference scheme known as the Keller-
box method the equations (13), (14) and (15) subject to the boundary conditions
(16),(17) are solved numerically. The step size ∆η of η and the edge of the boundary
layer η∞ had to be adjusted for different values of parameters to maintain accuracy
within the interval 0 6 η 6 η∞ , where η∞ is the boundary layer thickness, we
run the programme in MATLAB upto the desired level of accuracy. The validity
of the numerical results has been compared with the results of Bachok and Ishak
[2009] and they are found to be in a very good agreement, as presented in Table 1,
when λ = 1,K = 0, n = 0.5,M = 0, e = 0, s = 0 , ∆η = 0.02 and F = 7000. The
choice of ηmax = 15 ensured that all numerical solutions approachedthe far field
asymptotic values correctly. This is an important point that is often overlooked in
publications on boundary layer flows (Pantokratotars [64]).

Table 1. Values of f ′′(0) and 1/θ(0) for different values of Pr

Bachok and Ishak (2009) Present result
Pr f ′′(0) 1/θ(0) f ′′(0) 1/θ(0)

0.7 1.8339 0.7776 1.8339 0.7776
1.0 1.7338 0.8781 1.7339 0.8781
7.0 1.4037 1.6913 1.4037 1.6916

10.0 1.3711 1.9067 1.3711 1.9072

The variation of skin friction coefficient f ′′(0) and the local Nusselt number
1/θ(0) with λ for different values of the suction parameter s, the magnetic param-
eter M and the material parameterK are given by figures 3 to 6 respectively.

The dual solutions were obtained by setting two different values of η∞, which
produce two different velocity and temperature profiles both satisfy the boundary
conditions. It is seen that for the opposing flow (λ < 0) dual solutions are found
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to exist for the values of s, M and K considered. For a particular value of s, M
and K the solution is present up to a critical value of λ, say λc, outside which
the boundary layer separates from the surface and the solution based upon the
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boundary-layer approximations are not feasible. It is clear from the figures 3 to 8
that larger values of s, M and K enhance the range of λ for which the solution
exists. In this study the critical values of λ (i.e., λc) are given by the Table 2.

Table 2. Critical values of λ (i.e.,λc)

s M K
-1 0 1 0 1 0 1

λc -0.23 -0.28 -0.32 -0.28 -0.41 -0.28 -0.30

Hence the boundary-layer separation is delayed with increase of s, M and K.
So suction and Magnetic field holdup the boundary layer separation respectively
compared to the no-suction (s = 0) and non-magnetic field (M = 0) case. Similarly
micropolar fluids (K 6= 0) delay the boundary-layer separation as compared to the
classical Newtonian fluids (K = 0). Figures 3, 4 and 5 respectively depict that the
value of |f ′′(0)| decreases as s,M and K increase, thus suction, magnetic field and
micropolar fluids show drag reduction compared to the non-suction, non-magnetic
field and classical Newtonian fluids respectively.

Figures 9−17 display the dual solutions for the opposing flow for different values
of s, K and M where the first solutions are stable with the most physically relevance
while the second solutions are not. The region of reversed flow exists for the case
of the second solutions from figures 9, 10 and 11 and this would unacceptable as
possible asymptotic solutions to which a fully forward flow developing near the
stagnation point could grow.

The velocity, angular velocity and temperature profiles for both assisting (λ >
0) and opposing flow (λ < 0) are given in the figures 9 to 17 for different values
of the suction parameter s, K and M respectively. Here Pr = 0.7, n = 0.5, e =
0.5, s = 0.5,M = 0.5,K = 1.0 and F = 0.05.

Figures 9 and 10 depict that the velocity profiles decrease for the assisting flow
and for the opposing flow (second solution) but the profile increase for the opposing
flow(first solution) with the increase of s and M respectively. Figure 11 describes
that the velocity profiles decrease with the increase of K for the both flows.

For the assisting flow angular velocity profiles increase near boundary but after
a certain point the profiles decrease with the increasing of s and for the opposing
flows (first and second solution) the profiles decrease with s (fig. 12). Figure
14 shows that the angular velocity profiles decrease near boundary but increase
after some η with the increase of K for the assting flow, the reverse result holds
for the opposing flow (second solution) and the profiles decrease with K for the
opposing flow (first solution). Figure 13 describes that the angular velocity profiles
increase near boundary but the profiles decrease with the increasing of M for the
assisting flow and for the opposing flow (second solution) after some distance from
the boundary and the reverse result holds for the opposing flow (first solution).

From the figure 15 it is clear that the temperature profiles decrease with the
increase of s for the assisting flow and for the opposing flow (first solution) but
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increase for the opposing flow (second solution). The profiles enhance with the
increase of K for both the flows (Figure 17). For the assisting flow the temperature
profiles increase with M , but the reverse result holds for the opposing flow (Figure
16).
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Fig  : Dual Temperature distribution for different s for opposing flow
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Figure 15. Temperature profiles for different s

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

η

θ(
η)

Fig  : Temperature distribution for different M

 

 

M=1, 4, 10 for opposing flow λ=−0.1

M=0, 2, 5
for assisting flow 

λ=1

Figure 16. Temperature profiles for different M

5. Conclusions

A numerical study is performed for the problem of the steady laminar mixed
convection boundary layer flow on a vertical surface under prescribed heat flux.
The velocity, angular velocity and temperature profiles are affected by the suction
parameter, magnetic parameter, material parameter, Prandtl number and the buoy-
ancy parameter for both assisting and opposing flows. The following observations
are maid:
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Figure 17. Temperature profiles for different K

I Suction, magnetic field and micropolar fluids delay the boundary-layer
separation as well as show drag reduction as compared to the non-suction,
non-magnetic field and the classical Newtonian fluids respectively.

II Dual similarity solutions are found to exist for the opposing flow, while
for the assisting flow, the solution is unique. The first solutions are stable
with the most physically relevance while the second solutions are not.

III Velocity profiles decrease for the assisting flow with the increase of s,M,K.
The profiles increase with the increase of the suction parameter and the
magnetic parameter but decrease with the increase of material parameter
for the opposing flow(first solution).

IV For the assisting flow the angular velocity profiles increase near boundary
but after a certain point the profiles decrease with the increasing of the
suction parameter and the magnetic parameter but the reverse holds with
the enhance of the material parameter. For the opposing flow (first solu-
tion) the profiles decrease with the increase of s,K, but with the increse
of M the profiles decrease near boundary and then increase.

V For the assisting flow the temperature profiles decrease with the increase of
suction parameter but increase wih the increase of the material parameter
and the magnetic parameter. The profiles decrease with s and M but
almost no change with K for the opposing flow (first solution).
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